首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
The Caenorhabditis elegans class A and B synthetic multivulva (synMuv) genes redundantly antagonize an EGF/Ras pathway to prevent ectopic vulval induction. We identify a class A synMuv mutation in the promoter of the lin-3 EGF gene, establishing that lin-3 is the key biological target of the class A synMuv genes in vulval development and that the repressive activities of the class A and B synMuv pathways are integrated at the level of lin-3 expression. Using FISH with single mRNA molecule resolution, we find that lin-3 EGF expression is tightly restricted to only a few tissues in wild-type animals, including the germline. In synMuv double mutants, lin-3 EGF is ectopically expressed at low levels throughout the animal. Our findings reveal that the widespread ectopic expression of a growth factor mRNA at concentrations much lower than that in the normal domain of expression can abnormally activate the Ras pathway and alter cell fates. These results suggest hypotheses for the mechanistic basis of the functional redundancy between the tumor-suppressor-like class A and B synMuv genes: the class A synMuv genes either directly or indirectly specifically repress ectopic lin-3 expression; while the class B synMuv genes might function similarly, but alternatively might act to repress lin-3 as a consequence of their role in preventing cells from adopting a germline-like fate. Analogous genes in mammals might function as tumor suppressors by preventing broad ectopic expression of EGF-like ligands.  相似文献   

10.
Andersen EC  Saffer AM  Horvitz HR 《Genetics》2008,179(4):2001-2012
Many mutations cause obvious abnormalities only when combined with other mutations. Such synthetic interactions can be the result of redundant gene functions. In Caenorhabditis elegans, the synthetic multivulva (synMuv) genes have been grouped into multiple classes that redundantly inhibit vulval cell fates. Animals with one or more mutations of the same class undergo wild-type vulval development, whereas animals with mutations of any two classes have a multivulva phenotype. By varying temperature and genetic background, we determined that mutations in most synMuv genes within a single synMuv class enhance each other. However, in a few cases no enhancement was observed. For example, mutations that affect an Mi2 homolog and a histone methyltransferase are of the same class and do not show enhancement. We suggest that such sets of genes function together in vivo and in at least some cases encode proteins that interact physically. The approach of genetic enhancement can be applied more broadly to identify potential protein complexes as well as redundant processes or pathways. Many synMuv genes are evolutionarily conserved, and the genetic relationships we have identified might define the functions not only of synMuv genes in C. elegans but also of their homologs in other organisms.  相似文献   

11.
12.
13.
14.
15.
16.
The single C. elegans member of the retinoblastoma gene family, lin-35 Rb, was originally identified as a synthetic Multivulva (synMuv) gene [1]. These genes form two redundant classes, A and B, that repress ectopic vulval cell fate induction. Recently, we demonstrated that lin-35 Rb also acts as a negative regulator of G(1) progression and likely is the major target of cyd-1 Cyclin D and cdk-4 CDK4/6. Here, we describe G(1) control functions for several other class B synMuv genes. We found that efl-1 E2F negatively regulates cell cycle entry, while dpl-1 DP appeared to act both as a positive and negative regulator. In addition, we identified a negative G(1) regulatory function for lin-9 ALY, as well as lin-15B and lin-36, which encode novel proteins. Inactivation of lin-35 Rb, efl-1, or lin-36 allowed S phase entry in the absence of cyd-1/cdk-4 and increased ectopic cell division when combined with cki-1 Cip/Kip RNAi. These data are consistent with lin-35 Rb, efl-1, and lin-36 acting in a common pathway or complex that negatively regulates G(1) progression. In contrast, lin-15B appeared to act in parallel to lin-35. Our results demonstrate the potential for genetic identification of novel G(1) regulators in C. elegans.  相似文献   

17.
18.
Cui M  Fay DS  Han M 《Genetics》2004,167(3):1177-1185
Null mutations in lin-35, the Caenorhabditis elegans ortholog of the mammalian Rb protein, cause no obvious morphological defects. Using a genetic approach to identify genes that may function redundantly with lin-35, we have isolated a mutation in the C. elegans psa-1 gene. lin-35; psa-1 double mutants display severe developmental defects leading to early larval arrest and adult sterility. The psa-1 gene has previously been shown to encode a C. elegans homolog of yeast SWI3, a critical component of the SWI/SNF complex, and has been shown to regulate asymmetric cell divisions during C. elegans development. We observed strong genetic interactions between psa-1 and lin-35 as well as a subset of the class B synMuv genes that include lin-37 and lin-9. Loss-of-function mutations in lin-35, lin-37, and lin-9 strongly enhanced the defects of asymmetric T cell division associated with a psa-1 mutation. Our results suggest that LIN-35/Rb and a certain class B synMuv proteins collaborate with the SWI/SNF protein complex to regulate the T cell division as well as other events essential for larval growth.  相似文献   

19.
The Mi-2 protein is the central component of the recently isolated NuRD nucleosome remodelling and histone deacetylase complex. Although the NuRD complex has been the subject of extensive biochemical analyses, little is known about its biological function. Here we show that the two C. elegans Mi-2 homologues, LET-418 and CHD-3, play essential roles during development. The two proteins possess both shared and unique functions during vulval cell fate determination, including antagonism of the Ras signalling pathway required for vulval cell fate induction and the proper execution of the 2 degrees cell fate of vulval precursor cells, a process under the control of LIN-12 Notch signalling.  相似文献   

20.
Vulval development in the Caenorhabditis elegans hermaphrodite represents a simple, genetically tractable system for studying how cell signaling events control cell fata decisions. Current models suggest that proper specification of vulval cell fates relies on the integration of multiple signaling systems, including one that involves a receptor tyrosine kinase (RTK)→Ras→mitogen activated protein kinase (MAPK) cascade and one that involves a LIN-12/Notch family receptor. In this review, we first discuss how genetic strategies are being used to identify and analyze components that control vulval cell fate decisions. We then describe the different signaling systems that have been elucidated and how they relate to one another. Finally, we highlight several recently characterized genes that encode positive regulators, negative regulators or potential targets of the RTK→Ras→MAPK cascade involved in vulval induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号