首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have isolated and characterized mutants of Rous sarcoma virus which induce some parameters of transformation but fail to fully induce other parameters. We believe these mutants code for a pp60src which phosphorylates some targets well but phosphorylates others poorly. Using these mutants, we examined the phosphorylation of a 36,000 Mr protein which is phosphorylated on a tyrosine in cells transformed by Rous sarcoma virus, in an attempt to correlate this phosphorylation with the expression of specific transformation parameters. We found that phosphorylation of the 36,000 Mr protein was neither necessary nor sufficient for loss of fibronectin or for loss of density-dependent inhibition of growth. Phosphorylation of the protein was not sufficient for morphological alterations, increased hexose transport, or loss of adhesiveness. For the parameters measured, the best correlation was with increased plasminogen activator. In addition, it is noteworthy that cells infected with the mutant CU2 displayed low levels of phosphorylation of the 36,000 Mr protein and also were deficient in anchorage-independent growth and tumorigenicity, raising the possibility that the phosphorylation of the 35,000 Mr protein may be required for malignant growth properties.  相似文献   

2.
B M Sefton  T Hunter  K Beemon  W Eckhart 《Cell》1980,20(3):807-816
All cells transformed by Rous sarcoma virus contain levels of phosphotyrosine in protein which are 6–10 fold greater than the very low levels present in uninfected cells. The increase is due largely to modification of cellular polypeptides. The abundance of phosphorylated tyrosines in protein in cells infected with tsLA29, a mutant of Rous sarcoma virus which is temperature-sensitive for cellular transformation, increases to 60% of maximum within 60 min of a shift to the permissive temperature and drops to a level close to that in uninfected cells within 60 min of a shift to the restrictive temperature. In light of the fact that pp60src phosphorylates tyrosine in vitro, these results suggest strongly that the modification of one or more cellular polypeptides by way of pp60src is critical for cellular transformation by Rous sarcoma virus. There is, however, no increase in the abundance of phosphotyrosine in protein in mouse cells transformed by Kirsten sarcoma virus, Moloney sarcoma virus, or SV40 virus, in chick embryo cells infected with avian myelocytomatosis virus MC29, and in rat and hamster cells transformed by polyoma virus. Thus increased phosphorylation of tyrosine is neither a universal mechanism of transformation nor an inevitable secondary cellular response to transformation.  相似文献   

3.
We have examined the phosphorylation state of five proteins known to become phosphorylated on tyrosine during transformation by Rous sarcoma virus by using cells infected with a panel of partially transforming mutant viruses. Situations of viral mutant and growth temperature were found in which phosphorylation of some proteins occurred more extensively than that of others, indicating that mutations in the src gene had affected the specificity of pp60src for some of its substrates as well as affecting the activity of the enzyme. To obtain insight into the biological functions of these phosphorylations, comparisons were made between the degree of phosphorylation of these proteins and the expression of various indicators of the transformed phenotype. The data suggest that phosphorylation of proteins l, p, and q (Mr of 46,000, 39,000 and 28,000, respectively) is not sufficient to induce changes in adhesiveness, hexose transport or morphology. The phosphorylation of protein p or l or total phosphotyrosine content correlated well with the production of plasminogen activator, and the phosphorylation of proteins l and q correlated well with increased hexose transport. However, even when good correlations were observed, significant exceptions were sometimes noted. It thus remains possible that some phosphorylations on tyrosine observed in Rous sarcoma virus-transformed cells are not causally related to the expression of the measured parameters of transformation.  相似文献   

4.
Chicken embryo cells infected with partial transformation mutants of Rous sarcoma virus were tested for tumor-forming ability in chickens and in nude mice. Cells transformed by each of these partial transformation mutants display different combinations of transformation parameters. They therefore present a potentially favorable system for analyzing which properties of transformed cells are necessary for tumor formation. We found that the relative tumorigenicity of the virus mutants was generally similar in chickens and in nude mice, except that certain temperature-conditional mutants appeared to be sensitive to the differences in body temperature of the two experimental animals. (The body temperature of nude mice is 4 to 5 degrees C lower than that of chickens). Thus, the nude mouse appears to be a suitable system for testing the tumorigenicity of transformed chicken cells. Because mice are nonpermissive for Rous sarcoma virus infection and replication, it was possible to recover the transformed chicken cells from the tumors in this host and to determine what phenotypic changes they had undergone during tumor development. We also examined the relationship between various cellular properties of the virus-infected chicken cells in vitro and their tumorigenicity in nude mice. The combined results of these two studies indicated that anchorage independence and plasminogen activator production were highly correlated with the tumor-forming ability of these cells, whereas loss of fibronectin did not correlate with tumorigenicity. Furthermore, the inability of the least tumorigenic virus mutant to stimulate the phosphorylation of a 36,000-Mr target of pp60src raises the possibility that the 36,000-Mr protein plays a role in tumor formation.  相似文献   

5.
We have isolated mutants of Rous sarcoma virus from an unmutagenized stock of the Schmidt-Ruppin strain of Rous sarcoma virus. These mutants induce only a "partial" transformation, and the transformation properties induced show unusual properties or combinations. Cells infected with mutant CU2 have a unique "blebby" morphology, have lost surface fibronectin, form very small colonies in soft agar, and are nearly normal with respect to adhesiveness and hexose transport. Cells infected with mutant tsCU11 have a nearly normal morphology, but grow well in soft agar. Cells infected with mutant CU12 have a fusiform morphology, intermediate levels of hexose transport and fibronectin, and form very large colonies in soft agar. Because the appearance of the different parameters of transformation is dissociated in these mutant-infected cells, these data are interpreted as supporting a model in which the transforming protein pp60src interacts with more than one primary target in generating the transformed phenotype. All of the mutants display levels of pp60src kinase activity less than that of the wild type. In the case of mutant CU12, the lower kinase activity is in part a consequence of a lower steady-state amount of pp60src inside the cell.  相似文献   

6.
A tumor promoter stimulates phosphorylation on tyrosine   总被引:27,自引:0,他引:27  
The tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate is mitogenic for normal chicken embryo fibroblasts and also causes these cells to express transiently many properties of cells transformed by Rous sarcoma virus. Since some mitogenic hormones stimulate a tyrosine-specific protein kinase activity, and since the transforming protein of RSV is a tyrosine-specific protein kinase, we have examined whether TPA also stimulates protein phosphorylation on tyrosine. We report here that TPA treatment of normal cells resulted in a very rapid phosphorylation on tyrosine of a protein peak of Mr 40 to 43 kilodaltons. Thus, a similar biochemical activity (tyrosine phosphorylation) is associated with the action of polypeptide mitogenic hormones, Rous sarcoma virus and a tumor promoter. In addition, TPA treatment resulted in rapid changes in phosphorylation of proteins on serine and threonine.  相似文献   

7.
Bisulfite mutagenesis techniques have been used to introduce single-point mutations within a region of the Rous sarcoma virus src gene defined by a BglI restriction endonuclease cleavage site. The mutants of Rous sarcoma virus that are produced by these techniques encode src proteins which contain single amino acid changes within a highly conserved amino acid sequence encompassing residues 430 to 433. DNA from the mutants CHpm26 ( Ala430 to Val), CHpm9 ( Pro431 to Ser), CHpm6 ( Glu432 to Lys), and CHpm65 ( Ala433 to Thr) each failed to transform chicken cells upon transfection, whereas DNA from CHpm59 (a third base alteration in the codon for Glu432 ) readily transformed chicken cells. Analysis of immune complexes containing the altered src proteins indicates that these proteins have decreased tyrosine protein kinase activity in vitro. In vivo labeling of cells infected with the mutant virus revealed diminished levels of the tyrosine-phosphorylated 34,000-molecular-weight protein. These data indicate that mutations within the sequence Ala430 - Pro431 - Glu432 - Ala433 lead to alterations in pp60src-specific tyrosine protein kinase activity and a concomitant loss of transforming potential of the mutant virus.  相似文献   

8.
The transforming protein of Rous sarcoma virus, pp60v-src, is known to be a tyrosine protein kinase, but the mechanism of cell transformation remains unclear. In further investigating pp60v-src structure and function, we have analyzed two temperature-sensitive (ts) Rous sarcoma virus src gene mutants, tsLA29 and tsLA32. The mutations in tsLA29 and tsLA32 map in the carboxy-terminal region and the amino-terminal half of pp60v-src, respectively, and encode mutant proteins with either temperature-labile (tsLA29) or -stable (tsLA32) kinase activities. Here we examined the intracellular processing and localization of these pp60v-src mutants and extended our characterization of transformation parameters expressed by cells infected by the Rous sarcoma virus variants. No obvious defects in functional integrity of the tsLA32 pp60v-src could yet be demonstrated, whereas the tsLA29 pp60v-src was perturbed not only in kinase activity, but also in aspects of protein processing and localization. Analysis of transformation parameters expressed by infected cells demonstrated the complete temperature lability of both mutants.  相似文献   

9.
The protein substrates for the tyrosine protein kinases in cells transformed by avian sarcoma viruses were analyzed by gel electrophoresis in combination with immunoblotting or immunoprecipitation by antibodies against phosphotyrosine. We found that greater than 90% of phosphotyrosine-containing cellular proteins can be immunoprecipitated by these antibodies. The level of phosphotyrosine-containing cellular proteins detectable by this method markedly increased upon transformation with Rous sarcoma virus, and more than 20 distinct bands of such proteins were found in lysates of Rous sarcoma virus-transformed cells. Most of these phosphotyrosine-containing proteins had not been identified by other methods, and their presence appeared to correlate with morphological transformation in cells infected with various Rous sarcoma virus mutants and Y73, PRCII, and Fujinami sarcoma viruses. However, considerably different patterns were obtained with cells infected with nontransforming Rous sarcoma virus mutants that encode nonmyristylated src kinases, indicating that most substrates that correlate with transformation can only be recognized by p60v-src associated with the plasma membrane.  相似文献   

10.
The phosphorylation of a normal cellular protein of molecular weight 34,000 (34K) is enhanced in Rous sarcoma virus-transformed chicken embryo fibroblasts apparently as a direct consequence of the phosphotransferase activity of the Rous sarcoma virus-transforming protein pp60src. We have prepared anti-34K serum by using 34K purified from normal fibroblasts to confirm that the transformation-specific phosphorylation described previously occurs on a normal cellular protein and to further characterize the nature of the protein. In this communication, we also show that the phosphorylation of 34K is also increased in cells transformed by either Fujinami or PRCII sarcoma virus, two recently characterized avian sarcoma viruses whose transforming proteins, although distinct from pp60src, are also associated with phosphotransferase activity. Moreover, comparative fingerprinting of tryptic phosphopeptides shows that the major site of phosphorylation of 34K is the same in all three cases.  相似文献   

11.
We have derived a line of A431 human tumor cells infected with Rous sarcoma virus (RSV). The infected cells contain the RSV-transforming protein, pp60src, which has characteristic tyrosine specific protein kinase activity. As in other RSV-transformed cells, a 36,000-dalton protein is phosphorylated in RSV-infected A431 cells. Addition of epidermal growth factor (EGF) to the cells induces further phosphorylation of this protein. In contrast, this phosphoprotein is not detected in uninfected A431 cells, except when treated with EGF. Increased phosphorylation of the EGF receptor protein and of an 81,000- dalton cellular protein is dependent upon addition of EGF to the culture fluids, in both control and RSV-infected A431 cells. The results are discussed with reference to the similarities and differences between the tyrosine-specific protein kinases induced by RSV and activated by EGF.  相似文献   

12.
Rat cells transformed by Rous sarcoma virus and Fujinami sarcoma virus bound 5-10% of the amount of epidermal growth factor (EGF) bound by normal cells. Scatchard plot analysis indicated that the reduction in binding by transformed cells was due to a decreased number of receptors rather than to altered binding affinity. In experiments with temperature sensitive mutants of Rous sarcoma virus and Fujinami sarcoma virus significant loss of EGF binding occurred within one hour of shift from non-permissive to permissive temperature. Conditioned media from various normal and transformed cell lines were examined for the ability to inhibit EGF binding to normal cells or to cause "down regulation" of EGF receptors. No activity of either type was found. EGF-dependent phosphorylation in isolated membrane preparations was also examined. Membranes from normal cells displayed EGF-dependent phosphorylation of a Mr 180,000 protein presumed to be the EGF receptor. This activity was absent in membranes from transformed cells. The data suggest a close correlation between activation of avian sarcoma virus transforming gene products and modulation of the EGF growth regulatory system.  相似文献   

13.
35S- and 32P-labeled proteins from control chick embryo fibroblasts and from fibroblasts transformed by UR2 sarcoma virus, or by a temperature-sensitive mutant (tsLA29) of Rous sarcoma virus, were separated by two-dimensional electrophoresis on giant gels to detect transformation-specific changes in protein synthesis and total phosphorylation. A nontransforming avian retrovirus, UR2-associated virus (UR2AV), was also studied. Virus-coded proteins appear in whole cell lysates of all infected cells. The structural proteins can be identified by comparison with proteins immunoprecipitated with antivirus serum. The transforming proteins pp60src and p68ros, present in cells transformed with Rous sarcoma virus and UR2, respectively, are phosphorylated in vivo. Eighteen increases and eight decreases in cellular phosphoproteins are associated with transformation, and revert toward normal levels when cells infected with tsLA29 are incubated at 42 degrees C. These changes are more extensive than previously reported, but none represent new phosphorylations, since all phosphoproteins seen in transformed cells also appear to be phosphorylated to a certain extent in control cells. Fifteen cellular proteins show increased relative rates of synthesis apparently related either to transformation or to growth at 42 degrees C. Four other proteins are increased exclusively in cells incubated at 42 degrees C, but not at 37 degrees C, whether transformed or not. Eleven additional increases in the synthesis of cellular proteins, many quite large, and one seemingly a de novo induction, appear to be specific for transformation. These changes occur in cells transformed by either UR2 or Rous sarcoma virus at 37 degrees C, do not occur with UR2AV infection, and tend to revert in cells infected with tsLA29 incubated at 42 degrees C. These 11 changes may represent increases in cellular gene expression that are related specifically to the maintenance of the transformed state.  相似文献   

14.
When cell-free extracts of chickens embryo fibroblasts transformed by Rous sarcoma virus (RSV) were incubated with [gamma-32P]ATP, a protein having a Mr of 36,000 was phosphorylated. Two-dimensional electrophoresis of a mixture of phosphorylated proteins formed in vitro and in vivo showed that they are indistinguishable. The in vitro phosphorylation of the Mr = 36,000 protein was completely inhibited by serum isolated from rabbit bearing tumor formed by RSV. In addition, phosphorylation of the 36K protein does not occur if the extract was made from fibroblasts transformed by RSV tsNY68 and cultured at 42 degrees C or from fibroblasts infected with transformation defective RSV. The cell free-phosphorylation of 36K protein was dependent on Mg2+ ions but not dependent on exogenously added cyclic AMP.  相似文献   

15.
K Radke  T Gilmore  G S Martin 《Cell》1980,21(3):821-828
Transformation of chicken embryo fibroblasts by Rous sarcoma virus (RSV) is caused by a single viral gene, src, which encodes a phosphoprotein, pp60src, with the enzymatic activity of a protein kinase. The relative abundance of a 36,000 molecular weight (36K) phosphorylated polypeptide which can be detected by two-dimensional electrophoresis of 32P-labeled phosphoproteins is greatly increased in RSV-transformed fibroblasts. We have reported previously that phosphorylation of the 36K polypeptide is an early event in the process of transformation and that protein synthesis is not required for its appearance. Here we identify a nonphosphorylated 36K polypeptide, present in both uninfected and transformed cells, which is homologous to the 36K phosphoprotein as judged by limited proteolysis and by tryptic peptide mapping. We conclude that the 36K phosphoprotein is generated by phosphorylation of this 36K polypeptide. It has recently been shown that pp60src phosphorylates tyrosine residues in vitro: phosphotyrosine and also phosphoserine are present in the 36K phosphoprotein isolated from RSV-transformed cells. On the basis of these results we propose that the 36K polypeptide present in chicken fibroblasts is a substrate for the protein kinase activity of pp60src. Phosphorylation of this polypeptide may be important in cellular transformation by Rous sarcoma virus.  相似文献   

16.
Tyrosine-specific phosphorylation of cellular proteins has been implicated in the neoplastic transformation of cells by Rous sarcoma virus (RSV). One of the putative substrates for the src gene product (pp60v-src) of RSV is the cytoskeletal protein vinculin, giving rise to the hypothesis that tyrosine-specific phosphorylation of vinculin disrupts adhesion plaque integrity, leading to the characteristic rounded morphology of RSV-transformed cells. We have investigated this hypothesis by analysing the properties of fibroblasts transformed by conditional and non-conditional mutants of RSV which confer different morphologies on infected cells, with respect to formation of microfilament bundles, formation of vinculin-containing adhesion plaques, the deposition of a fibronectin-containing extracellular matrix, the localization of pp60v-src and the tyrosine-specific phosphorylation of vinculin. Cells transformed by the temperature-sensitive (ts) RSV mutant LA32 cultured at 41 degrees C were morphologically normal, and contained prominent microfilament bundles and well-developed adhesion plaques. However, these cells had a fully active pp60v-src kinase, had pp60v-src concentrated in their adhesion plaques and contained vinculin which was heavily phosphorylated on tyrosine residues. Cells transformed by a recovered avian sarcoma virus, rASV 2234.3 exhibited a markedly fusiform morphology with pp60v-src concentrated in well-developed adhesion plaques and an elevation of the phosphotyrosine content of vinculin. Cells transformed by LA32 at restrictive temperature comprise morphologically normal cells, indistinguishable from untransformed CEF, yet which contain tyrosine-phosphorylated vinculin and suggest that neither tyrosine-specific phosphorylation of vinculin nor pp60v-src concentration in adhesion plaques is sufficient for the rounded morphology of RSV-transformed cells.  相似文献   

17.
Treatment of Rous sarcoma virus-transformed rat cells with rat interferon-alpha (specific activity, 10(6) U/mg of protein) for 24 h caused a 50% reduction in intracellular pp60src-associated protein kinase activity. Staphylococcus aureus V8 protease digestion of pp60src, derived from 32P-labeled monolayer cultures incubated with or without interferon, revealed no differences either in the phosphopeptide pattern or in the phosphoserine-phosphotyrosine ratio. However, [3H]leucine pulse-labeling experiments showed that the synthesis of pp60src was reduced by 42 to 48%, relative to the level of bulk protein synthesis, in the interferon-treated cultures. Rat interferon-alpha also reduced the growth rate of Rous sarcoma virus-transformed rat cells in a dose-dependent manner over a 72-h period. The decrease in growth rate was accompanied by increases in the thickness and number of actin fibers per cell and by a decline in intracellular tyrosine phosphorylation by pp60src. The results suggest that interferon can inhibit the expression of the transformation-related phenotype by selectively reducing the synthesis of the Rous sarcoma virus transforming gene product. However, the interferon effects on the cytoskeletal organization and proliferation of Rous sarcoma virus-transformed cells may be due at least in part to the predominance of interferon-induced phenotypic changes over those caused by pp60src.  相似文献   

18.
Chicken embryo cells transformed by the related avian sarcoma viruses PRC II and Fujinami sarcoma virus, or by the unrelated virus Y73, contain three phosphoproteins not observed in untransformed cells and increased levels of up to four other phosphoproteins. These same phosphoproteins are present in increased levels in cells transformed by Rous sarcoma virus, a virus which is apparently unrelated to the three aforementioned viruses. In all cases, the phosphoproteins contain phosphotyrosine and thus may be substrates for the tyrosine-specific protein kinases encoded by these viruses. In one case, the site(s) of tyrosine phosphorylation within the protein is the same for all four viruses. A homologous protein is also phosphorylated, at the same major site, in mouse 3T3 cells transformed by Rous sarcoma virus or by the further unrelated virus Abelson murine leukemia virus. A second phosphotyrosine-containing protein has been detected in both Rous sarcoma virus and Abelson murine leukemia virus-transformed 3T3 cells, but was absent from normal 3T3 cells and 3T3 cells transformed by various other viruses. We conclude that representatives of four apparently unrelated classes of transforming retroviruses all induce the phosphorylation of tyrosines present in the same set of cellular proteins.  相似文献   

19.
Two forms of the transforming proteins of Fujinami (pp140fps) and Yamaguchi 73 (pp94yes) sarcoma viruses were detected in lysates of chicken cells transformed by these viruses; the majority of pp140fps and pp94yes molecules were present as monomers; however, a small percentage of these proteins was associated in a complex with two cellular proteins of Mr 90,000 and 50,000. These cellular proteins were shown to be identical to those previously found to be complexed with the transforming protein of Rous sarcoma virus, pp60src. These results suggest a common role for the interaction of pp90 and pp50 with viral transforming proteins encoding tyrosyl-protein kinases.  相似文献   

20.
We have examined the phosphorylation of a 50,000-dalton cellular polypeptide associated with the Rous sarcoma virus (FSV) transforming protein pp60-src. It has been shown that pp60src forms a complex with two cellular polypeptides, an 89,000-dalton heat-shock protein (89K) and a 50,000-dalton phosphoprotein (50K). The pp60src-associated protein kinase activity phosphorylates at tyrosine residues, and the 50K polypeptide present in the complex contains phosphotyrosine and phosphoserine. These observations suggest that the 50K polypeptide may be a substrate for the protein kinase activity of pp60src. To examine this possibility, we isolated the 50K polypeptide by two-dimensional polyacrylamide gel electrophoresis from lysates of uninfected or virally infected cells. Tryptic phosphopeptide analysis indicated that the 50K polypeptide isolated by this method was the same polypeptide as that complexed to pp60src. In uninfected cells or cells infected by a transformation-defective mutant, the 50K polypeptide contained phosphoserine but little or no phosphotyrosine. In cells infected by Schmidt-Ruppin or Prague RSV, there was a 40- to 50-fold increase in the quantity of phosphotyrosine in the 50K protein. Thus, the phosphorylation of the 50K polypeptide at tyrosine is dependent on the presence of pp60src. However, the 50K polypeptide isolated from cells infected by temperature-sensitive mutants of RSV was found to be phosphorylated at tyrosine at both permissive and nonpermissive temperatures; this behavior is different from that of other substrates or putative substrates of the pp60src kinase activity. It is possible that the 50K polypeptide is a high-affinity substrate of pp60src.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号