首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of mammalian cell DNA synthesis by ionizing radiation   总被引:4,自引:0,他引:4  
A semi-log plot of the inhibitory effect of ionizing radiation on the rate of DNA synthesis in normal mammalian cells yields a two-component curve. The steep component, at low doses, has a D0 of about 5 Gy and is the result of blocks to initiation of DNA replicons. The shallow component, at high doses, has a D0 of greater than or equal to 100 Gy and is the result of blocks to DNA chain elongation. The target size for the inhibition of DNA replicon initiation is about 1000 kb, and the target size for inhibition of DNA chain elongation is about 50 kb. There is evidence that the target for both components is DNA alone. Therefore, the target size for inhibition of DNA chain elongation is consistent with the idea that an effective radiation-induced lesion in front of the DNA growing point somehow blocks its advance. The target size for inhibition of DNA replicon initiation is so large that it must include many replicons, which is consistent with the concept that a single lesion anywhere within a large group (cluster) of replicons is sufficient to block the initiation of replication of all replicons within that cluster. Studies with radiosensitive human cell mutants suggest that there is an intermediary factor whose normal function is necessary for radiation-induced lesions to cause the inhibition of replicon initiation in clusters and to block chain elongation; this factor is not related to poly(ADP-ribose) synthesis. Studies with radiosensitive Chinese hamster cell mutants suggest that double-strand breaks and their repair are important in regulating the duration of radiation-induced inhibition of replicon initiation but have little to do with effects on chain elongation. There is no simple correlation between inhibition of DNA synthesis and cell killing by ionizing radiation.  相似文献   

2.
We have measured the distance between replicon initiation sites as well as the rate of DNA chain elongation in Simian Virus 40 (SV40)-infected and uninfected Werner syndrome (WS) and normal cell lines by DNA fiber-autoradiography. There was no difference in the rate of chain elongation among these cell lines. On the other hand, the replicon center-to-center distance was clearly longer in WS fibroblasts than that in normal fibroblasts. SV40 infection changed the center-to-center distance in WS cells toward that in normal cells.  相似文献   

3.
The hyperthermic inhibition of cellular DNA synthesis, i.e., reduction in replicon initiation and delay in DNA chain elongation, was previously postulated to be involved in the induction of chromosomal aberrations believed to be largely responsible for killing S-phase cells. Utilizing asynchronous Chinese hamster ovary cells heated for 15 min at 45.5 degrees C, an increase in single-stranded regions in replicating DNA (as measured by BND-cellulose chromatography) persisted in heated cells for as long as replicon initiation was affected. Alkaline sucrose gradient analyses of cells pulse-labeled immediately after heating with [3H]thymidine and subsequently chased at 37 degrees C revealed that these S-phase cells can eventually complete elongation of the replicons in operation at the time of heating, but required about six times as long relative to control cells which completed replicon elongation within 4 h. DNA chain elongation into multicluster-sized molecules was prevented for up to 18 h in these heated cells, resulting in a buildup of cluster-sized molecules (approximately 120-160 S) mainly because of the long-term heat damage to the replicon initiation process. Utilizing bromodeoxyuridine (BrdU)-propidium iodide bivariate analysis on a flow cytometer to measure cell progression, control cells pulsed with BrdU and chased in unlabeled medium progressed through S and G2M with cell division starting after 2 h of chase time. In contrast, the majority of the heated S-phase cells progressed slowly and remained blocked in S phase for about 18 h before cell division was observed after 24 h postheat. Our findings suggest that possible sites for where the chromosomal aberrations may be occurring in heated S-phase cells are either (1) at the persistent single-stranded DNA regions or (2) at the regions between clusters of replicons, because this long-term heat damage to the DNA replication process might lead to many opportunities for abnormal DNA and/or protein exchanges to occur at these two sites.  相似文献   

4.
The effect of antitumor antibiotic neocarzinostatin on DNA replication in HeLa cells was studied by pulse-labeling of DNA with [3H]thymidine and sedimentation analysis of the DNA with alkaline sucrose gradients. The drug, which produced DNA damage, primarily inhibited the replicon initiation in the cells at low doses (less than or equal to 0.1 microgram/ml), and at high doses (greater than or equal to 0.5 microgram/ml) inhibited the DNA chain elongation. An analysis of the number of single-strand breaks of parental DNA, induced by neocarzinostatin, indicated that inhibition of the initiation occurred with introduction of single-strand breaks of less than 1.5 . 10(4)/cell, while inhibition of the elongation occurred with introduction of single-strand breaks of more than 7.5 . 10(4)/cell. Assuming that the relative molecular mass of DNA/HeLa cell was about 10(13) Da, the target size of DNA for inhibition of replicon initiation was calculated to be about 10(9) Da, such being close to an average size of loop DNA in the cell and for inhibition of chain elongation, 1-2 . 10(8) Da which was of the same order of magnitude as the size of replicons. Recovery of inhibited DNA replication by neocarzinostatin occurred during post-incubation of the cells and seemed to correlate with the degree of rejoining of the single-strand breaks of parental DNA. Caffeine and theophylline enhanced the recovery of the inhibited replicon initiation, but did not aid in the repair of the breaks in parental DNA.  相似文献   

5.
Initiation of DNA replication and chain growth, analyzed by alkaline sucrose gradient sedimentation, was interrupted to different extents in different cell types by irradiation with ultraviolet light. Within the first hour of irradiation DNA replication was reduced in a manner that depended on the average number of lesions per replicating unit (replicon). At low numbers of lesions per replicon, inhibition of replicon initiation was the predominant response; at higher numbers of lesions per replicon, blockage of chain growth was also observed. After irradiation with a dose that initially blocked chain growth, the rate at which cells recovered their ability to synthesize increasingly more and larger size DNA was a function both of replicon size and of excision repair capacity. Cells with small replicons recovered more rapidly than cells with large replicons, and excision repair-deficient cells recovered less rapidly than excision-competent cells. These observations indicate that excision repair capacity and replicon size play major roles in the response of DNA replication to ultraviolet damage.  相似文献   

6.
In higher eukaryotic cells, DNA is tandemly arranged into 10(4) replicons that are replicated once per cell cycle during the S phase. To achieve this, DNA is organized into loops attached to the nuclear matrix. Each loop represents one individual replicon with the origin of replication localized within the loop and the ends of the replicon attached to the nuclear matrix at the bases of the loop. During late G1 phase, the replication origins are associated with the nuclear matrix and dissociated after initiation of replication in S phase. Clusters of several replicons are operated together by replication factories, assembled at the nuclear matrix. During replication, DNA of each replicon is spooled through these factories, and after completion of DNA synthesis of any cluster of replicons, the respective replication factories are dismantled and assembled at the next cluster to be replicated. Upon completion of replication of any replicon cluster, the resulting entangled loops of the newly synthesized DNA are resolved by topoisomerases present in the nuclear matrix at the sites of attachment of the loops. Thus, the nuclear matrix plays a dual role in the process of DNA replication: on one hand, it represents structural support for the replication machinery and on the other, provides key protein factors for initiation, elongation, and termination of the replication of eukaryotic DNA.  相似文献   

7.
8.
A hybrid adeno-associated virus (AAV)/simian virus 40 (SV40) genome is described. In this construct SV40 regulatory sequences, including the early promoter/enhancers and origin of DNA replication, were substituted for the AAV p5 promoter, which normally controls expression of the AAV rep gene. The hybrid genome was phenotypically indistinguishable from wild-type AAV in human cells in the presence or absence of helper virus. Upon transfection into cos-7 cells, which constitutively produced the SV40 tumor antigen, the genome replicated as a plasmid when the SV40 origin was used, although with a low efficiency compared with that of a non-AAV/SV40 replicon. The low level of replication was due to an inhibitory effect of an AAV rep gene product and was specific for replicons containing AAV sequences. Target AAV sequences required for inhibition by rep appeared to reside in the terminal repetitions since deletion of these sequences allowed efficient replication in the presence of the rep gene. The possible role for negative autoregulation of AAV DNA replication in latent infection and helper-dependent replication by AAV is discussed.  相似文献   

9.
The effects of initiation, termination and clustering of replicons have been considered in the development of equations which are used to measure DNA chain elongation in mammalian cells by density gradient techniques. These equations can be used to determine the average replicon size as well as the rate of chain elongation. Experimental data from WI-38 and HeLa cells are presented which show the applicability of these methods. Several models of replication initiation and termination have been developed. Some of these models can be eliminated experimentally and the experimental results are consistent with the notion that neighboring replicons are initiated simultaneously or sequentially with short (~-0·5 min) interinitiation time.  相似文献   

10.
A new method is described for estimating replicon sizes in mammalian cells. Cultures were pulse labeled with [3H]thymidine ([3H]TdR) and bromodeoxyuridine (BrdUrd) for up to 1 h. The lengths of the resulting labeled regions of DNA, Lobs, were estimated by a technique wherein the change in molecular weight of nascent DNA strands, induced by 313 nm light, is measured by velocity sedimentation in alkaline sucrose gradients. If cells are exposed to 1,000 rads of X-rays immediately before pulse labeling, initiation of replicon operation is blocked, although chain elongation proceeds almost normally. Under these conditions Lobs continues to increase only until operating replicons have completed their replication. This value for Lobs then remains constant as long as the block to initiation remains and represents an estimate for the average size of replicons operating in the cells before X-irradiation. For human diploid fibroblasts and human HeLa cells this estimated average size is approximately 17 micron, whereas for Chinese hamster ovary cells, the average replicon size is about 42 micron.  相似文献   

11.
The rate-limiting enzymatic step for DNA replication in HeLa cells incubated at 43.5 degrees C was the ligation of clusters of replicons into the cell's genome. At 43.5 degrees C the reciprocal slope for inhibition of DNA chain (replicon) initiation, or of the ligation of replicon clusters into the genome, was 18 or 7 min, respectively. The failure of replicon clusters to be ligated into chromosomal DNA was not a consequence of the failure of histone proteins to be deposited onto replicating DNA, or of chromatin replicated at 43.5 degrees C to be organized into fully condensed chromatin. In addition it was not due to the failure of fully active topoisomerase II to be deposited at a normal frequency along replicating chromatin DNA. The failure of replicon clusters to be ligated into the genome resulted in the persistence of single, but not double, DNA strand breaks in the cell's genome 24 hours after cell heating.  相似文献   

12.
tsFT20 cells derived from a mouse mammary carcinoma cell line FM3A have temperature-sensitive DNA polymerase alpha activity (Murakami, Y., Yasuda, H., Miyazawa, H., Hanaoka, F., and Yamada, M. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 1761-1765). DNA replication in tsFT20 cells at the restrictive temperature (39 degrees C) has been characterized in detail. DNA-synthesizing ability of these cells was measured by [3H] thymidine incorporation and autoradiography. The incorporation of [3H]thymidine decreased rapidly after temperature shift-up, and the incorporation was less than 20% of the initial level after 4 h at 39 degrees C. The rapid decrease correlated well with the decrease in the grain number in the individual nucleus but not with the number of cells with labeled nuclei. Alkaline sucrose gradient sedimentation analysis and DNA fiber autoradiography revealed that DNA chain elongation proceeded normally within a replicon in the temperature-sensitive cells incubated at the restrictive temperature and the DNA elongation rate did not change during the incubation at the restrictive temperature up to at least 6 h. On the other hand, the maturation of replicon-sized DNA to higher molecular weight DNA was retarded or inhibited in the temperature-sensitive cells at the restrictive temperature. The analysis of the center to center distance between replicons by DNA fiber autoradiography revealed that the frequency of replicon initiation decreased in tsFT20 cells at 39 degrees C.  相似文献   

13.
UV-induced DNA damage stalls DNA replication forks and activates the intra-S checkpoint to inhibit replicon initiation. In response to stalled replication forks, ATR phosphorylates and activates the transducer kinase Chk1 through interactions with the mediator proteins TopBP1, Claspin, and Timeless (Tim). Murine Tim recently was shown to form a complex with Tim-interacting protein (Tipin), and a similar complex was shown to exist in human cells. Knockdown of Tipin using small interfering RNA reduced the expression of Tim and reversed the intra-S checkpoint response to UVC. Tipin interacted with replication protein A (RPA) and RPA-coated DNA, and RPA promoted the loading of Tipin onto RPA-free DNA. Immunofluorescence analysis of spread DNA fibers showed that treating HeLa cells with 2.5 J/m(2) UVC not only inhibited the initiation of new replicons but also reduced the rate of chain elongation at active replication forks. The depletion of Tim and Tipin reversed the UV-induced inhibition of replicon initiation but affected the rate of DNA synthesis at replication forks in different ways. In undamaged cells depleted of Tim, the apparent rate of replication fork progression was 52% of the control. In contrast, Tipin depletion had little or no effect on fork progression in unirradiated cells but significantly attenuated the UV-induced inhibition of DNA chain elongation. Together, these findings indicate that the Tim-Tipin complex mediates the UV-induced intra-S checkpoint, Tim is needed to maintain DNA replication fork movement in the absence of damage, Tipin interacts with RPA on DNA and, in UV-damaged cells, Tipin slows DNA chain elongation in active replicons.  相似文献   

14.
15.
The inhibition of DNA replication in ultraviolet-irradiated human fibroblasts was characterized by quantitative analysis of radiation-induced alterations in the steady-state distribution of sizes of pulse-labeled, nascent DNA. Low, noncytotoxic fluences (<1 J/m2, producing less than one pyrimidine dimer per replicon) rapidly produced an inhibition of DNA synthesis in half-replicon-size replication intermediates without noticeably affecting synthesis in multi-repliconsize intermediates. With time, the inhibition produced by low fluences spread progressively to include multi-replicon-size intermediates. The results indicate that ultraviolet radiation inhibits the initiation of DNA synthesis in replicons. Higher (>1 J/m2, producing more than one dimer per replicon) cytotoxic fluences inhibited DNA synthesis in operating replicons presumably because the elongation of nascent strands was blocked where pyrimidine dimers were present in template strands. Xeroderma pigmentosum fibroblasts with deficiencies in DNA excision repair exhibited an inhibition of replicon initiation after low radiation fluences. indicating the effect was not solely dependent upon operation of the nucleotidyl excision repair pathway. Owing to their inability to remove pyrimidine dimers ahead of DNA growing points, the repair-deficient cells also were more sensitive than normal cells to the ultraviolet-induced inhibition of chain elongation. Xeroderma pigmentosum cells belonging to the variant class were even more sensitive to inhibition of chain elongation than the repair-deficient strains despite their ability to remove pyrimidine dimers. This analysis suggests that normal and repair-deficient human fibroblasts either are able to rapidly bypass certain dimers or these dimers are not recognized by the chain elongation machinery.  相似文献   

16.
D Perlman  J A Huberman 《Cell》1977,12(4):1029-1043
We have pulse-labeled simian virus 40 (SV40)-infected monkey cells with 3H-thymidine (3H-dThd) and have hybridized the viral Okazaki pieces (rapidly labeled short DNA chains found during DNA replication, < 250 nucleotides long) and SV40 “intermediate sized” DNA (longer nascent strands, up to full replicon size) to the separated strands of two SV40 DNA restriction fragments, one lying to either side of the origin of bidirectional DNA replication. As much as 5 fold more Okazaki piece DNA hybridized to one strand than to the other strand of each restriction fragment. The excess Okazaki piece DNA was in the strands oriented 3′ → 5′ away from the replication origin (the strands which are expected to be synthesized discontinuously). Neither the duration of the labeling period nor the temperature of the cells during labeling significantly altered this hybridization asymmetry. With respect to the hybridization of “intermediate sized” DNA, a reverse asymmetry was detected (1.7 fold more radioactivity in the strands oriented 5′ → 3′ away from the origin for a 1 min pulse label at 22°C). The effects on these hybridization asymmetries of preincubating the infected cells with FdUrd prior to pulse-labeling were also determined.We also measured the size of the Okazaki pieces using gel electrophoresis under denaturing conditons after releasing the pieces from the filter-bound DNA strands. The size distribution of the Okazaki piece DNA from each strand was the same (~ 145 nucleotides, weight average; 200–250 nucleotides, maximum size), indicating that the hybridization asymmetry resulted from a difference in the number rather than the size of the pieces in each strand.The simplest interpretation of our results is that SV40 DNA is synthesized semidiscontinuously: the strand with 3′ → 5′ orientation away from the origin is synthesized in short Okazaki pieces which are subsequently joined together, while the strand with 5′ → 3′ orientation away from the origin is synthesized continuously. Some models of two-strand discontinuous synthesis, however, cannot be ruled out.  相似文献   

17.
Summary DNA fiber autoradiography has shown an increase in size of replicons during early development of the frog embryo. Replicons of endoderm cells were considerably larger than those of dorsal ectoderm and mesoderm cells in tailbud embryos. Late replicating DNA in partially synchronized tailbuds has a more rapid rate of replicon elongation than does early replicating DNA.  相似文献   

18.
Regulation of DNA synthesis was investigated in SV40 transformed 3T3 cells exhibiting variable growth rates and residence times in S phase when cultured in the presence of different serum concentrations. Pulse-labeled DNA was chased into large molecular weight material in vivo much more slowly in slowly growing cells than in cells growing at the normal rate. Consistent with this, the joining of short (less than 10 S) chains to form long (greater than 10 S) chains by whole cell lysate system in vitro was greatly impaired in slowly growing cells compared to controls. Thus the lengthening of S phase in SV3T3 cells growing slowly in low serum is reflected in a reduced rate of DNA chain elongation. The presence of cycloheximide during chase in vivo reduced the rate of conversion of pulse-labeled molecules into large molecular weight DNA in both slowly growing and normally growing cells.  相似文献   

19.
Simian Virus 40 (SV40) infected cells were pulse labeled with (3H) thymidine and chased either in the absence or in the presence of the cytotoxic drug VM26 (teniposide). We investigated the structure of labeled SV40 DNA and found that VM26 had no significant effect on replicative chain elongation but strongly inhibited the conversion of late replication intermediates to mature DNA daughter molecules. The late replicative SV40 DNA intermediates which accumulate in VM26 treated cells contained essentially full length labeled DNA strands. These newly synthesized strands were not part of two catenated interlocked SV40 monomers suggesting that the block occurred prior to the final ligation reaction. Since VM26 is known to be a specific inhibitor of DNA topoisomerase II we conclude that this enzyme is dispensable for the chain elongation of replicating SV40 DNA, but that it is essential for the termination of SV40 DNA replication cycles.  相似文献   

20.
The effect of aphidicolin, a specific inhibitor of DNA polymerase alpha, on size maturation of nascent DNA intermediates was studied in cultured rat fibroblast cells. Results provided the first evidence of DNA synthesis associated with merging of intermediates of larger than replicon size. Aphidicolin at a concentration (1.4 micrograms/ml) causing 90-95% inhibition of [3H]thymidine incorporation, resulted in accumulation of intermediates of nearly the same size as the replicon (2-5 x 10(-7) Da); although the synthesis of short nascent fragments (referred to as Okazaki fragments) continued in the presence of aphidicolin, the rate of their elongation to the replicon size was greatly decreased. On removal of aphidicolin, these accumulated intermediates merged into high-molecular-weight DNA. This merging of the intermediates was associated with DNA synthesis in gaps between adjacent intermediates, as revealed by photolysis of bromodeoxyuridine-DNA leader with long-wave ultraviolet light; when the cells had been pulse-labeled for 5 min with bromodeoxyuridine immediately after removal of the drug, the large DNA arising from aphidicolin-arrested intermediates was cut into fragments of the original size by long-wave ultraviolet light irradiation. The arrest of chain elongation at the replicon-size by aphidicolin might be due to inhibition of this DNA synthesis in gaps, because aphidicolin did not cause degradation of nascent DNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号