首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.

Background  

In endothelial cells (EC), transforming growth factor-β (TGF-β) can bind to and transduce signals through ALK1 and ALK5. The TGF-β/ALK5 and TGF-β/ALK1 pathways have opposite effects on EC behaviour. Besides differential receptor binding, the duration of TGF-β signaling is an important specificity determinant for signaling responses. TGF-β/ALK1-induced Smad1/5 phosphorylation in ECs occurs transiently.  相似文献   

2.
3.
4.
Y Wan  X Liu  M W Kirschner 《Molecular cell》2001,8(5):1027-1039
Degradation of SnoN is thought to play an important role in the transactivation of TGF-beta responsive genes. We demonstrate that the anaphase-promoting complex (APC) is a ubiquitin ligase required for the destruction of SnoN and that the APC pathway is regulated by TGF-beta. The destruction box of SnoN is required for its degradation in response to TGF-beta signaling. Furthermore, the APC activator CDH1 and Smad3 synergistically regulate SnoN degradation. Under these circumstances, CDH1 forms a quaternary complex with SnoN, Smad3, and APC. These results suggest that APC(CDH1) and SnoN play central roles in regulating growth through the TGF-beta signaling system.  相似文献   

5.

Introduction  

Interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) are up-regulated in injured and osteoarthritic knee joints. IL-1 and TNF-α inhibit integrative meniscal repair; however, the mechanisms by which this inhibition occurs are not fully understood. Transforming growth factor-β1 (TGF-β1) increases meniscal cell proliferation and accumulation, and enhances integrative meniscal repair. An improved understanding of the mechanisms modulating meniscal cell proliferation and migration will help to improve approaches for enhancing intrinsic or tissue-engineered repair of the meniscus. The goal of this study was to examine the hypothesis that IL-1 and TNF-α suppress, while TGF-β1 enhances, cellular proliferation and migration in cell and tissue models of meniscal repair.  相似文献   

6.
Transforming growth factor-β1 (TGF-β1) can activate mitogen-activated protein kinases (MAPKs) in many types of cells. The mechanism of this activation is not well elucidated. Here, we explore the role of TGF-β/Smads signaling compounds in TGF-β1-mediated activation of extracellular signal-regulated kinase (ERK) MAPK in human papillomavirus (HPV)-18 immortalized human bronchial epithelial cell line BEP2D and the role of TGF-β1-induced phosphorylation of ERK in proliferation and apoptosis of BEP2D. The cell models of siRNA-mediated silencing of TGF-β receptor type II (TβRII), Smad2, Smad3, Smad4, and Smad7 were employed in this study. Our results demonstrate that TGF-β1 activates ERK in a time-dependent manner with a maximum effect at 60 min; overexpression of Smad7 increased this TGF-β1-mediated phosphorylation of the ERK; and siRNA-mediated silencing of TβRII, Smad3, Smad4, and Smad7 abrogated this effect. Moreover, we observed that overexpression of Smad7 restored TGF-β1-mediated ERK phosphorylation in Smad4 knockdown cells but not in TβRII knockdown cells. In BEP2D cells, TGF-β1 treatment effectively inhibited cells’ proliferation and induced their apoptosis. Pretreatment with U0126, an inhibitor of ERK1/2, significantly enhanced the TGF-β1-mediated antiproliferative and apoptosis induction effects in BEP2D cells. These data revealed that TβRII and Smad7 play the critical roles in TGF-β1-mediated activation of ERK; Smad3 and Smad4 can play an indirect role through up-regulating Smad7 expression; and TGF-β1-induced phosphorylation of ERK may participate in BEP2D cell proliferation and apoptosis regulation.  相似文献   

7.
8.
Transforming Growth Factor-β (TGF-β) plays an essential role in differentiation of dental pulp cells into odontoblasts during reparative dentine formation. However, the mechanism by which TGF-β stimulates dental repair remains rather obscure. Human dental pulp cells were used as an in vitro model in the present work. We showed that TGF-β signaled through mitogen-activated protein kinases (MAPKs), such as ERK1/2 and p38, along with Smad pathway. Distinct pathways exerted different time response. SB203580, a specific p38 MAPK inhibitor, reduced phosphorylation of Smad3, while it slightly enhanced phosphorylation of Smad2. Increased phosphorylation of ERK1/2 and p38 confirmed that SB203580 did not block activation of TGF-β receptors. In addition, the inhibition of ERK1/2 activity with MEK1/2 inhibitor U0126 increased TGF-β mediated phosphorylation of Smad3. Our results suggest that p38 affects the phosphorylation of Smad2 and Smad3 differentially during TGF-β signaling in human dental pulp cells and ERK1/2 might be involved in the process.  相似文献   

9.
Mast cell-derived chymase is implicated in myocardial fibrosis (MF), but the underlying mechanism of intracellular signaling remains unclear. Transforming growth factor-β1 (TGF-β1) is identified as the most important profibrotic cytokine, and Smad proteins are essential, but not exclusive downstream components of TGF-β1 signaling. Moreover, novel evidence indicates that there is a cross talk between Smad and mitogen-activated protein kinase (MAPK) signaling cascade. We investigated whether chymase activated TGF-β1/Smad pathway and its potential role in MF by evaluating cardiac fibroblasts (CFs) proliferation and collagen synthesis in neonatal rats. MTT assay and 3H-Proline incorporation revealed that chymase induced CFs proliferation and collagen synthesis in a dose-dependent manner. RT-PCR and Western blot assay demonstrated that chymase not only increased TGF-β1 expression but also upregulated phosphorylated-Smad2/3 protein. Furthermore, pretreatment with TGF-β1 neutralizing antibody suppressed chymase-induced cell growth, collagen production, and Smad activation. In contrast, the blockade of angiotensin II receptor had no effects on chymase-induced production of TGF-β1 and profibrotic action. Additionally, the inhibition of MAPK signaling had no effect on Smad activation elicited by chymase. These results suggest that chymase can promote CFs proliferation and collagen synthesis via TGF-β1/Smad pathway rather than angiotensin II, which is implicated in the process of MF.  相似文献   

10.
In endothelial cells, two type I receptors of the transforming growth factor β (TGF-β) family, ALK1 and ALK5, coordinate to regulate embryonic angiogenesis in response to BMP9/10 and TGF-β. Whereas TGF-β binds to and activates ALK5, leading to Smad2/3 phosphorylation and inhibition of endothelial cell proliferation and migration, BMP9/10 and TGF-β also bind to ALK1, resulting in the activation of Smad1/5. SnoN is a negative regulator of ALK5 signaling through the binding and repression of Smad2/3. Here we uncover a positive role of SnoN in enhancing Smad1/5 activation in endothelial cells to promote angiogenesis. Upon ligand binding, SnoN directly bound to ALK1 on the plasma membrane and facilitated the interaction between ALK1 and Smad1/5, enhancing Smad1/5 phosphorylation. Disruption of this SnoN–Smad interaction impaired Smad1/5 activation and up-regulated Smad2/3 activity. This resulted in defective angiogenesis and arteriovenous malformations, leading to embryonic lethality at E12.5. Thus, SnoN is essential for TGF-β/BMP9-dependent biological processes by its ability to both positively and negatively modulate the activities of Smad-dependent pathways.  相似文献   

11.
12.
13.

Background  

Functional antagonism between transforming growth factor beta (TGF-β) and hyaluronidase has been demonstrated. For example, testicular hyaluronidase PH-20 counteracts TGF-β1-mediated growth inhibition of epithelial cells. PH-20 sensitizes various cancer cells to tumor necrosis factor (TNF) cytotoxicity by upregulating proapoptotic p53 and WW domain-containing oxidoreductase (WOX1). TGF-β1 blocks PH-20-increased TNF cytotoxicity. In the present study, the functional antagonism between TGF-β1 and lysosomal hyaluronidases Hyal-1 and Hyal-2 was examined.  相似文献   

14.
15.

Background  

In non-obstructive azoospermia, histological patterns of Sertoli cell-only Syndrome (SCO) and hypospermatogenesis (H) are commonly found. In these pathologies, Leydig cell hyperplasia (LCH) is detected in some patients. Since TGF-β1 is involved in cellular proliferation/development, the aim of this work was to analyze the expression of TGF-β1, its receptors TGFBRII, TGFBRI (ALK-1 and ALK-5), and the co-receptor endoglin in human biopsies from patients with idiopathic infertility.  相似文献   

16.

Background  

The transforming growth factor-β (TGF-β) family constitutes of dimeric proteins that regulate the growth, differentiation and metabolism of many cell types, including that of skeletal muscle in mammals. The potential role of TGF-βs in fish muscle growth is not known.  相似文献   

17.
Atrophin-1-interacting protein 4 (AIP4) is the human homolog of the mouse Itch protein (hItch), an E3 ligase for Notch and JunB. Human enhancer of filamentation 1 (HEF1) has been implicated in signaling pathways such as those mediated by integrin, T cell receptor, and B cell receptor and functions as a multidomain docking protein. Recent studies suggest that HEF1 is also involved in the transforming growth factor-beta (TGF-beta) signaling pathways, by interacting with Smad3, a key signal transducer downstream of the TGF-beta type I receptor. The interaction of Smad3 with HEF1 induces HEF1 proteasomal degradation, which was further enhanced by TGF-beta stimulation. The detailed molecular mechanisms of HEF1 degradation regulated by Smad3 were poorly understood. Here we report our studies that demonstrate the function of AIP4 as an ubiquitin E3 ligase for HEF1. AIP4 forms a complex with both Smad3 and HEF1 through its WW domains in a TGF-beta-independent manner and regulates HEF1 ubiquitination and degradation, which can be enhanced by TGF-beta stimulation. These findings reveal a new mechanism for Smad3-regulated proteasomal degradation events and also broaden the network of cross-talk between the TGF-beta signaling pathway and those involving HEF1 and AIP4.  相似文献   

18.
The aim of this study was to investigate whether transforming growth factor-β1 (TGF-β1) could induce alveolar epithelial-mesenchymal transition (EMT) in vitro, and whether Smad7 gene transfer could block this transition. We also aimed to elucidate the possible mechanisms of these processes. The Smad7 gene was transfected to the rat type II alveolar epithelial cell line (RLE-6TN). Expression of the EMT-associated markers was assayed by Western Blot and Real-time PCR. Morphological alterations were examined via phase-contrast microscope and fluorescence microscope, while ultrastructural changes were examined via electron microscope. TGF-β1 treatment induced a fibrotic phenotype of RLE-6TN with increased expression of fibronectin (FN), α-smooth muscle actin (α-SMA) and vimentin, and decreased expression of E-cadherin (E-cad) and cytokeratin19 (CK19). After transfecting the RLE-6TN with the Smad7 gene, the expression of the mesenchymal markers was downregulated while that of the epithelial markers was upregulated. TGF-β1 treatment for 48 h resulted in the separation of RLE-6TN from one another and a change into elongated, myofibroblast-like cells. After the RLE-6TN had been transfected with the Smad7 gene, TGF-β1 treatment had no effect on the morphology of the RLE-6TN. TGF-β1 treatment for 48 h resulted in an abundant expression of α-SMA in the RLE-6TN. If the RLE-6TN were transfected with the Smad7 gene, TGF-β1 treatment for 48 h could only induce a low level of α-SMA expression. Furthermore, TGF-β1 treatment for 12 h resulted in the degeneration and swelling of the osmiophilic multilamellar bodies, which were the markers of type II alveolar epithelial cells. TGF-β1 can induce alveolar epithelialmesenchymal transition in vitro, which is dependent on the Smads signaling pathway to a certain extent. Overexpression of the Smad7 gene can partially block this process  相似文献   

19.
20.

Background  

Bone morphogenetic proteins (BMPs) and transforming growth factor-βs (TGF-βs) are important regulators of bone repair and regeneration. BMP-2 and TGF-β1 have been shown to inhibit gap junctional intercellular communication (GJIC) in MC3T3-E1 cells. Connexin 43 (Cx43) has been shown to mediate GJIC in osteoblasts and it is the predominant gap junctional protein expressed in these murine osteoblast-like cells. We examined the expression, phosphorylation, and subcellular localization of Cx43 after treatment with BMP-2 or TGF-β1 to investigate a possible mechanism for the inhibition of GJIC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号