首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Honeybee's sting on human skin can induce ongoing pain, hyperalgesia and inflammation. Injection of bee venom (BV) into the intraplantar surface of the rat hindpaw induces an early onset of spontaneous pain followed by a lasting thermal and mechanical hypersensitivity in the affected paw. The underlying mechanisms of BV-induced thermal and mechanical hypersensitivity are, however, poorly understood. In the present study, we investigated the role of mitogen-activated protein kinase (MAPK) in the generation of BV-induced pain hypersensitivity.

Results

We found that BV injection resulted in a quick activation of p38, predominantly in the L4/L5 spinal dorsal horn ipsilateral to the inflammation from 1 hr to 7 d post-injection. Phosphorylated p38 (p-p38) was expressed in both neurons and microglia, but not in astrocytes. Intrathecal administration of the p38 inhibitor, SB203580, prevented BV-induced thermal hypersensitivity from 1 hr to 3 d, but had no effect on mechanical hypersensitivity. Activated ERK1/2 was observed exclusively in neurons in the L4/L5 dorsal horn from 2 min to 1 d, peaking at 2 min after BV injection. Intrathecal administration of the MEK inhibitor, U0126, prevented both mechanical and thermal hypersensitivity from 1 hr to 2 d. p-ERK1/2 and p-p38 were expressed in neurons in distinct regions of the L4/L5 dorsal horn; p-ERK1/2 was mainly in lamina I, while p-p38 was mainly in lamina II of the dorsal horn.

Conclusion

The results indicate that differential activation of p38 and ERK1/2 in the dorsal horn may contribute to the generation and development of BV-induced pain hypersensitivity by different mechanisms.  相似文献   

2.
Peng XL  Gao XL  Chen J  Huang X  Chen HS 《生理学报》2003,55(5):516-524
研究市售中药制剂鸡矢藤注射液和野木瓜注射液有无抗伤害及抗炎作用。采用两种持续性痛动物实验模型——蜜蜂毒(bee venom,BV)模型和福尔马林(formalin,F)模型,评价鸡矢藤注射液和野木瓜注射液系统给药对持续性自发痛反应、原发性热和机械痛敏及炎症反应的作用效果。成年清醒大鼠足底皮下注射BV(0.2%,50μl)不仅可诱发注射侧长达1h以上的、持续的、单相性的自发痛反应(其表现为自发缩足反射行为)和之后出现的持续3—4d的原发性热和机械痛敏现象,而且注射爪出现明显的红、肿等炎症反应。皮下注射F(2.5%,50μl)则产生双相性自发痛反应。与盐水组比较,致痛前系统给予0.32、1.6和9.0ml/kg三个剂量的500%鸡矢藤注射液或250%野木瓜注射液,对BV或F诱致的1h自发缩足反射次数具有剂量依赖性抑制作用;致痛5min后分别给予鸡矢藤或野木瓜注射液对BV或F诱发的自发痛反应也产生显著的抑制作用。然而,致痛前或致痛后静脉注射鸡矢藤注射液或野木瓜注射液对BV诱致的原发性热/机械痛敏及炎症反应均无明显的抑制作用。纳洛酮(一种非选择性的阿片受体拮抗剂)不能翻转鸡矢藤或野木瓜注射液对BV产生的自发痛反应的镇痛作用,提示其镇痛作用不是由内源性阿片受体介导。本研究结果证实鸡矢藤或野木瓜注射液能预防和缓解临床持续性自发痛,但是对原发性热/机械痛敏及炎症反应均无抗伤害效应和抗炎作用。在中药镇痛抗炎有效成分的筛选和评价中,BV模型是一个理想的实验动物模型。  相似文献   

3.
Many growth factors or cytokines regulate cell proliferation via different intracellular signaling pathways. The mechanisms remained quite unclear in avian primordial germ cells (PGCs). In the present study, two major protein kinases, PKA and PKC, were investigated to be involved in signal transduction of PGC proliferation. PGCs were isolated from genital ridge of 3.5-day chicken embryos and primary culture was performed with 5% fetal calf serum (FCS)-supplemented medium 199. After culture for 24 h, PGCs were subcultured on chicken embryonic fibroblast feeder (CEF) and the cells were characterized by histochemical stainings of alkaline phosphatase (ALP) and periodic acid-Schiff (PAS) reagent as well as immunocytochemical stainings of c-kit and stage-specific embryonic antigen-1 (SSEA-I). In addition, cells were challenged with adenylate cyclase activator forskolin (FRSK) and PKC activator phorbol-12-myristate-13-acetate (PMA) alone or in combinations with PKA inhibitor H(89) and PKC inhibitor H(7), respectively. Results showed that subcultured PGCs on CEF displayed positive histochemical and immunocytochemical stainings for ALP, PAS, c-kit and SSEA-I and manifested intensive proliferating activity by colony formation. Downstream activation of PKA by FRSK (10(-7) to 10(-5)M) significantly promoted the proliferation of PGCs by increasing colony number (ALP-stained) in a dose-dependant manner. PMA (10(-8)M) also increased PGC colony number (P<0.05). However, the proliferating effects elicited by FRSK or PMA could be inhibited by the respective protein kinase inhibitor H(89) or H(7). Therefore, the above results suggest that activation of intracellular protein kinases A and C by external factors may promote proliferation of cultured PGCs and PKA represents the most likely mediator of PGC proliferation in embryonic chickens.  相似文献   

4.
The effects of protein kinase A (PKA)-mediated and protein kinase C (PKC)-mediated stimulation on the tight junctions of the moderately tight Xenopus gallbladder epithelium have been investigated. Transepithelial impedance and DC voltage divider ratio measurements in Ussing-type chambers were used to calculate the cell membrane and tight junction resistances in the stimulated state. Under control conditions the TE resistance was used as a lowest estimate of tight junction resistance. Stimulation of PKA by forskolin and theophyllin as well as stimulation of PKC by phorbol dibutyrate lowered the TE resistance mainly via the reduction of the tight junctional resistance. PKA stimulation opened, in addition, an apical Cl- selective conductance. The paracellular pathway activated by PKA or PKC did not discriminate between small anions and cations. The effects of PKA stimulation could be blocked by the selective inhibition of PKA (with H89) or of PKC (with bisindolylmaleimide). By contrast the PKC-evoked effects were insensitive to H89, showing that the effects of PKA on the paracellular pathway were mediated by PKC.  相似文献   

5.
Lu ZM  Xie F  Fu H  Liu MG  Cao FL  Hao J  Chen J 《Neurochemical research》2008,33(10):2085-2091
A recent report from our laboratory shows that subcutaneous (s.c.) injection of melittin could induce persistent spontaneous nociception (PSN) and primary thermal or mechanical hyperalgesia. However, the exact peripheral mechanisms underlying melittin-induced multiple pain-related behaviors remain unclear. In this study, behavioral tests combined with pharmacological manipulations were used to explore potential roles of local P2X and P2Y receptors in melittin-induced inflammatory pain and hyperalgesia. Post-treatment of the primary injury site with s.c. injection of A-317491 (a potent P2X3/P2X2/3 receptor antagonist) and Reactive Blue 2 (a potent P2Y receptor antagonist) could significantly suppress the development of melittin-evoked PSN and hypersensitivity (thermal and mechanical). Our control experiments demonstrated that local administration of either antagonist into the contralateral hindpaw produced no significant effect on any kind of pain-associated behaviors. Taken together, these data indicate that activation of P2X and P2Y receptors might be essential to the maintenance of melittin-induced primary thermal and mechanical hyperalgesia as well as on-going pain. Z.-M. Lu and F. Xie are contributed equally to the work. Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   

6.
Parathyroid hormone (PTH) significantly affects osteoblast function by altering gene expression. We have identified neuron-derived orphan receptor-1 (NOR-1) as a PTH-induced primary gene in osteoblastic cells. NOR-1, Nurr1, and Nur77 comprise the NGFI-B nuclear orphan receptor family and Nurr1 and Nur77 are PTH-induced primary osteoblastic genes. Ten nM PTH maximally induced NOR-1 mRNA at 2h in primary mouse osteoblasts and at 1h in mouse calvariae. Cycloheximide pretreatment did not inhibit PTH-induced NOR-1 mRNA. PTH activates cAMP-protein kinase A (PKA), protein kinase C (PKC), and calcium signaling. Forskolin (PKA activator) and PMA (PKC activator) mimicked PTH-induced NOR-1 mRNA. Ionomycin (calcium ionophore) and PTH(3-34), which do not activate PKA, failed to induce NOR-1 mRNA. PKA inhibition with H89 blocked PTH- and FSK-induced NOR-1 mRNA. PMA pretreatment to deplete PKC inhibited PMA-induced, but not PTH-induced, NOR-1 mRNA. We conclude that NOR-1 is a PTH-regulated primary osteoblastic gene that is induced mainly through cAMP-PKA signaling.  相似文献   

7.
The involvement of protein kinase C (PKC) and protein kinase A (PKA) in cholinergic signalling in CHO cells expressing the M3 subtype of the muscarinic acetylcholine receptor was examined. Muscarinic signalling was assessed by measuring carbachol-induced activation of phospholipase C (PLC), arachidonic acid release, and calcium mobilisation. Carbachol activation of PLC was not altered by inhibition of PKC with chelerythrine chloride, bisindolylmaleimide or chronic treatment with phorbol myristate acetate (PMA). Activation of PKC by acute treatment with PMA was similarly without effect. In contrast, inhibition of PKC blocked carbachol stimulation of arachidonic acid release. Likewise, PKC inhibition resulted in a decreased ability of carbachol to mobilise calcium, whereas PKC activation potentiated calcium mobilisation. Inhibition of PKA with H89 or Rp-cAMP did not alter the ability of carbachol to activate PLC. Similarly, PKA activation with Sp-cAMP or forskolin had no effect on PLC stimulation by carbachol. Carbachol-mediated release of arachidonic acid was decreased by H89 but only slightly increased by forskolin. Forskolin also increased calcium mobilisation by carbachol. These results suggest a function for PKC and PKA in M3 stimulation of arachidonic acid release and calcium mobilisation but not in PLC activation.  相似文献   

8.
H J Choi  S Y Park  O Hwang 《Peptides》1999,20(7):817-822
Roles of protein kinase A (PKA) and protein kinase C (PKC) in regulation of tyrosine hydroxylase, dopamine beta-hydroxylase, and phenylethanolamine N-methyltransferase expression by pituitary adenylate cyclase-activating polypeptide (PACAP) were determined in primary cultured bovine chromaffin cells. DBH up-regulation by PACAP was reduced by H-89 and not further increased by forskolin showing involvement of cAMP/PKA. It was not mediated by PKC, as 12-O-tetradecanoylphorbol-13-acetate and sphingosine exerted no effect. Tyrosine hydroxylase induction by PACAP was mediated by both kinases. The PACAP-activated PKA up-regulated phenylethanolamine N-methyltransferase expression whereas PKC caused down-regulation. PACAP increased tyrosine hydroxylase and dopamine beta-hydroxylase activities, but slightly lowered phenylethanolamine N-methyltransferase activity, resulting in a preferential rise in norepinephrine over epinephrine.  相似文献   

9.
Growth hormone (GH)-releasing peptides (GHRPs) are synthetic peptides which induce strong GH release in both animals and humans. Among them, GHRP-2 is known to stimulate GH release by acting at both hypothalamic and pituitary sites, but also induces adrenocorticotropic hormone (ACTH) release in healthy subjects. GHRP-2 may stimulate ACTH release directly via GHRP receptor type 1a in ACTH-producing tumors. GHRP-2 increases ACTH secretion in rat in vivo, but not ACTH release from rat primary pituitary cells. In the present study, in order to elucidate the mechanism underlying ACTH secretion by GHRPs, mouse pituitary cells were stimulated by GHRP-2. GHRP receptor mRNA was expressed in the mouse pituitary, and GHRP-2 directly stimulated secretion and synthesis of ACTH in the mouse anterior pituitary cells. GHRP-2 increased intracellular cyclic AMP production. H89, a potent protein kinase A (PKA) inhibitor, and bisindolylmaleimide I, a selective protein kinase C (PKC) inhibitor, inhibited the GHRP-2-induced ACTH release, and that H89, but not bisindolylmaleimide I, inhibited the GHRP-2-induced proopiomelanocortin mRNA levels. Together, the GHRP-2-induced ACTH release was regulated via both PKA and PKC pathways in the mouse pituitary cells, while ACTH was synthesized by GHRP-2 only via the PKA pathway.  相似文献   

10.
Dopamine cellular signaling via the D(1) receptor (D(1)R) involves both protein kinase A (PKA) and protein kinase C (PKC), but the PKC isoform involved has not been determined. Therefore, we tested the hypothesis that the D(1)R-mediated inhibition of NADPH oxidase activity involves cross talk between PKA and a specific PKC isoform(s). In HEK-293 cells heterologously expressing human D(1)R (HEK-hD(1)), fenoldopam, a D(1)R agonist, and phorbol 12-myristate 13-acetate (PMA), a PKC activator, inhibited oxidase activity in a time- and concentration-dependent manner. The D(1)R-mediated inhibition of oxidase activity (68.1±3.6%) was attenuated by two PKA inhibitors, H89 (10μmol/L; 88±8.1%) and Rp-cAMP (10μmol/L; 97.7±6.7%), and two PKC inhibitors, bisindolylmaleimide I (1μmol/L; 94±6%) and staurosporine (10nmol/L; 93±8%), which by themselves had no effect (n=4-8/group). The inhibitory effect of PMA (1μmol/L) on oxidase activity (73±3.2%) was blocked by H89 (100±7.8%; n=5 or 6/group). The PMA-mediated inhibition of NADPH oxidase activity was accompanied by an increase in PKCθ(S676), an effect that was also blocked by H89. Fenoldopam (1μmol/L) also increased PKCθ(S676) in HEK-hD(1) and human renal proximal tubule (RPT) cells. Knockdown of PKCθ with siRNA in RPT cells prevented the inhibitory effect of fenoldopam on NADPH oxidase activity. Our studies demonstrate for the first time that cross talk between PKA and PKCθ plays an important role in the D(1)R-mediated negative regulation of NADPH oxidase activity in human kidney cells.  相似文献   

11.
LH increases the intracellular Ca(2+) concentration ([Ca(2+)](i)) in mice Leydig cells, in a process triggered by calcium influx through T-type Ca(2+) channels. Here we show that LH modulates both T-type Ca(2+) currents and [Ca(2+)](i) transients through the effects of PKA and PKC. LH increases the peak calcium current (at -20mV) by 40%. A similar effect is seen with PMA. The effect of LH is completely blocked by the PKA inhibitors H89 and a synthetic inhibitory peptide (IP-20), but only partially by chelerythrine (PKC inhibitor). LH and the blockers induced only minor changes in the voltage dependence of activation, inactivation or deactivation of the currents. Staurosporine (blocker of PKA and PKC) impaired the [Ca(2+)](i) changes induced by LH. A similar effect was seen with H89. Although PMA slowly increased the [Ca(2+)](i) the subsequent addition of LH still triggered the typical transients in [Ca(2+)](i). Chelerythrine also does not avoid the Ca(2+) transients, showing that blockage of PKC is not sufficient to inhibit the LH induced [Ca(2+)](i) rise. In summary, these two kinases are not only directly involved in promoting testosterone synthesis but also act on the overall calcium dynamics in Leydig cells, mostly through the activation of PKA by LH.  相似文献   

12.
Yoon MS  Koo JB  Hwang JH  Lee KS  Han JS 《FEBS letters》2005,579(25):5635-5642
We investigated the mechanism of 8-Br-cAMP-mediated phospholipase D (PLD) activation using a primary cell culture system of human endometrial stromal cells (ES cells). PLD activity was increased by the treatment of ES cells with 8-Br-cAMP, maximally at 5 min. To determine whether the effects of 8-Br-cAMP on PLD occurred as a consequence of PKC activation, ES cells were preincubated for 15 min with RO320432 (1 microM) and GF109203X (1 microM), the PKC inhibitors, or they were pretreated for 24h with phorbol myristate acetate (100 nM) to downregulate PKC. However, these treatments had no effects on PLD activation induced by 8-Br-cAMP. Furthermore, 8-Br-cAMP had no effects on the subcellular distribution of PKC alpha and PKC betaI, confirming no involvement of PKC. 8-Br-cAMP activated ERK1/2, maximally at 5 min, and PD98059 (MEK inhibitor: 50 microM) and transfection of ES cells with dominant negative (DN)-MEK completely inhibited 8-Br-cAMP-induced PLD activation, suggesting that ERK1/2 mediates the PLD activation. To investigate the involvement of protein kinase A (PKA), Src, and Ras in 8-Br-cAMP-induced PLD activation, we used PKA inhibitor, H89 and Rp-cAMPs, and transfections of DN-Src and DN-Ras. H-89 and Rp-cAMPs completely blocked 8-Br-cAMP-mediated PLD and ERK activation, implying the involvement of PKA in this PLD activation. In addition, transfection of ES cells with DN-Src, or DN-Ras partially inhibited 8-Br-cAMP-induced ERK1/2 and consequently PLD activation, whereas cotransfection of DN-Src and DN-Ras completely inhibited ERK1/2 and PLD activation, suggesting that Src and Ras independently regulate ERK/PLD activation. Taken together, these results demonstrate a novel pathway in ES cells that 8-Br-cAMP activate PLD through PKA and ERK1/2 and this ERK/PLD activation by 8-Br-cAMP is mediated by Src and Ras, separately.  相似文献   

13.
The cAMP‐dependent protein kinase (PKA), protein kinase C (PKC) and phosphatidylinositol 3‐kinase (PI3K) pathways control most relevant functions in male germ cells including motility. Recently we demonstrated that phosphorylation state of glycogen synthase kinase‐3α (GSK3A) is also a key event in the control of boar spermatozoa motility. However, the upstream regulators of GSK3A serine phosphorylation (inhibition) in male germ cells remain largely unknown. This work investigates the involvement of PKA, PKC and PI3K pathways in GSK3A phosphorylation in boar spermatozoa. A capacitating medium (TCM) or the phosphodiesterase‐resistant cell permeable cAMP analogue 8Br‐cAMP cause a significant increase in Ser21 GSK3A phosphorylation associated with a simultaneous significant increase in boar spermatozoa motility. These effects are blocked after preincubation of spermatozoa with PKA inhibitor H89 or PKC inhibitor Ro‐32‐0432. The PI3K inhibitor LY294002 increases both spermatozoa motility parameters and the basal GSK3A phosphorylation, but does not affect either TCM‐ or 8Br‐cAMP‐stimulated GSK3A phosphorylation. PI3K inhibition effects are mediated by an increase in intracellular cAMP levels in boar spermatozoa and are suppressed by PKA inhibitor H89. In summary, we demonstrate that PKA, PKC and PI3K pathways crosstalk in porcine male germ cells to crucially regulate GSK3A phosphorylation which subsequently controls cell motility. In addition, our results suggest that PI3K is upstream of PKA which lies upstream of PKC in this regulatory cascade(s). Our findings contribute to elucidate the molecular mechanisms underlying the regulation of one of the most relevant male germ cell functions, motility. J. Cell. Biochem. 109: 65–73, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
To unravel the temporal features of the peripheral tissue injury induced persistent nociceptive discharge, single wide dynamic range (WDR) unit activity was recorded extracellularly in lumbar dorsal horn of anesthetized rats and interspike interval (ISI) series were obtained. Subcutaneous (s.c.) bee venom (BV) injection induced persistent discharge of spinal WDR neurons and has been well established to be a good model in evaluation of tissue injury induced pain. By applying a more novel approach, i.e., the unstable periodic orbit (UPO) identification method, we detected a family of significant separate UPOs (period-1, 2 and 3 orbits) within the ISI series of BV-induced nociceptive discharge, but not spontaneous background activity of spinal WDR neuron. Furthermore, temporally dynamic changes of UPOs at lower period-1, 2 and 3 for 4 successive time segments within 1 h time course of WDR unit firing showed temporally dynamic changes, i.e., new orbits with longer ISIs emerged and those with shorter ISIs vanished with time change. By using this method we suggest that BV-induced nociceptive discharge of spinal WDR neuron be a kind of deterministic activity and various UPOs may play some role in temporal coding of sensory information.  相似文献   

15.
Capacitation is part of an oxidative process necessary for bovine spermatozoa to acquire fertilizing capacity. This process includes the generation of reactive oxygen species (ROS) and the participation of protein kinases such as A (PKA), C (PKC) and tyrosine kinase (PTK). A redox status is required to support both sperm motility and capacitation. Our aim was to determine the requirement of lactate dehydrogenase C4 (LDH-C4) and isocitrate dehydrogenase (NADP-ICDH) and of protein kinases in cryopreserved bovine sperm capacitation. The presence of inhibitors of both LDH-C4 and NADP-ICDH prevented the heparin-induced capacitation. H89, GF109203X or genistein blocked capacitation triggered by heparin or the superoxide (O(-*)(2))generator system xanthine-xanthine oxidase-catalase (XXOC) suggesting the requirement of PKA, PKC and PTK in this process. Taken together these results suggest that LDH-C4 and NADP-ICDH contribute with the redox status to support bovine sperm capacitation and that PKA, PKC and PTK are involved in different mechanisms induced by different inducers that lead bovine spermatozoa to be capacitated.  相似文献   

16.
Visceral noxious stimulation induces central neuronal plasticity changes and suggests that the c-AMP-dependent protein kinase (PKA) signal transduction cascade contributes to long-term changes in nociceptive processing at the spinal cord level. Our previous studies reported the clinical neurosurgical interruption of post synaptic dorsal column neuron (PSDC) pathway by performing midline myelotomy effectively alleviating the intractable visceral pain in patients with severe pain. However, the intracellular cascade in PSDC neurons mediated by PKA nociceptive neurotransmission was not known. In this study, by using multiple experimental approaches, we investigated the role of PKA in nociceptive signaling in the spinal cord and PSDC neurons in a visceral pain model in rats with the intracolonic injection of mustard oil. We found that mustard oil injection elicited visceral pain that significantly changed exploratory behavior activity in rats in terms of decreased numbers of entries, traveled distance, active and rearing time, rearing activity and increased resting time when compared to that of rats receiving mineral oil injection. However, the intrathecal infusion of PKA inhibitor, H89 partially reversed the visceral pain-induced effects. Results from Western blot studies showed that mustard oil injection significantly induced the expression of PKA protein in the lumbosacral spinal cord. Immunofluorescent staining in pre-labeled PSDC neurons showed that mustard oil injection greatly induces the neuronal profile numbers. We also found that the intrathecal infusion of a PKA inhibitor, H89 significantly blocked the visceral pain-induced phosphorylation of c-AMP-responsive element binding (CREB) protein in spinal cord in rats. The results of our study suggest that the PKA signal transduction cascade may contribute to visceral nociceptive changes in spinal PSDC pathways.  相似文献   

17.
The nitric oxide (NO) synthase inhibitor N(omega)-nitro-L-arginine (L-NNA) inhibits heat stress (HS)-induced NO production and the inducible 70-kDa heat shock protein (HSP-70i) in many rodent organs. We used human intestinal epithelial T84 cells to characterize the inhibitory effect of L-NNA on HS-induced HSP-70i expression. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured using fura-2, and protein kinase C (PKC), and PKA activities were determined. HS increased HSP-70i mRNA and protein in T84 cells exposed to 45 degrees C for 10 min and allowed to recover for 6 h. L-NNA treatment for 1 h before HS inhibited the induction of HSP-70i mRNA and protein, with an IC(50) of 0.0471 +/- 0.0007 microM. Because the HS-induced increase in HSP-70i mRNA and protein is Ca(2+) dependent, we measured [Ca(2+)](i) after treating cells with L-NNA. L-NNA at 100 microM significantly decreased resting [Ca(2+)](i). Likewise, treatment with 1 microM GF-109203X or H-89 (inhibitors of PKC and PKA, respectively) for 30 min also significantly decreased [Ca(2+)](i) and inhibited HS-induced increase in HSP-70i. GF-109203X- or H-89-treated cells failed to respond to L-NNA by further decreasing [Ca(2+)](i) and HSP-70i. L-NNA effectively blocked heat shock factor-1 (HSF1) translocation from the cytosol to the nucleus, a process requiring PKC phosphorylation. These results suggest that L-NNA inhibits HSP-70i by reducing [Ca(2+)](i) and decreasing PKC and PKA activity, thereby blocking HSF1 translocation from the cytosol to the nucleus.  相似文献   

18.
Adenosine A(1) receptor (A(1)R)-induced translocation of PKCε to transverse (t) tubular membranes in isolated rat cardiomyocytes is associated with a reduction in β(1)-adrenergic-stimulated contractile function. The PKCε-mediated activation of protein kinase D (PKD) by endothelin-1 is inhibited by β(1)-adrenergic stimulated protein kinase A (PKA) suggesting a similar mechanism of A(1)R signal transduction modulation by adrenergic agonists may exist in the heart. We have investigated the influence of β(1)-adrenergic stimulation on PKCε translocation elicited by A(1)R. Immunofluorescence imaging and Western blotting with PKCε and β-COP antibodies were used to quantify the co-localization of PKCε and t-tubular structures in isolated rat cardiomyocytes. The A(1)R agonist CCPA increased the co-localization of PKCε and t-tubules as detected by imaging. The β(1)-adrenergic receptor agonist isoproterenol (ISO) inhibited this effect of CCPA. Forskolin, a potent activator of PKA, mimicked, and H89, a pharmacological PKA inhibitor, and PKI, a membrane-permeable PKA peptide PKA inhibitor, attenuated the negative effect of ISO on the A(1)R-mediated PKCε translocation. Western blotting with isolated intact hearts revealed an increase in PKCε/β-COP co-localization induced by A(1)R. This increase was attenuated by the A(1)R antagonist DPCPX and ISO. The ISO-induced attenuation was reversed by H89. It is concluded that adrenergic stimulation inhibits A(1)R-induced PKCε translocation to the PKCε anchor site RACK2 constituent of a coatomer containing β-COP and associated with the t-tubular structures of the heart. In that this translocation has been previously associated with the antiadrenergic property of A(1)R, it is apparent that the interactive effects of adenosine and β(1)-adrenergic agonists on function are complex in the heart.  相似文献   

19.
Four hypotheses were tested using isolated bovine oocytes. (1) Cumulus oocyte complexes (COCs) or denuded oocytes (DOs) were cultured with the protein kinase A (PKA) inhibitor, H-89, to test if meiotic arrest induced by forskolin or IBMX was due to cAMP-stimulated PKA activity or nonspecific effects of these cAMP elevators. (2) COCs were cultured with a protein kinase C (PKC) stimulator (PDDβ) or inhibitor (GF109203x) to test if PKC modulation altered oocyte maturation. (3) COCs were prestimulated for 15 min with (a) PDDβ followed by cotreatment with forskolin, or (b) with H-89 or H-7 followed by cotreatment with GF109203x, to test for interaction between the PKA and PKC signal transduction pathways. (4) H-89 was added to spontaneously maturing COCs at intervals 0–18 hr to test if H-89 interfered with the transition between meiosis I and II. The results were as follows: H-89 interfered with forskolin or IBMX arrested oocytes in a dose-response manner (IBMX ED50 = 41 μM for COCs; forskolin ED50 = 9 μM for denuded oocytes). Prestimulation with PKC induced meiotic resumption in COCs in spite of the presence of forskolin [PDDβ followed by PDDβ + forskolin: 41–47% germinal vesicle (GV) oocytes; forskolin alone: 90–95% GV], while PKC inhibition induced meiotic arrest to a similar extent as forskolin (GF109230x, 85% GV; forskolin, 67–80% GV). Additionally, pretreatment of COCs with H-89 interfered with GF109203x induced arrest (41% vs. 90% GV, respectively). Finally, H-89 interfered with the timely progression of COCs from meiosis I and II. These results indicate that the PKA and PKC pathways can modulate the maturation of bovine oocytes in vitro. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Influx of Ca2+ via Ca2+ channels is the major step triggering exocytosis of pituitary somatotropes to release growth hormone (GH). Voltage-gated Ca2+ and K+ channels, the primary determinants of the influx of Ca2+, are regulated by GH-releasing hormone (GHRH) through G-protein-coupled intracellular signalling systems. Using whole-cell patch-clamp techniques, the changes of the Ca2+ and K+ currents in primary cultured ovine and human somatotropes were recorded. Growth hormone-releasing hormone (10 nmol/L) increased both L- and T-type voltage-gated Ca2+ currents. Inhibition of the cAMP/protein kinase A (PKA) pathway by either Rp-cAMP or H89 blocked this increase in both L- and T-type Ca2+ currents. Growth hormone-releasing hormone also decreased voltage-gated transient (IA) and delayed rectified (IK) K+ currents. Protein kinase C (PKC) inhibitors, such as calphostin C, chelerythrine or downregulation of PKC, blocked the effect of GHRH on K+ currents, whereas an acute activation of PKC by phorbol 12, 13-dibutyrate (1 micromol/L) mimicked the effect of GHRH. Intracellular dialysis of a specific PKC inhibitor (PKC19-36) also prevented the reduction in K+ currents by GHRH. It is therefore concluded that GHRH increases voltage-gated Ca2+ currents via cAMP/PKA, but decreases voltage-gated K+ currents via the PKC signalling system. The GHRH-induced alteration of Ca2+ and K+ currents augments the influx of Ca2+, leading to an increase in [Ca2+]i and the GH secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号