首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear localization signals (NLS), but no nuclear export signal (NES) has yet been identified.We show here that the aa(109-133) region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway. Mutagenesis of the three hydrophobic residues (L119, I123 and L126) in the identified NES or in the sequence encoding the mature core aa(1-173) significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7 cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus by confocal microscopy and coincided with a decrease in virus replication.Our data suggest that the functional NLS and NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with nuclear molecules, influence cell signaling and the pathogenesis of HCV infection.  相似文献   

2.
Hepatitis C virus (HCV) core protein is a major component of viral nucleocapsid and a multifunctional protein involved in viral pathogenesis and hepatocarcinogenesis. We previously showed that the HCV core protein is degraded through the ubiquitin-proteasome pathway. However, the molecular machinery for core ubiquitylation is unknown. Using tandem affinity purification, we identified the ubiquitin ligase E6AP as an HCV core-binding protein. E6AP was found to bind to the core protein in vitro and in vivo and promote its degradation in hepatic and nonhepatic cells. Knockdown of endogenous E6AP by RNA interference increased the HCV core protein level. In vitro and in vivo ubiquitylation assays showed that E6AP promotes ubiquitylation of the core protein. Exogenous expression of E6AP decreased intracellular core protein levels and supernatant HCV infectivity titers in the HCV JFH1-infected Huh-7 cells. Furthermore, knockdown of endogenous E6AP by RNA interference increased intracellular core protein levels and supernatant HCV infectivity titers in the HCV JFH1-infected cells. Taken together, our results provide evidence that E6AP mediates ubiquitylation and degradation of HCV core protein. We propose that the E6AP-mediated ubiquitin-proteasome pathway may affect the production of HCV particles through controlling the amounts of viral nucleocapsid protein.  相似文献   

3.
The hepatitis C virus (HCV) core protein is a structural component of the nucleocapsid and has been shown to modulate cellular signaling pathways by interaction with various cellular proteins. In the present study, we investigated the role of HCV core protein in viral RNA replication. Immunoprecipitation experiments demonstrated that the core protein binds to the amino-terminal region of RNA-dependent RNA polymerase (RdRp), which encompasses the finger and palm domains. Direct interaction between HCV RdRp and core protein led to inhibition of RdRp RNA synthesis activity of in vitro. Furthermore, over-expression of core protein, but not its derivatives lacking the RdRp-interacting domain, suppressed HCV replication in a hepatoma cell line harboring an HCV subgenomic replicon RNA. Collectively, our results suggest that the core protein, through binding to RdRp and inhibiting its RNA synthesis activity, is a viral regulator of HCV RNA replication.  相似文献   

4.
By analogy to other members of the Flaviviridae family, the hepatitis C virus (HCV) core protein is presumed to oligomerize to form the viral nucleocapsid, which encloses the single-stranded RNA genome. Core protein is directed to lipid droplets (LDs) by domain 2 (D2) of the protein, and this process is critical for virus production. Domain 1 (D1) of core is also important for infectious particle morphogenesis, although its precise contribution to this process is poorly understood. In this study, we mutated amino acids 64 to 75 within D1 of core and examined the ability of these mutants to produce infectious virus. We found that residues 64 to 66 are critical for generation of infectious progeny, whereas 67 to 75 were dispensable for this process. Further investigation of the defective 64 to 66 mutant (termed JFH1(T)-64-66) revealed it to be incapable of producing infectious intracellular virions, suggesting a fault during HCV assembly. Furthermore, isopycnic gradient analyses revealed that JFH1(T)-64-66 assembled dense intracellular species of core, presumably representing nucleocapsids. Thus, amino acids 64 to 66 are seemingly not involved in core oligomerization/nucleocapsid assembly. Passaging of JFH1(T)-64-66 led to the emergence of a single compensatory mutation (K1302R) within the helicase domain of NS3 that completely rescued its ability to produce infectious virus. Importantly, the same NS3 mutation abrogated virus production in the context of wild-type core protein. Together, our results suggest that residues 64 to 66 of core D1 form a highly specific interaction with the NS3 helicase that is essential for the generation of infectious HCV particles at a stage downstream of nucleocapsid assembly.  相似文献   

5.
Hepatitis C virus (HCV) core protein plays an important role in the formation of the viral nucleocapsid and a regulatory protein involved in hepatocarcinogenesis. In this study, we have identified proteasome activator PA28gamma (11S regulator gamma) as an HCV core binding protein by using yeast two-hybrid system. This interaction was demonstrated not only in cell culture but also in the livers of HCV core transgenic mice. These findings are extended to human HCV infection by the observation of this interaction in liver specimens from a patient with chronic HCV infection. Neither the interaction of HCV core protein with other PA28 subtypes nor that of PA28gamma with other Flavivirus core proteins was detected. Deletion of the PA28gamma-binding region from the HCV core protein or knockout of the PA28gamma gene led to the export of the HCV core protein from the nucleus to the cytoplasm. Overexpression of PA28gamma enhanced the proteolysis of the HCV core protein. Thus, the nuclear retention and stability of the HCV core protein is regulated via a PA28gamma-dependent pathway through which HCV pathogenesis may be exerted.  相似文献   

6.
You LR  Chen CM  Yeh TS  Tsai TY  Mai RT  Lin CH  Lee YH 《Journal of virology》1999,73(4):2841-2853
The nucleocapsid core protein of hepatitis C virus (HCV) has been shown to trans-act on several viral or cellular promoters. To get insight into the trans-action mechanism of HCV core protein, a yeast two-hybrid cloning system was used for identification of core protein-interacting cellular protein. One such cDNA clone encoding the DEAD box family of putative RNA helicase was obtained. This cellular putative RNA helicase, designated CAP-Rf, exhibits more than 95% amino acid sequence identity to other known RNA helicases including human DBX and DBY, mouse mDEAD3, and PL10, a family of proteins generally involved in translation, splicing, development, or cell growth. In vitro binding or in vivo coimmunoprecipitation studies demonstrated the direct interaction of the full-length/matured form and C-terminally truncated variants of HCV core protein with this targeted protein. Additionally, the protein's interaction domains were delineated at the N-terminal 40-amino-acid segment of the HCV core protein and the C-terminal tail of CAP-Rf, which encompassed its RNA-binding and ATP hydrolysis domains. Immunoblotting or indirect immunofluorescence analysis revealed that the endogenous CAP-Rf was mainly localized in the nucleus and to a lesser extent in the cytoplasm, and when fused with FLAG tag, it colocalized with the HCV core protein either in the cytoplasm or in the nucleus. Similar to other RNA helicases, this cellular RNA helicase has nucleoside triphosphatase-deoxynucleoside triphosphatase activity, but this activity is inhibited by various forms of homopolynucleotides and enhanced by the HCV core protein. Moreover, transient expression of HCV core protein in human hepatoma HuH-7 cells significantly potentiated the trans-activation effect of FLAG-tagged CAP-Rf or untagged CAP-Rf on the luciferase reporter plasmid activity. All together, our results indicate that CAP-Rf is involved in regulation of gene expression and that HCV core protein promotes the trans-activation ability of CAP-Rf, likely via the complex formation and the modulation of the ATPase-dATPase activity of CAP-Rf. These findings provide evidence that HCV may have evolved a distinct mechanism in alteration of host cellular gene expression regulation via the interaction of its nucleocapsid core protein and cellular putative RNA helicase known to participate in all aspects of cellular processes involving RNA metabolism. This feature of core protein may impart pleiotropic effects on host cells, which may partially account for its role in HCV pathogenesis.  相似文献   

7.
A structural protein of hepatitis C virus (HCV) was expressed in monkey COS cells under the control of an exogenous promoter, and a protein of 22 kDa was identified by immunoblot analysis. This protein (p22), which was produced by processing in COS cells, reacted specifically to sera of chronic hepatitis C patients, and its coding region was mapped at the most amino-terminal part of the HCV polyprotein. These results suggested that the p22 protein is the nucleocapsid (core) protein of HCV. Moreover, the assay detecting antibody to p22 was found to be useful for early diagnosis of HCV infection.  相似文献   

8.
We have previously demonstrated that viral particles with the properties of nonenveloped hepatitis C virus (HCV) nucleocapsids occur in the serum of HCV-infected individuals (1). We show here that nucleocapsids purified directly from serum or isolated from HCV virions have FcgammaR-like activity and bind "nonimmune" IgG via its Fcgamma domain. HCV core proteins produced in Escherichia coli and in the baculovirus expression system also bound "nonimmune" IgG and their Fcgamma fragments. Folded conformation was required for IgG binding because the FcgammaR-like site of the core protein was inactive in denaturing conditions. Studies with synthetic core peptides showed that the region spanning amino acids 3-75 was essential for formation of the IgG-binding site. The interaction between the HCV core and human IgG is more efficient in acidic (pH 6.0) than in neutral conditions. The core protein-binding site on the IgG molecule differs from those for C1q, FcgammaRII (CD32), and FcgammaRIII (CD16) but overlaps with that for soluble protein A from Staphylococcus aureus (SpA), which is located in the CH2-CH3 interface of IgG. These characteristics of the core-IgG interaction are very similar to those of the neonatal FcRn. Surface plasmon resonance studies suggested that the binding of an anti-core antibody to HCV core protein might be "bipolar" through its paratope to the corresponding epitope and by its Fcgamma region to the FcgammaR-like motif on this protein. These features of HCV nucleocapsids and HCV core protein may confer an advantage for HCV in terms of survival by interfering with host defense mechanisms mediated by the Fcgamma part of IgG.  相似文献   

9.
Nonstructural protein 5A (NS5A) of the hepatitis C virus (HCV) possesses multiple and diverse functions in RNA replication, interferon resistance, and viral pathogenesis. Recent studies suggest that NS5A is involved in the assembly and maturation of infectious viral particles; however, precisely how NS5A participates in virus production has not been fully elucidated. In the present study, we demonstrate that NS5A is a prerequisite for HCV particle production as a result of its interaction with the viral capsid protein (core protein). The efficiency of virus production correlated well with the levels of interaction between NS5A and the core protein. Alanine substitutions for the C-terminal serine cluster in domain III of NS5A (amino acids 2428, 2430, and 2433) impaired NS5A basal phosphorylation, leading to a marked decrease in NS5A-core interaction, disturbance of the subcellular localization of NS5A, and disruption of virion production. Replacing the same serine cluster with glutamic acid, which mimics the presence of phosphoserines, partially preserved the NS5A-core interaction and virion production, suggesting that phosphorylation of these serine residues is important for virion production. In addition, we found that the alanine substitutions in the serine cluster suppressed the association of the core protein with viral genome RNA, possibly resulting in the inhibition of nucleocapsid assembly. These results suggest that NS5A plays a key role in regulating the early phase of HCV particle formation by interacting with core protein and that its C-terminal serine cluster is a determinant of the NS5A-core interaction.  相似文献   

10.
The building block of hepatitis C virus (HCV) nucleocapsid, the core protein, together with viral RNA, is composed of different domains involved in RNA binding and homo-oligomerization. The HCV core protein 1-169 (C(HCV)169) and its N-terminal region from positions 1 to 117 (C(HCV)117) were expressed in Escherichia coli and purified to homogeneity suitable for biochemical and biophysical characterizations. The overall conformation and the oligomeric properties of the resulting proteins C(HCV)169 and C(HCV)117 were investigated by using analytical centrifugation, circular dichroism, intrinsic fluorescence measurements, and limited proteolysis. Altogether, our results show that core protein (C(HCV)169) behaves as a membranous protein and forms heterogeneous soluble micelle-like aggregates of high molecular weight in the absence of detergent. In contrast, it behaves, in the presence of mild detergent, as a soluble, well-folded, noncovalent dimer. Similar to findings observed for core proteins of HCV-related flaviviruses, the HCV core protein is essentially composed of alpha-helices (50%). In contrast, C(HCV)117 is soluble and monodispersed in the absence of detergent but is unfolded. It appears that the folding of the highly basic domain from positions 2 to 117 (2-117 domain) depends on the presence of the 117-169 hydrophobic domain, which contains the structural determinants ensuring the binding of core with cellular membranes. Finally, our findings provide valuable information for further investigations on isolated core protein, as well as for attempts to reconstitute nucleocapsid particles in vitro.  相似文献   

11.
Sindbis virus is an enveloped positive-sense RNA virus in the alphavirus genus. The nucleocapsid core contains the genomic RNA surrounded by 240 copies of a single capsid protein. The capsid protein is multifunctional, and its roles include acting as a protease, controlling the specificity of RNA that is encapsidated into nucleocapsid cores, and interacting with viral glycoproteins to promote the budding of mature virus and the release of the genomic RNA into the newly infected cell. The region comprising amino acids 81 to 113 was previously implicated in two processes, the encapsidation of the viral genomic RNA and the stable accumulation of nucleocapsid cores in the cytoplasm of infected cells. In the present study, specific amino acids within this region responsible for the encapsidation of the genomic RNA have been identified. The region that is responsible for nucleocapsid core accumulation has considerable overlap with the region that controls encapsidation specificity.  相似文献   

12.
13.
14.
15.
Hepatitis C virus (HCV) core protein is a putative nucleocapsid protein with a number of regulatory functions. In tissue culture cells, HCV core protein is mainly located at the endoplasmic reticulum as well as mitochondria and lipid droplets within the cytoplasm. However, it is also detected in the nucleus in some cells. To elucidate the mechanisms by which cellular trafficking of the protein is controlled, we performed subcellular fractionation experiments and used confocal microscopy to examine the distribution of heterologously expressed fusion proteins involving various deletions and point mutations of the HCV core combined with green fluorescent proteins. We demonstrated that a region spanning amino acids 112 to 152 can mediate association of the core protein not only with the ER but also with the mitochondrial outer membrane. This region contains an 18-amino-acid motif which is predicted to form an amphipathic alpha-helix structure. With regard to the nuclear targeting of the core protein, we identified a novel bipartite nuclear localization signal, which requires two out of three basic-residue clusters for efficient nuclear translocation, possibly by occupying binding sites on importin-alpha. Differences in the cellular trafficking of HCV core protein, achieved and maintained by multiple targeting functions as mentioned above, may in part regulate the diverse range of biological roles of the core protein.  相似文献   

16.
Hepatitis C virus (HCV) core protein is a multifunctional protein. We examined whether it can interact with cellular proteins, thus contributing to viral pathogenesis. Using the HCV core protein as a bait to screen a human liver cDNA library in a yeast two-hybrid screening system, we have isolated several positive clones encoding cellular proteins that interact with the HCV core protein. Interestingly, more than half of these clones encode the cytoplasmic domain of lymphotoxin-beta receptor (LT betaR), which is a member of the tumor necrosis factor receptor family. Their binding was confirmed by in vitro glutathione S-transferase fusion protein binding assay and protein-protein blotting assay to be direct and specific. The binding sites were mapped within a 58-amino-acid region of the cytoplasmic tail of LT betaR. The binding site in the HCV core protein was localized within amino acid residues 36 to 91 from the N terminus, corresponding to the hydrophilic region of the protein. In mammalian cells, the core protein was found to be associated with the membrane-bound LT betaR. Since the LT betaR is involved in germinal center formation and developmental regulation of peripheral lymphoid organs, lymph node development, and apoptotic signaling, the binding of HCV core protein to LT betaR suggests the possibility that this viral protein has an immunomodulating function and may explain the mechanism of viral persistence and pathogenesis of HCV.  相似文献   

17.
Hepatitis G virus (HGV or GB-C virus) is a newly described virus that is closely related to hepatitis C virus (HCV). Based on sequence analysis and by evaluation of translational initiation codon preferences utilized during in vitro translation, HGV appears to have a truncated or absent core protein at the amino terminus of the HGV polyprotein. Consequently, the biophysical properties of HGV may be very different from those of HCV. To characterize HGV particle types, we evaluated plasma from chronically infected individuals with and without concomitant HCV infection by using sucrose gradient centrifugation, isopycnic banding in cesium chloride, and saline density flotation centrifugation. Similar to HCV, HGV particles included an extremely-low-density virion particle (1.07 to 1.09 g/ml) and a nucleocapsid of ~1.18 g/ml. One major difference between the particle types was that HGV was consistently more stable in cesium chloride than HCV. Plasma samples from chronically HGV-infected individuals and controls were assessed by a synthetic peptide-based immunoassay to determine if they contained HGV antibody specific for a conserved region in the coding region upstream of the E1 protein. Chronically HGV-infected individuals contained antibody to the HGV core protein peptide, whereas no binding to a hepatitis A virus peptide control was observed. Competitive inhibition of binding to the HGV peptide confirmed the specificity of the assay. These data indicate that HGV has a nucleocapsid and that at least part of the putative core region of HGV is expressed in vivo.  相似文献   

18.
A major function of the hepatitis C virus (HCV) core protein is the interaction with genomic RNA to form the nucleocapsid, an essential component of the virus particle. Analyses to identify basic amino acid residues of HCV core protein, important for capsid assembly, were initially performed with a cell-free system, which did not indicate the importance of these residues for HCV infectivity. The development of a cell culture system for HCV (HCVcc) allows a more precise analysis of these core protein amino acids during the HCV life cycle. In the present study, we used a mutational analysis in the context of the HCVcc system to determine the role of the basic amino acid residues of the core protein in HCV infectivity. We focused our analysis on basic residues located in two clusters (cluster 1, amino acids [aa]6 to 23; cluster 2, aa 39 to 62) within the N-terminal 62 amino acids of the HCV core protein. Our data indicate that basic residues of the first cluster have little impact on replication and are dispensable for infectivity. Furthermore, only four basic amino acids residues of the second cluster (R50, K51, R59, and R62) were essential for the production of infectious viral particles. Mutation of these residues did not interfere with core protein subcellular localization, core protein-RNA interaction, or core protein oligomerization. Moreover, these mutations had no effect on core protein envelopment by intracellular membranes. Together, these data indicate that R50, K51, R59, and R62 residues play a major role in the formation of infectious viral particles at a post-nucleocapsid assembly step.  相似文献   

19.
20.
To clarify the binding properties of hepatitis C virus (HCV) core protein and its viral RNA for the encapsidation, morphogenesis, and replication of HCV, the specific interaction of HCV core protein with its genomic RNA synthesized in vitro was examined in an in vivo system. The positive-sense RNA from the 5' end to nucleotide (nt) 2327, which covers the 5' untranslated region (5'UTR) and a part of the coding region of HCV structural proteins, interacted with HCV core protein, while no interaction was observed in the same region of negative-sense RNA and in other regions of viral and antiviral sense RNAs. The internal ribosome entry site (IRES) exists around the 5'UTR of HCV; therefore, the interaction of the core protein with this region of HCV RNA suggests that there is some effect on its cap-independent translation. Cells expressing HCV core protein were transfected with reporter RNAs consisting of nt 1 to 709 of HCV RNA (the 5'UTR of HCV and about two-thirds of the core protein coding regions) followed by a firefly luciferase gene (HCV07Luc RNA). The translation of HCV07Luc RNA was suppressed in cells expressing the core protein, whereas no significant suppression was observed in the case of a reporter RNA possessing the IRES of encephalomyocarditis virus followed by a firefly luciferase. This suppression by the core protein occurred in a dose-dependent manner. The expression of the E1 envelope protein of HCV or beta-galactosidase did not suppress the translation of both HCV and EMCV reporter RNAs. We then examined the regions that are important for suppression of translation by the core protein and found that the region from nt 1 to 344 was enough to exert this suppression. These results suggest that the HCV core protein interacts with viral genomic RNA at a specific region to form nucleocapsids and regulates the expression of HCV by interacting with the 5'UTR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号