首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Concepts in tumour immunology are changing fundamentally.Around 1970 tumour immunology contained the following related concepts: 1. Thousands of tumour cells arise de novo each day. 2. Tumour cells are antigenic in their host. 3. All these antigenic tumour cells are killed by a strong immune surveillance system.A more likely set of concepts looks as follows: 1. Tumour cells do not arise frequently. 2. Tumour cells may be antigenic or not. 3. There is no need to postulate a very strong immune surveillance or natural resistance system.In this paper I am reviewing our present knowledge of immune surveillance and natural resistance. Only scanty information appears to be available. This information suggests that virally induced tumours are usually killed by cytotoxic T lymphocytes, and natural killer cells, whereas immune surveillance and natural resistance against other tumours may be quite weak.  相似文献   

2.
Summary BALB/c mice were treated s.c. with 3-methyl-cholanthrene (MCA), and tumor incidence and growth were followed for 9 months. Immunological status of mice was altered by various treatments. Thymectomized, lethally irradiated, bone marrow reconstituted mice served as T-cell deficient recipients. In order to suppres natural killer (NK)-cell/macrophage functions some mice were injected with silica particles; to enhance these functions some mice were given Corynebacterium parvum (CP). Silica and CP were given simultaneously with MCA to test their influence on the presumed function of surveillance of tumor incidence, and also 2 months after MCA to test their influence on the growth of greater numbers of transformed host cells. Almost all mice developed tumors at the inoculation site and at the end of the observation period there was no difference in tumor incidence among 9 experimental groups. However, in T-cell deficient mice we observed shorter tumor duration and earlier death than in normal mice. Silica particles appeared to enhance tumor growth but the differences compared to normal controls were not significant. A single injection of CP simultaneously with MCA caused earlier tumor appearance but also slowed its growth. In contrast, CP given 2 months after MCA significantly delayed the appearance of the tumors. In regard to the tumor growth immunosuppression had stronger effects in males than in females; the opposite was true for immunostimulation treatments. We concluded that immunological status does not influence long-term tumor incidence, but that both T-cell and NK-cell/macrophage compartments strongly influence the parameters of growth of chemically induced tumors, i.e., the immune and natural resistance mechanisms do not influence the frequency of de novo arising tumors but both can slow down tumor growth.Postgraduate and pregraduate students, University of Zagreb, Faculty of Medicine, Zagreb, Yugoslavia  相似文献   

3.
Natural killer(NK) cells, which recognize and kill target cells independent of antigen specificity and major histocompatibility complex(MHC) matching, play pivotal roles in immune defence against tumors. However, tumor cells often acquire the ability to escape NK cell-mediated immune surveillance. Thus, understanding mechanisms underlying regulation of NK cell phenotype and function within the tumor environment is instrumental for designing new approaches to improve the current cell-based immunotherapy. In this review, we elaborate the main biological features and molecular mechanisms of NK cells that pertain to regulation of NK cell-mediated anti-tumor activity. We further overview current clinical approaches regarding NK cell-based cancer therapy, including cytokine infusion, adoptive transfer of autologous or allogeneic NK cells, applications of chimeric antigen receptor(CAR)-expressing NK cells and adoptive transfer of memory-like NK cells. With these promising clinical outcomes and fuller understanding the basic questions raised in this review, we foresee that NK cell-based approaches may hold great potential for future cancer immunotherapy.  相似文献   

4.
Oncolytic viruses are emerging as anticancer agents, and they have also shown great promise for use against neuroendocrine tumors. Many viruses have a natural tropism for replication in tumor cells. Others can be genetically engineered to selectively kill tumor cells. Viruses have some advantages as therapeutic agents over current cytotoxic drugs and small molecules. They replicate in tumor cells and thereby increase in number over time leading to increased dosage. They are immunogenic and can alter the immunosuppressive tumor microenvironment and activate immune effector cells. They have also been shown to be able to kill drug-resistant cancer stem cells. This article reviews the recent literature on oncolytic viruses used so far for neuroendocrine tumors and indicates important issues to focus on in the future.  相似文献   

5.
The immune system can act as an extrinsic suppressor of tumors. Therefore, tumor progression depends in part on mechanisms that downmodulate intrinsic immune surveillance. Identifying these inhibitory pathways may provide promising targets to enhance antitumor immunity. Here, we show that Stat3 is constitutively activated in diverse tumor-infiltrating immune cells, and ablating Stat3 in hematopoietic cells triggers an intrinsic immune-surveillance system that inhibits tumor growth and metastasis. We observed a markedly enhanced function of dendritic cells, T cells, natural killer (NK) cells and neutrophils in tumor-bearing mice with Stat3(-/-) hematopoietic cells, and showed that tumor regression requires immune cells. Targeting Stat3 with a small-molecule drug induces T cell- and NK cell-dependent growth inhibition of established tumors otherwise resistant to direct killing by the inhibitor. Our findings show that Stat3 signaling restrains natural tumor immune surveillance and that inhibiting hematopoietic Stat3 in tumor-bearing hosts elicits multicomponent therapeutic antitumor immunity.  相似文献   

6.
Immune surveillance: a balance between protumor and antitumor immunity   总被引:10,自引:0,他引:10  
Precancerous and malignant cells can induce an immune response which results in the destruction of transformed and/or malignant cells, a process known as immune surveillance. However, immune surveillance is not always successful, resulting in 'edited' tumors that have escaped immune surveillance. Immunoediting is not simply because of the absence of antitumor immunity, but is because of protumor immunity that blocks antitumor adaptive and innate responses, and promotes conditions that favor tumor progression. Several immune protumor effector mechanisms are upregulated by chronic inflammation, leading to the hypothesis that inflammation promotes carcinogenesis and tumor growth by altering the balance between protumor and antitumor immunity, thereby preventing the immune system from rejecting malignant cells, and providing a tumor-friendly environment for progressive disease.  相似文献   

7.
Myoglobin-specific, Iad-restricted cloned helper T cells and T hybridomas were found to directly kill Iad-bearing, myoglobin-pulsed B lymphoma targets and could also kill bystander targets, but only in the presence of antigen-pulsed antigen presenting cells (APC). The induction of the killing requires recognition of processed antigen in the context of class II major histocompatibility complex (MHC) molecules. Despite the specificity of induction, the bystander killing suggests a nonspecific lytic mechanism. The direct killing can be inhibited only by cold specific targets, whereas the bystander killing can be blocked by both specific and nonspecific targets. The cold target inhibition seems to be due to interference with effector-to-target contact or proximity rather than due to high-dose suppression of T-cell activation. Experiments using T-cell supernatants or cyclosporin A suggested that the helper T cells kill targets by synthesizing short-range soluble factor(s) with nonspecific killing activity de novo during the effector phase, but only while antigen-specific signal transduction is occurring. The mechanism of cold target inhibition appears to be absorption or consumption of a short-acting cytotoxic lymphokine by cells which must be able to interact closely with the effector cell. Normal spleen B cells, despite their capability for activating the helper T cells, cannot inhibit specific killing or be killed by helper T cells, even after lipopolysaccharide stimulation. Thus, although killing by helper T cells may play a negative feedback role in the normal immune response, our data raise the possibility that the helper T-cell-mediated killing may contribute to the immune surveillance against malignancy by virtue of the preferential killing of tumor cells either directly or indirectly.  相似文献   

8.
COX-2 and PGE2-dependent immunomodulation in breast cancer   总被引:1,自引:0,他引:1  
COX-derived prostanoids play multiple roles in inflammation and cancer. This review highlights research examining COX-2 and PGE(2)-dependent regulation of immune cell polarization and function within the tumor microenvironment, particularly as it pertains to breast cancer. Appreciating PGE(2)-mediated immunomodulation is important in understanding how tumors evade immune surveillance by re-educating infiltrating inflammatory and immune cells to support tumorigenesis. Elucidation of the multiple and complex influences exerted by tumor stromal components may lead to targeted therapies in breast and other cancers that restrain microenvironmental permissiveness and maintain natural defenses against malignancies.  相似文献   

9.
Tumor immunology fundamentals suggest immunological surveillance has the ability to recognize malignant cells and kill them before a tumor develops. However, cancer cells employ evasion mechanisms whereby the immune system may be actively suppressed or even tolerized to the tumor. Recently cancer stem cells were linked to tumor initiation and formation. However, no reports have addressed whether these cells participate in a tumor’s ability to evade immune surveillance. Recently the glycoprotein CD200, expressed within the innate immune system and other tissues and cells, was shown to be involved in tolerance. Here we describe CD200 co-expression with stem cell markers found on prostate, breast, brain, and colon cancers. This is the first report describing an immunomodulatory molecule on epithelial cancer stem cells. This important finding suggests a mechanism by which a tumor might evades immune system detection.  相似文献   

10.
The role of the immune system in the surveillance of transformed cells has seen a resurgence of interest in the last 10 years, with a substantial body of data in mice and humans supporting a role for the immune system in host protection from tumor development and in shaping tumor immunogenicity. A number of earlier studies have demonstrated that eosinophils, when recruited into tumors, can very effectively eradicate transplantable tumors. In this study, we investigated whether eosinophils also play a role in tumor immune surveillance by determining the incidence of methylcholanthrene (MCA)-induced fibrosarcomas in IL-5 transgenic mice that have greatly enhanced levels of circulating eosinophils, CCL11 (eotaxin-1)-deficient mice that lack a key chemokine that recruits eosinophils into tissues, and the eosinophil-deficient mouse strains, IL-5/CCL11(-/-) and DeltadblGATA. It was found that MCA-induced tumor incidence and growth were significantly attenuated in IL-5 transgenic mice of both the BALB/c and C57BL/6 backgrounds. Histological examination revealed that the protective effect of IL-5 was associated with massively enhanced numbers of eosinophils within and surrounding tumors. Conversely, there was a higher tumor incidence in CCL11(-/-) BALB/c mice, which was associated with a reduced eosinophil influx into tumors. This correlation was confirmed in the eosinophil-deficient IL-5/CCL11(-/-) and DeltadblGATA mouse strains, where tumor incidence was greatly increased in the total absence of eosinophils. In addition, subsequent in vitro studies found that eosinophils could directly kill MCA-induced fibrosarcoma cells. Collectively, our data support a potential role for the eosinophil as an effector cell in tumor immune surveillance.  相似文献   

11.
Tumors use a complex set of direct and indirect mechanisms to evade the immune system. Naturally arising CD4(+)CD25(+)FoxP3(+) T regulatory (Treg) cells have been implicated recently in tumor immune escape mechanism, but the relative contribution of these cells to overall tumor progression compared with other immune evasion mechanisms remains to be elucidated. Using the A20 B cell lymphoma as a transplantable tumor model, we demonstrate that this tumor employs multiple direct (expression of immunoinhibitory molecule PD-L1, IDO, and IL-10, and lack of expression of CD80 costimulatory molecule) and indirect (down-regulation of APC function and induction of Treg cells) immune evasion mechanisms. Importantly, Treg cells served as the dominant immune escape mechanism early in tumor progression because the physical elimination of these cells before tumor challenge resulted in tumor-free survival in 70% of mice, whereas their depletion in animals with established tumors had no therapeutic effect. Therefore, our data suggest that Treg cells may serve as an important therapeutic target for patients with early stages of cancer and that more vigorous combinatorial approaches simultaneously targeting multiple immune evasion as well as immunosurveillance mechanisms for the generation of a productive immune response against tumor may be required for effective immunotherapy in patients with advanced disease.  相似文献   

12.
A M Malygin 《Tsitologiia》1985,27(10):1091-1100
Natural killer cells (NK cells) are a distinct subset of mononuclear cells that rapidly kill certain tumor cell lines and even normal cells without a prior sensibilization to the targets. Probably, NK cells are the "first line of defence" in the body against foreign agents. A hypothesis about the role of NK cells in the natural antitumor resistance and in the control of cell proliferation and differentiation has recently been confirmed.  相似文献   

13.
Tumor recognition by immune effector cells is mediated by antigen receptors and a variety of adhesion and costimulatory molecules. The evidence accumulated since the identification of CD155 and CD112 as ligands for DNAM-1 in humans and mice has suggested that the interactions between DNAM-1 and its ligands play an important role in T cell– and natural killer (NK) cell–mediated recognition and lysis of tumor cells. We have previously demonstrated that methylcholanthrane (MCA) accelerates tumor development in DNAM-1–deficient mice, and the Cd155 level on MCA-induced tumors is significantly higher in DNAM-1–deficient mice than in wild-type (WT) mice. By contrast, Cd112 expression on the tumors is similar in WT and DNAM-1-deficient mice, suggesting that CD155 plays a major role as a DNAM-1 ligand in activation of T cells and NK cells for tumor immune surveillance. To address this hypothesis, we examined MCA-induced tumor development in CD155-deficient mice. Unexpectedly, we observed no significant difference in tumor development between WT and CD155-deficient mice. Instead, we found that Cd112 expression was significantly higher in the MCA-induced tumors of CD155-deficient mice than in those of WT mice. We also observed higher expression of DNAM-1 and lower expression of an inhibitory receptor, TIGIT, on CD8+ T cells in CD155-deficient mice. These results suggest that modulation of the expression of receptors and CD112 compensates for CD155 deficiency in immune surveillance against MCA-induced tumors.  相似文献   

14.
    
The idea of immunological surveillance against cancer has existed for nearly 100 years but as no conclusive evidence has yet been published the importance of the cellular immune defense in the detection and removal of incipient or existing tumors is still a hotly debated subject. However, in order to select a relevant immunotherapeutic strategy in the treatment of cancer, a fundamental understanding of the basic immunologic conditions under which a tumor develops and exists is a prerequisite. Therefore, a murine model was set up that we hoped would enable us to confirm or reject the theory of immunological surveillance. A large panel of methylcholanthrene induced tumors was established in T-cell immunodeficient nude mice and congenic normal mice to study the influence of the immune system on developing tumors. As nude mice developed tumors fastest and with the highest incidence, we concluded that in this model the immune system constituted a ‘tumor-suppressive factor’ delaying and sometimes abrogating tumor growth, i.e. performing immune surveillance. Immunogenicity of the tumors was assessed by transplantation back to normal histocompatible mice. Tumors originating from the immunodeficient nude mice turned out to be far more immunogenic than tumors from normal mice, resulting in a high rejection rate. CD8+cytotoxic T cells were found to be indispensable for this rejection, leading to the conclusion that the cytotoxic T cells perform immune selection in normal mice, eliminating immunogenic tumor cell variants in the incipient tumor. In this review, we discuss the difficulties facing immunotherapy when conclusions are drawn from the presented observations and hypotheses.  相似文献   

15.
Summary The relationship between immune function and chemically induced hepatocarcinogenesis was studied employing an in vivo murine model. Neonatal B6C3F1 mice were given a single carcinogenic dose of diethylnitrosamine (DEN) and the time-response kinetics for the early (foci of alteration) and late (adenomas/carcinomas) phases of hepatocellular carcinogenesis were compared to changes in hematopoiesis and immune functions associated with immune surveillance and natural resistance. Increases in hematopoiesis occurred just prior to or concurrent with the appearance of hepatocellular carcinomas, while increased macrophage and natural killer cell cytotoxicity and suppression of cell-mediated immunity occurred following tumor appearance and progressed with increasing tumor burden. Neither immunological nor hematopoietic changes were associated with early phases of hepatocarcinogenesis, as monitored by the appearance of altered hepatocellular foci. Although changes in hematopoiesis may represent an early indicator for hepatocarcinogenesis in the mouse tumor model, the data suggest that altered immune surveillance and natural resistance are not factors in the development of chemically induced hepatocellular tumors, and the changes in immune function are probably secondary to tumor development.  相似文献   

16.
Host resistance against pathogens depends on a complex interplay of innate and adaptive immune mechanisms. Acting as an early line of defence, the immune system includes activation of neutrophils, tissue macrophages, monocytes, dendritic cells, eosinophils and natural killer (NK) cells. NK cells are lymphoid cells that can be activated without previous stimulation and are therefore like macrophages in the first line of defence against tumor cells and a diverse range of pathogens. NK cells mediate significant activity and produce high levels of proinflammatory cytokines in response to infection. Their cytotoxicity production is induced principally by monocyte-, macrophage- and dendritic cell-derived cytokines, but their activation is also believed to be cytokine-mediated. Recognition of infection by NK cells is accomplished by numerous activating and inhibitory receptors on the NK cells' surface that selectively trigger the cytolytic activity in a major histocompability complex-independent manner. NK cells have trypanocidal activity of fibroblast cells and mediate direct destruction of extracellular epimastigote and trypomastigote forms of T. cruzi and T. lewisi in vitro; moreover, they kill plasmodia-infected erythrocytes directly through cell-cell interaction. This review provides a more detailed analysis of how NK cells recognize and respond to parasites and how they mediate cytotoxicity against tumor cells. Also the unique role of NK cells in innate immunity to infection and the relationship between parasites and carcinogenesis are discussed.  相似文献   

17.
In a transgenic mouse model expressing SV40 T Ag (Tag) as a de novo tumor Ag, immune surveillance fails and islet cell carcinomas grow progressively. To develop an anticancer strategy that would be effective in eradicating solid, autochthonously growing tumors, we evaluated the effectiveness of immunostimulatory oligodeoxynucleotides (ODN) with cytosine-guanine-rich (CpG) motifs (CpG-ODN). In a classical vaccination protocol, Tag was administered with CpG-ODN as adjuvant. The antitumor vaccination, however, was only effective in a prophylactic setting, despite the successful activation of a Tag-specific CTL response in vivo. Histological examination demonstrated that even primed immune cells failed to infiltrate tumors once a malignant environment was established. To ensure that effector cells were not limiting, highly activated tumor Ag-specific T cells were transferred into tumor-bearing mice. However, this treatment also failed to result in tumor infiltration and rejection. Therefore, we further tested the efficacy of CpG-ODN as a proinflammatory agent in combination with the transfer of preactivated Tag-specific CD4(+) and CD8(+) T cells. Indeed, this combination therapy proved to be highly effective, because CpG-ODN rendered insulinomas permissive for massive infiltration and destruction. The opening of tumor tissue correlated with uptake of CpG-ODN by tissue-resident macrophages and a strong up-regulation of adhesion molecules such as ICAM and VCAM on blood vessel endothelia. These data demonstrate that systemic application of proinflammatory reagents drastically enhances extravasation of effector cells into tumor tissue, an observation that is of general importance for immunotherapy of solid tumors in a clinical setting.  相似文献   

18.
The human gamma-herpesvirus Epstein-Barr virus establishes latent, life-long infection in more than 95% of the human adult population. Despite its growth transforming capacity, most carriers control EBV associated malignancies efficiently and remain free of EBV+ tumors. It is commonly accepted that lymphoblastoid cells, expressing all EBV latent antigens, are targeted by the immune system and cause tumors only in immune-suppressed individuals. However, immune control of EBV associated malignancies which express only three or one EBV latent antigen is less obvious. Recent studies have addressed the pattern of EBV latent infection in healthy EBV carriers and the identity of EBV derived target antigens for CD4+ T cells. The results suggest that immune surveillance also extends to tumors, which have down-regulated most EBV latent antigens and therefore escape EBV specific immune recognition at least in part. EBV specific immunity that targets these tumors in healthy EBV carriers seems to fail specifically during the development of Hodgkin's disease, nasopharyngeal carcinoma and Burkitt's lymphoma. These three EBV+ tumors appear to subdue EBV immunity against the remaining EBV latent antigens in different ways or profit from the effect of other pathogens on EBV specific immune responses, when they develop in otherwise immune competent individuals. While immune control and immune escape of these so-called spontaneously arising EBV associated malignancies is just beginning to be understood, immune control of persisting EBV infection can serve as a model for tumor immune surveillance in general.  相似文献   

19.
Natural killer cell function in HIV-1 infected patients   总被引:2,自引:0,他引:2  
A cross-talk between dendritic cells (DC) and resting natural killer (NK) cells leads to the activation of both cell populations, a process requiring cell-cell contact. When the number of activated NK cells overwhelms surrounding DC, they became able to kill specifically immature DC, a feedback mechanism to shut off DC-mediated immune responses. DC, at the mucosal site, can capture HIV and transfer it to CD4+ T lymphocytes present in the regional lymph node thus giving rise to a productive infection; on the other hand, NK cells represent the first line of defence against viral infection. Our preliminary results suggest that during the early phases of an HIV infection, NK cell activity is not functionally compromised, but that infected cells might escape natural immune surveillance through several mechanisms, including a reduced lysis of autologous DC.  相似文献   

20.
Resistance of malignant melanoma cells to Fas-mediated apoptosis is among the mechanisms by which they escape immune surveillance. However, the mechanisms contributing to their resistance are not completely understood, and it is still unclear whether antiapoptotic Bcl-2-related family proteins play a role in this resistance. In this study, we report that treatment of Fas-resistant melanoma cell lines with cycloheximide, a general inhibitor of de novo protein synthesis, sensitizes them to anti-Fas monoclonal antibody (mAb)-induced apoptosis. The cycloheximide-induced sensitization to Fas-induced apoptosis is associated with a rapid down-regulation of Mcl-1 protein levels, but not that of Bcl-2 or Bcl-xL. Targeting Mcl-1 in these melanoma cell lines with specific small interfering RNA was sufficient to sensitize them to both anti-Fas mAb-induced apoptosis and activation of caspase-9. Furthermore, ectopic expression of Mcl-1 in a Fas-sensitive melanoma cell line rescues the cells from Fas-mediated apoptosis. Our results further show that the expression of Mcl-1 in melanoma cells is regulated by the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) and not by phosphatidylinositol 3-kinase/AKT signaling pathway. Inhibition of ERK signaling with the mitogen-activated protein/ERK kinase-1 inhibitor or by expressing a dominant negative form of mitogen-activated protein/ERK kinase-1 also sensitizes resistant melanoma cells to anti-Fas mAb-induced apoptosis. Thus, our study identifies mitogen-activated protein kinase/ERK/Mcl-1 as an important survival signaling pathway in the resistance of melanoma cells to Fas-mediated apoptosis and suggests that its targeting may contribute to the elimination of melanoma tumors by the immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号