首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major focus in the current discovery of drugs targeting nuclear receptors (NRs) is identifying drugs with reduced side effects by improving selectivity, not only from other receptors but also by selective modulation of the NR of interest. Cellular assays not only provide valuable information on functional activity, potency, and selectivity but also are ideally suited for differentiating partial agonists and antagonists. The ability to partially activate a receptor is believed to be closely tied to the ability to selectively modulate the NR, resulting in expression of a subset of the normally regulated genes. To this end, the authors have built a complete panel of cell-based steroid hormone receptor assays for the androgen receptor, estrogen receptor alpha, estrogen receptor beta, glucocorticoid receptor, mineralocorticoid receptor, and progesterone receptor by stably engineering a Gal4 DNA-binding domain/nuclear receptor ligand-binding domain fusion protein into an upstream activation sequence beta-lactamase reporter cell line. Each assay was validated with known agonists and antagonists for correct pharmacology and high-throughput compatibility. To demonstrate the utility of these assays, the authors profiled 35 pharmacologically relevant compounds in a dose-response format against the panel in both agonist and antagonist modes. The results demonstrated that selective estrogen receptor modulators can be identified and differentiated, as well as mixed and partial agonists and antagonists easily detected in the appropriate assays. Importantly, a comparison of the chimeric assays with full-length reporter gene assay data from the literature shows a good degree of correlation in terms of selectivity and pharmacology of important ligands. Taken together, these steroid hormone receptor assays provide good selectivity, sensitivity, and appropriate pharmacology for high-throughput screening and selectivity profiling of modulators of steroid hormone receptors.  相似文献   

2.
3.
Peroxisome proliferator-activated receptor alpha (PPARalpha) is the nuclear receptor responsible for regulating genes that control lipid homeostasis. Because of this role, PPARalpha has become a target of interest for the development of drugs to treat diseases such as dyslipidemia, obesity, and atherosclerosis. Assays currently employed to determine potency and efficacy of potential drug candidates typically utilize a truncated form of the native receptor, one which lacks the entire N-terminal region of the protein. The amino terminus, containing the regions that encode the ligand-independent activation function AF-1 and DNA binding domains, is highly structured and contributes significantly to the overall tertiary structure of the native protein. We report that differences in PPARalpha full-length and ligand binding domain constructs result in differences in binding affinity for coactivator peptides but have little effect on potency of agonists in both cell-free and cell-based nuclear receptor assays.  相似文献   

4.
5.
The nuclear hormone receptors comprise one of the largest classes of protein targets for drug discovery, as their function has been linked to a variety of serious diseases, including several forms of cancer. Identifying novel compounds with the ability to modulate the function of these targets could lead to the development of effective therapeutics. In vivo sensors of ligand binding have emerged as tools that can greatly accelerate the lead identification process, allowing new drugs to be discovered more rapidly and cheaply. In this work, a novel sensor of nuclear hormone binding has been developed in Escherichia coli by constructing a fusion of the ligand-binding domain of the human estrogen receptor with a thymidylate synthase enzyme (TS). Expression of this fusion protein in TS-deficient bacterial cells resulted in growth phenotypes that were dependent on the presence of estrogen. Subsequent replacement of the estrogen receptor with the ligand-binding domain of the human thyroid hormone receptor led to specific thyroid hormone-enhanced growth that was insensitive to estrogen. This biosensor was then challenged with a small library of estrogen and thyroid hormone analogues, and it was observed that levels of cell growth correlate well with ligand-binding affinity. Remarkably, this simple biosensor was able to discriminate between agonistic and antagonistic activities, as combinations of estrogen agonists had an additive impact on cell growth, whereas known estrogen antagonists were found to neutralize agonist effects. This system constitutes a technique for facile selection of lead compounds with potential medical applications.  相似文献   

6.
7.
Estrogen and androgen and their receptors play critical roles in physiological processes such as sexual differentiation and development. Using the available structural models for the human estrogen receptors alpha and beta and androgen receptor as templates, we designed in silico agonist and antagonist models of medaka estrogen receptor (meER) alpha, beta-1, and beta-2, and androgen receptor (meAR) alpha and beta. Using these models, we studied (1) the structural relationship between the ligand-binding domains (LBDs) of ERs and ARs of human and medaka, and (2) whether medaka ER and AR can be potential models for studying the ligand-binding activities of various agonists and antagonists of these receptors by docking analysis. A high level of conservation was observed between the sequences of the ligand-binding domains of meERα and huERα, meERβ1 and huERβ, meERβ2, and huERβ with 62.8%, 66.4%, and 65.1% identity, respectively. The sequence conservation between meARα and huAR, meARβ, and huAR was found with 70.1% and 61.0% of identity, respectively. Thirty-three selected endocrine disrupting chemicals (EDCs), including both agonists and antagonists, were docked into the LBD of ER and AR, and the corresponding docking score for medaka models and human templates were calculated. In order to confirm the conservation of the overall geometry and the binding pocket, the backbone root mean square deviation (RMSD) for Cα atoms was derived from the structure superposition of all 10 medaka homology models to the six human templates. Our results suggested conformational conservation between the ERs and ARs of medaka and human, Thus, medaka could be highly useful as a model system for studies involving estrogen and androgen interaction with their receptors.  相似文献   

8.
The first step of assembly of the nicotinic acetylcholine receptor (AChR) of adult skeletal muscle is the specific association of the alpha subunit with either delta or epsilon subunits to form a heterodimer with a ligand-binding site. Previous experiments have suggested that het erodimer formation in the ER arises from interaction between the luminal, NH2-terminal domains of the subunits. When expressed in COS cells with the delta subunit, however, the truncated NH2-terminal domain of the subunit folded correctly but did not form a heterodimer. Association with the delta subunit occurred only when the NH2-terminal domain was retained in the ER and was tethered to the membrane by its own M1 transmembrane domain, by the transmembrane domain of another protein, or by a glycolipid link. In each case, the ligand-binding sites of the resulting heterodimers were indistinguishable from that formed when the full-length alpha subunit was used. Attachment to the membrane may promote interaction by concentrating or orienting the subunit; alternatively, a membrane-bound factor may facilitate subunit association.  相似文献   

9.
The activation function 2/ligand-dependent interaction between nuclear receptors and their coregulators is mediated by a short consensus motif, the so-called nuclear receptor (NR) box. Nuclear receptors exhibit distinct preferences for such motifs depending both on the bound ligand and on the NR box sequence. To better understand the structural basis of motif recognition, we characterized the interaction between estrogen receptor alpha and the NR box regions of the p160 coactivator TIF2. We have determined the crystal structures of complexes between the ligand-binding domain of estrogen receptor alpha and 12-mer peptides from the Box B2 and Box B3 regions of TIF2. Surprisingly, the Box B3 module displays an unexpected binding mode that is distinct from the canonical LXXLL interaction observed in other ligand-binding domain/NR box crystal structures. The peptide is shifted along the coactivator binding site in such a way that the interaction motif becomes LXXYL rather than the classical LXXLL. However, analysis of the binding properties of wild type NR box peptides, as well as mutant peptides designed to probe the Box B3 orientation, suggests that the Box B3 peptide primarily adopts the "classical" LXXLL orientation in solution. These results highlight the potential difficulties in interpretation of protein-protein interactions based on co-crystal structures using short peptide motifs.  相似文献   

10.
The results of homology modelling of the human glucorticoid receptor (hGR) ligand-binding domain (LBD) based on the ligand-bound domain of the human estrogen receptor alpha (hERalpha) are reported. It is shown that known hGR ligands which induce the human cytochrome P450 enzyme CYP3A4 are able to fit the putative ligand-binding site of the nuclear hormone receptor and form hydrogen bonds with key amino acid residues within the binding pocket. Quantitative structure-activity relationships (QSARs) have been derived for hGR-mediated CYP3A4 induction which involve certain molecular structural and physicochemical properties of the ligand themselves, yielding good correlations (R=0.96-0.98) with fold induction of CYP3A4 known to be mediated via hGR involvement.  相似文献   

11.
12.
The interaction of coactivators with the ligand-binding domain of nuclear receptors (NRs) is mediated by amphipathic alpha-helices containing the signature motif LXXLL. TRAP220 contains two LXXLL motifs (LXM1 and LXM2) that are required for its interaction with NRs. Here we show that the nuclear receptor interaction domain (NID) of TRAP220 interacts weakly with Class I NRs. In contrast, SRC1 NID binds strongly to both Class I and Class II NRs. Interaction assays using nine amino acid LXXLL core motifs derived from SRC1 and TRAP220 revealed no discriminatory NR binding preferences. However, an extended LXM1 sequence containing amino acids -4 to +9, (where the first conserved leucine is +1) showed selective binding to thyroid hormone receptor and reduced binding to estrogen receptor. Replacement of either TRAP220 LXXLL motif with the corresponding 13 amino acids of SRC1 LXM2 strongly enhanced the interaction of the TRAP220 NID with the estrogen receptor. Mutational analysis revealed combinatorial effects of the LXM1 core and flanking sequences in the determination of the NR binding specificity of the TRAP220 NID. In contrast, a mutation that increased the spacing between TRAP220 LXM1 and LXM2 had little effect on the binding properties of this domain. Thus, a 13-amino acid sequence comprising an extended LXXLL motif acts as the key determinant of the NR binding specificity of TRAP220. Finally, we show that the NR binding specificity of full-length TRAP220 can be altered by swapping extended LXM sequences.  相似文献   

13.
14.
15.
16.
Previously, we determined the crystal structures of the dimeric ligand binding region of the metabotropic glutamate receptor subtype 1. Each protomer binds l-glutamate within the crevice between the LB1 and LB2 domains. We proposed that the two different conformations of the dimer interface between the two LB1 domains define the activated and resting states of the receptor protein. In this study, the residues in the ligand-binding site and the dimer interface were mutated, and the effects were analyzed in the full-length and truncated soluble receptor forms. The variations in the ligand binding activities of the purified truncated receptors are comparable with those of the full-length form. The mutated full-length receptors were also analyzed by inositol phosphate production and Ca(2+) response. The magnitude of the ligand binding capacities and the amplitude of the intracellular signaling were almost correlated. Alanine substitutions of four residues, Thr(188), Asp(208), Tyr(236), and Asp(318), which interact with the alpha-amino group of glutamate in the crystal, abolished their responses both to glutamate and quisqualate. The mutations of the Tyr(74), Arg(78), and Gly(293) residues, which interact with the gamma-carboxyl group of glutamate, lost their responsiveness to glutamate but not to quisqualate. Furthermore, a mutant receptor containing alanine instead of isoleucine at position 120 located within an alpha helix constituting the dimer interface showed no intracellular response to ligand stimulation. The results demonstrate the crucial role of the dimer interface in receptor activation.  相似文献   

17.
The nuclear receptor small heterodimer partner SHP was shown recently to translocate to the mitochondria, interact with Bcl2, and induce apoptosis in liver cancer cells. However, the exact mitochondrial localization of SHP remains to be determined. In addition, the detailed interaction domains between SHP and Bcl2 have not been characterized. Using biochemistry and molecular biology approaches, we demonstrate that SHP is localized to the mitochondrial outer membrane. Interestingly, compared with the full-length SHP, the N-terminal deleted protein exhibits increased expression in the mitochondria and decreased expression in the nucleus. GST pull-down assays demonstrate that the interaction domain of SHP shows the strongest interaction with Bcl2. Furthermore, the interaction of Bcl2 with SHP is completely abolished by deletion of the Bcl2 transmembrane domain (TM), whereas deletion of the Bcl2 BH1 domain enhances the interaction. As expected, AHPN, a synthetic SHP ligand, markedly augments the direct protein-protein interaction between Bcl2 and SHP. Ectopic expression of hepatocyte nuclear factor 4 alpha (HNF4α) results in exclusive nuclear translocation of SHP proteins that contain either the full-length or the N-terminal domain, but has a minimal effect on the subcellular distribution of SHP protein containing only the interaction domain or repression domain. These results indicate that the N-terminal domain of SHP is important for itsnuclear translocation via HNF4α. Overall, this study provides novel insights into the domains of SHP that are critical for its shutting between different subcellular compartments.  相似文献   

18.
19.
20.
The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) forms oligomeric structures important for optimal function in binding and internalization of Man-6-P-bearing extracellular ligands as well as lysosomal biogenesis and growth regulation. However, neither the mechanism of inter-receptor interaction nor the dimerization domain has yet been identified. We hypothesized that areas near the ligand binding domains of the receptor would contribute preferentially to oligomerization. Two panels of minireceptors were constructed that involved truncations of either the N- or C-terminal regions of the M6P/IGF2R encompassing deletions of various ligand binding domains. alpha-FLAG or alpha-Myc-based immunoprecipitation assays showed that all of the minireceptors tested were able to associate with a full-length, Myc-tagged M6P/IGF2R (WT-M). In the alpha-FLAG but not alpha-Myc immunoprecipitation assays, the degree of association of a series of C-terminally truncated minireceptors with WT-M showed a positive trend with length of the minireceptor. In contrast, length did not seem to affect the association of the N-terminally truncated minireceptors with WT-M, except that the 12th extracytoplasmic repeat appeared exceptionally important in dimerization in the alpha-FLAG assays. The presence of mutations in the ligand-binding sites of the minireceptors had no effect on their ability to associate with WT-M. Thus, association within the heterodimers was not dependent on the presence of functional ligand binding domains. Heterodimers formed between WT-M and the minireceptors demonstrated high affinity IGF-II and Man-6-P-ligand binding, suggesting a functional association. We conclude that there is no finite M6P/IGF2R dimerization domain, but rather that interactions between dimer partners occur all along the extracytoplasmic region of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号