首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Careful attention to technical issues preceded successful crystallography of the ligand-binding domain of estrogen receptor alpha (ERalpha) complexed with CP-336156, a nonsteroidal estrogen agonist/antagonist. An affinity column based on immobilized estradiol was prepared according to the scheme of Greene et al. (Greene, G. L., Nolan, C., Engler, J. P., and Jensen, E. V. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 5115-5119). It was shown by X-ray crystallography that the major and less polar isomer of the affinity column precursor was 17alpha-((S)-2',3'-epoxyprop-1'-yl)estra-1,3,5(10)-triene-3,17beta-diol. This diastereomer was coupled to Thiopropyl Sepharose, with coupling monitored by observing loss of the phenolic absorption band of estradiol from the reaction supernatant, and gave an affinity matrix containing about 9 micromol of estradiol per milliliter of wet gel. Recombinant ERalpha ligand binding domain was selectively removed from E. coli cell lysate by binding to the column and was partly S-carboxymethylated by treatment with iodoacetic acid while bound to the column as described by previous workers. After being eluted from the column as a complex with drug, the receptor fragment was shown by mass spectrometry to be a mixture of differently modified forms. It was further S-carboxymethylated in solution, after which anion-exchange chromatography was used to isolate protein in which two of the four cysteine residues were S-carboxymethylated. This material, which afforded diffraction-quality crystals, was subjected to digestion with trypsin and peptide mapping analysis by HPLC coupled with mass spectrometry. For this experiment, the two previously unmodified cysteines were alkylated with 4-vinylpyridine to allow definitive identification. It was shown that Cys-417 and Cys-530 were S-carboxymethylated in the crystallized protein, while Cys-381 and Cys-447 remained unmodified. Close attention to such technical issues may be important in structural studies of other nuclear receptors, a very important class of potential drug targets.  相似文献   

4.
High level expression of biochemically active human estrogen receptor hormone binding domain (hER-HBD) was achieved using a Saccharomyces cerevisae expression system. Using dissociation kinetic analysis, density gradient centrifugation and cross-linking studies, a spontaneous dimerization activity of hER-HBD independent of the presence of the DNA binding domain, ligand, and of elevated temperature is demonstrated.  相似文献   

5.
Molecular dynamics simulations of a homology model of the ligand binding domain of the alpha7 nicotinic receptor are conducted with a range of bound ligands to induce different conformational states. Four simulations of 15 ns each are run with no ligand, antagonist d-tubocurarine (dTC), agonist acetylcholine (ACh), and agonist ACh with potentiator Ca(2+), to give insight into the conformations of the active and inactive states of the receptor and suggest the mechanism for conformational change. The main structural factor distinguishing the active and inactive states is that a more open, symmetric arrangement of the five subunits arises for the two agonist simulations, whereas a more closed and asymmetric arrangement results for the apo and dTC cases. Most of the difference arises in the lower portion of the ligand binding domain near its connection to the adjacent transmembrane domain. The transfer of the more open state to the transmembrane domain could then promote ion flow through the channel. Variation in how subunits pack together with no ligand bound appears to give rise to asymmetry in the apo case. The presence of dTC expands the receptor but induces rotations in alternate directions in adjacent subunits that lead to an asymmetric arrangement as in the apo case. Ca(2+) appears to promote a slightly greater expansion in the subunits than ACh alone by stabilizing the C-loop and ACh positions. Although the simulations are unlikely to be long enough to view the full conformational changes between open and closed states, a collection of different motions at a range of length scales are observed that are likely to participate in the conformational change.  相似文献   

6.
7.
The ligand binding domain (LBD) of the nicotinic acetylcholine receptor has served as a prototype for understanding molecular recognition in the family of neurotransmitter-gated ion channels. During the past fifty years, studies progressed from fundamental electrophysiological analyses of ACh-evoked ion flow, to biochemical purification of the receptor protein, pharmacological measurements of ligand binding, molecular cloning of receptor subunits, site-directed mutagenesis combined with functional analysis and recently, atomic structural determination. The emerging picture of the nicotinic receptor LBD is a specialized pocket of aromatic and hydrophobic residues formed at interfaces between protein subunits that changes conformation to convert agonist binding into gating of an intrinsic ion channel.  相似文献   

8.
Affinity labeling of human estrogen receptor alpha (ERalpha) by high affinity and antiestrogenic estradiol (E(2)) 11 beta-derivatives, 11 beta-bromoacetamidoethoxyphenylE(2) (11BAEOPE(2)) and 11 beta-bromoacetamidopentoxyphenylE(2) (11BAPOPE(2)) was studied using glutathione-S-transferase (GST) fused to the ligand-binding domain (LBD) of human ERalpha. To identify and quantify the electrophile covalent attachment sites on LBD, [(14)C]11BAEOPE(2)- and [(14)C]11BAPOPE(2)-alkylated LBD were separated from GST, purified, and then trypsinized. HPLC of LBD tryptic fragments afforded one and two radioactive peaks (the ratio of the two latter peaks was 84/16) in the chromatograms related to LBD alkylated by 11BAEOPE(2) and 11BAPOPE(2), respectively. Mass spectrometry (MS) analyses of the fractions related to the single peak and to the major one of the two peaks showed signals which accurately matched the mass of electrophile-alkylated Cys(530)Lys(531) LBD tryptic peptide, whereas no signal compatible with an alkylated form of an LBD tryptic peptide was detected in the MS analysis of the minor peak-related fractions. MS/MS analysis of alkylated CysLys dipeptide revealed the presence of fragments that unambiguously designated the Cys S as the covalent attachment site of the electrophiles. We attempted to interpret the biochemical data by molecular modeling using various crystallographic structures of human LBD-ligand complexes. In agreement with the endocrine properties of electrophiles, labeling at Cys(530) could be accounted for by a LBD structure derived from LBD bound to 4-hydroxytamoxifen, a triphenylethylene antiestrogen. The common attachment to Cys(530) of estrogenic E(2) 17 alpha-derivatives [H. Mattras, S. Aliau, E. Demey, J. Poncet, J.L. Borgna, Mass spectrometry identification of covalent attachment sites of two related estrogenic ligands on human estrogen receptor alpha, J. Steroid Biochem. Mol. Biol. 98 (4-5), in press] and antiestrogenic E(2) 11 beta-derivatives suggests that the LBD portion encompassing this amino acid possesses a marked plasticity.  相似文献   

9.
It is hypothesized that different ligand-induced conformational changes can explain the different interactions of nuclear receptors with regulatory proteins, resulting in specific biological activities. Understanding the mechanism of how ligands regulate cofactor interaction facilitates drug design. To investigate these ligand-induced conformational changes at the surface of proteins, we performed a time-resolved fluorescence resonance energy transfer assay with 52 different cofactor peptides measuring the ligand-induced cofactor recruitment to the retinoid X receptor-alpha (RXRalpha) in the presence of 11 compounds. Simultaneously we analyzed the binding modes of these compounds by molecular docking. An automated method converted the complex three-dimensional data of ligand-protein interactions into two-dimensional fingerprints, the so-called ligand-receptor interaction profiles. For a subset of compounds the conformational changes at the surface, as measured by peptide recruitment, correlate well with the calculated binding modes, suggesting that clustering of ligand-receptor interaction profiles is a very useful tool to discriminate compounds that may induce different conformations and possibly different effects in a cellular environment. In addition, we successfully combined ligand-receptor interaction profiles and peptide recruitment data to reveal structural elements that are possibly involved in the ligand-induced conformations. Interestingly, we could predict a possible binding mode of LG100754, a homodimer antagonist that showed no effect on peptide recruitment. Finally, the extensive analysis of the peptide recruitment profiles provided novel insight in the potential cellular effect of the compound; for the first time, we showed that in addition to the induction of coactivator peptide binding, all well-known RXRalpha agonists also induce binding of corepressor peptides to RXRalpha.  相似文献   

10.
With increasing concerns of estrogenic effects of endocrine disrupting compounds, the development of simple detection assay for these compounds is an ongoing need. Herein, a simple, rapid, and highly sensitive assay for estradiol (E2) detection was developed using the ligand binding domain of estrogen receptor α (LBD-ERα), the receptor interacting domain of steroid receptor co-activator 1 (RID-SRC1), and gold nanoparticles (AuNPs). The colloidal AuNPs could be stabilized against a salt-induced aggregation by adding LBD-ERα protein. However, with the presence of E2, the specific binding of LBD-ERα protein and E2 led to a salt-induced aggregation of AuNPs as seeing from a color change from red to blue. This developed assay exhibited a high sensitivity for E2 detection with the limit of detection (LOD) of 2.62 × 10−14 M. When the RID-SRC1 protein was included, the detection sensitivity was increased, which the LOD for E2 was at 1.20 × 10−15 M. This assay was specific for a detection of E2 but not progesterone, the negative control ligand. Results of this work clearly showed the efficiency of developed assay for E2 detection, which possibly further developed for an onsite monitoring of E2.  相似文献   

11.
12.
13.
14.
Curariform alkaloids competitively inhibit muscle acetylcholine receptors (AChR) by bridging the alpha and non-alpha subunits that form the ligand-binding site. Here we delineate bound orientations of d-tubocurarine (d-TC) and its methylated derivative metocurine using mutagenesis, ligand binding measurements, and computational methods. When tested against a series of lysine mutations in the epsilon subunit, the two antagonists show marked differences in the consequences of the mutations on binding affinity. The mutations epsilon L117K, epsilon Y111K, and epsilon L109K decrease affinity of metocurine by up to 3 orders of magnitude but only slightly alter affinity of d-TC. At the alpha subunit face of the binding site, the mutation alpha Y198T decreases affinity of both antagonists, but alpha Y198F preferentially enhances affinity of d-TC. Computation of antagonist docking orientations, based on our structural model of the alpha-epsilon site of the human AChR, indicates distinct orientations of each antagonist; the flatter metocurine fits into a pocket formed principally by the epsilon subunit, whereas the more compact d-TC spans the narrower crevasse between alpha and epsilon subunits. The side chains of epsilon Tyr-111 and epsilon Thr-117 juxtapose one of two quaternary nitrogens in metocurine but are remote from the equivalent quaternary nitrogen in d-TC, which instead closely approaches alpha Tyr-198. The different docked orientations arise through tilt of the curariform scaffold by approximately 60 degrees normal to the nitrogen-nitrogen axis, together with a 20 degrees rotation about the axis. The overall mutagenesis and computational results show that despite their similar structures, d-TC and metocurine bind in distinctly different orientations to the adult human AChR.  相似文献   

15.
S Koike  A Nii  M Sakai  M Muramatsu 《Biochemistry》1987,26(9):2563-2568
For the purpose of characterizing the estrogen binding domain of porcine estrogen receptor (ER), we have made use of affinity labeling of partially purified ER with [3H]tamoxifen aziridine. The labeling is very efficient and selective particularly after partial purification of ER. A 65,000-dalton (65-kDa) band was detected on the fluorogram of a sodium dodecyl sulfate-polyacrylamide gel, together with a 50-kDa band and a few more smaller bands. The 50-kDa protein appears to be a degradation product of the 65-kDa protein in view of the similar peptide map. ER was affinity labeled before or after controlled limited proteolysis with either trypsin, papain, or alpha-chymotrypsin. The labeling patterns of limited digests indicate that a fragment of about 30 kDa is relatively resistant to proteases and has a full and specific binding activity to estrogen, whereas smaller fragments have lost much of the binding activity. This fragment is very hydrophobic and probably corresponds to the carboxy half of ER.  相似文献   

16.
The extreme carboxyl-terminal amino acid sequence of the gamma chain of fibrinogen is involved in the binding of this adhesive protein to the platelet integrin glycoprotein (GP) IIb-IIIa, and synthetic peptides corresponding to this region inhibit fibrinogen as well as fibronectin and von Willebrand factor binding to platelets. A chemical cross-linking approach was used to characterize the interaction of a 16-amino acid fibrinogen gamma chain peptide with platelets and to localize the site of its binding to GPIIb-IIIa. This peptide became specifically cross-linked to GPIIb, and platelet stimulation selectively enhanced its cross-linking to this alpha subunit. The cross-linking reaction was specifically inhibited by fibrinogen and an Arg-Gly-Asp peptide but not by an unrelated protein or a substituted peptide. Utilizing a combination of immunochemical mapping, enzymatic and chemical digestions, and amino acid sequencing, the cross-linking site of the gamma chain peptide in GPIIb was localized to a stretch of 21 amino acids. The identified region, GPIIb 294-314, contains the second putative calcium binding domain within GPIIb. The primary structure of this region is highly conserved among alpha subunits of other integrin adhesion receptors. These results identify a discrete region of GPIIb that resides in close proximity to a ligand binding site within GPIIb-IIIa. The homologous region may be involved in the functions of other integrin receptors.  相似文献   

17.
18.
Control of estrogen receptor ligand binding by Hsp90   总被引:7,自引:0,他引:7  
The molecular chaperone Hsp90 interacts with unliganded steroid hormone receptors and regulates their activity. We have analyzed the function of yeast and mammalian Hsp90 in regulating the ability of the human estrogen receptor (ER) to bind ligands in vivo and in vitro. Using the yeast system, we show that the ER expressed in several different hsp82 mutant strains binds reduced amounts of the synthetic estrogen diethylstilbestrol compared to the wild type. This defect in hormone binding occurs without any significant change in the steady state levels of ER protein. To analyze the role of mammalian Hsp90, we synthesized the human ER in rabbit reticulocyte lysates containing geldanamycin, an Hsp90 inhibitor. At low concentrations of geldanamycin we observed reduced levels of hormone binding by the ER. At higher concentrations, we found reduced synthesis of the receptor. These data indicate that Hsp90 functions to maintain the ER in a high affinity hormone-binding conformation.  相似文献   

19.
20.
Defining a minimal estrogen receptor DNA binding domain.   总被引:7,自引:3,他引:4       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号