首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The avidin/biotin system was applied as a general mediator in the adsorption/desorption or immobilization of biologically active macromolecules to solid supports. In this context, model biotinylated proteins (lectins and antibodies) were attached to avidin-coupled Sepharose. As examples for affinity chromatography, peanut agglutinin and anti-transferrin antibody were used to isolate asialofetuin and transferrin, respectively. The capacity and product yields were significantly better than those achieved with conventional affinity chromatography on CNBr-activated Sepharose columns containing the same lectin or antibody. Moreover, the columns were characterized by improved stability properties exhibiting remarkably low levels of leakage.  相似文献   

2.
A simple and clean adsorption/desorption process was proposed for recovering Acinetobacter radioresistens lipase from fermentation broth. The adsorbent used was n-hexadecane coated on a hydrophobic nonwoven fabric (NWF). n-Hexadecane has a melting point of 16-18 degrees C, and its affinity for lipase decreases markedly from liquid to solid state. Accordingly, performing the adsorption and desorption above and below, respectively, the melting point would need no extraneous materials for separation. The adsorption isotherms at various temperatures were found to follow the Langmuir model. Simulation of the batch adsorption/desorption process showed that there exists an optimal amount of adsorbent for both concentration factor and enzyme recovery; the process is restrained by equilibrium. The performance of column adsorption/desorption could also be simulated using the adsorption isotherm, and it was shown that the concentration factor was proportional to the amount of adsorbent used. The benefits of this process include easy preparation of adsorbent, low operational cost, no extraneous materials needed, negligible enzyme denaturation, high efficiency, and simple process simulation.  相似文献   

3.
Some theoretical aspects of the desorption of a column-bound protein by elution with its biospecific ligand are considered in cases where, in comparison with the unliganded protein, the protein-ligand complex has a diminished but finite affinity for the adsorbent. A quantity termed the biospecific sensitivity, B, is introduced to facilitate comparison between different systems. Biospecific sensitivity may be defined as the fractional change in standard free energy of adsorption on formation of the protein-ligand complex. The effects of a moderate-to-low biospecific sensitivity on theoretical desorption profiles have been examined by using a computer simulation of the classical multiple-plate column model. Desorption was simulated under various boundary conditions involving protein-adsorbent and protein-ligand affinities and the initial concentrations of adsorption sites, protein and ligand. These simulations suggest that, when the biospecific sensitivity is low, desorption is optimized if (a) the unliganded protein is adsorbed as weakly as possible, (b) the column is loaded to near-saturation with the required protein, (c) the free ligand concentration is many times greater than that giving near-saturation of the protein in free solution, and (d) protein contaminants with high affinity for the adsorbent, and present in large amount, are removed in preliminary purification steps.  相似文献   

4.
α-Amylase from Bacillus amyloliquefaciens was purified by the immobilized metal ion affinity adsorbent, β-CDcl-IDA-Cu2+. The adsorbent was prepared by reacting the cross-linked β-cyclodextrin (β-CD) with the ligand, iminodiacetic acid (IDA). The copper ion was further linked to the adsorbent. Poly(ethylene glycol) (PEG) was added to the fermentation broth to improve the adsorption efficiency of the adsorbent toward α-amylase. The effort was to provide hydrophobic interactions with the impurities which might interfere with the adsorption of α-amylase. It also provided a polymer shielding effect to prevent non-specific interactions. With the addition of PEG, the adsorption efficiency could be increased to 98%. Imidazole containing a phosphate buffer and NaCl was used to elute the bound α-amylase. By consecutive adsorption/desorption steps, up to 81% of the α-amylase activity could be recovered. Regarding the reutilization of the affinity adsorbents, α-amylase could be adsorbed and desorbed six times consecutively without a significant loss of α-amylase activity.  相似文献   

5.
Macroporous poly(glycidyl methacrylate-triallyl isocyanurate-divinylbenzene) was prepared by a radical suspension copolymerization. Reaction of the copolymer with 2-hydroxyethyl amine was employed to obtain a hydrophilic matrix. An affinity dye, Cibacron blue 3GA, was then coupled covalently to prepare a novel macroporous affinity adsorbent. The surface and pore structure of the affinity adsorbent were examined by scanning electron micrography (SEM). SEM observations showed that the affinity adsorbent abounded in macropores. Bovine serum albumin (BSA) and lysozyme (Lys) were used as samples to examine the adsorption properties of the adsorbent. Under appropriate conditions, the affinity adsorbent had a capacity of 15.5 mg BSA/g and 22.3 mg Lys/g (wet adsorbent weight). The adsorbed proteins could be desorbed by increasing liquid phase ionic strength or by using a NaOH solution, and the adsorbent could be recycled for protein adsorption.  相似文献   

6.
Cibacron Blue 3GA was immobilized on Sepharose CL-6B to obtain a highly substituted dye-ligand adsorbent which dye concentration was 17.4?μmol dye per gram wet gel. This adsorbent had a highly binding capacity for bovine serum albumin (BSA). The effects of ionic strength on the adsorption and desorption of BSA to the adsorbent were studied. Adsorption isotherms were expressed by the Langmuir model. The quantitative relationships between the model parameters and the ionic strength were obtained. The desorptions were performed by adding salt to the BSA solutions in which adsorption equilibria had been reached. Adding salt to the solution resulted in the desorption of the bound protein. It was found that the isotherm obtained from the desorption experiments agreed well to the isotherm obtained from the adsorption experiments at the same ionic strength. The result demonstrated that the adsorption of BSA to the highly substituted adsorbent was reversible.  相似文献   

7.
Liu M  Huang J  Deng Y 《Bioresource technology》2007,98(5):1144-1148
An investigation was conducted regarding the adsorption and desorption of L-arginine from aqueous solutions with a new spherical cellulose adsorbent containing the sulfonic group. The adsorption of L-arginine on the adsorbent was time, pH, initial concentration of L-arginine and temperature dependent. The adsorption process followed the Langmuir adsorption isotherm, and was endothermic (DeltaH =24.66 KJ/mol). Almost 100% L-arginine adsorbed on the adsorbent could be recovered with a 2.0 mol/L NH4OH or 2.0 mol/L NH4Cl aqueous solution. After 25 and 40 cycles of adsorption and desorption, the decrease in adsorption capacity reached to 4.9% and 20.3%, respectively.  相似文献   

8.
A thermo-responsive polymer on which maltose was covalently immobilized as an affinity ligand was newly synthesized for purification of thermolabile proteins from the crude solution by affinity precipitation. Among the thermo-responsive polymers synthesized as carriers for adsorbent, poly(N-acryloylpiperidine)-cysteamine (pAP) has a lower critical solution temperature (LCST) of around 4 degrees C, at which its solubility exhibits a sharp change. Adsorbent for affinity precipitation was prepared by combining pAP with maltose using trimethylamine-borane as a reducing reagent. This adsorbent (pAPM) obtained showed a good solubility response: pAPM in the basal buffer (pH 7.0) became soluble below 4 degrees C and was completely insoluble above 8 degrees C. The affinity precipitation method using pAPM consisted of the following four steps: adsorption at 4 degrees C, precipitation of the complex at 10 degrees C, desorption by adding the desorption reagent at 4 degrees C, and recovery of a target protein at 10 degrees C. In the affinity precipitation of Con A from the crude extract of jack bean meal, 82% of Con A added was recovered with 80% purity by addition of 0.2 M methyl-alpha-D-mannopyranoside as a desorption reagent. In the repeated purification of Con A from the crude extract, pAPM could be satisfactorily reused without decrease in the affinity performance. Moreover, when pAPM was used for the purification of thermolabile alpha-glucosidase from the cell-free extract of Saccharomyces cerevisiae, 68% of total activity added was recovered and the specific activity per amount of protein of the purified solution was enhanced 206-fold higher than that of the cell-free extract without thermal deactivation of the enzyme.  相似文献   

9.
考察了大孔吸附树脂AB-8对甘草酸的吸附性能和原液浓度pH值、流速、洗脱剂的种类对树脂吸附性能的影响。结果表明,AB-8树脂对甘草酸吸附量高,易于洗脱,分离效果较好,回收率较一般方法高,达70%~80%,纯度达90%以上。  相似文献   

10.
Synthesis of an estrogen affinity adsorbent containing a disulfide linkage between the steroid and stationary matrix permitted facile purification of high affinity estrogen binding proteins. Following affinity chromatography of either antibody directed against estrone 17-carboxymethyloxime — bovine serum albumin or immature calf uterine cytoplasmic estrogen receptor proteins, the specifically bound protein was recovered by incubating the adsorbent with 2-mercaptoethanol. Crude antibody and uterine cytosol was prepared for affinity chromatography in buffer containing 10?3 to 10?2M cystamine (S-S) to block SH-containing proteins, in order to protect the adsorbent against protein-mediated S-S ag SH exchange. Cystamine was found to markedly stabilize crude cytosol receptor protein by 200–300% compared with preparations obtained under ordinary conditions. Disulfide affinity adsorbents are versatile in that they can be used either under conventional conditions of specific protein recovery, or with 2-mercaptoethanol which removes the ligand and bound protein from the stationary matrix quantitatively.  相似文献   

11.
Abstract

Adsorption of dyes onto natural materials like polysaccharides is considered a green chemistry approach for remediation of wastewater. In this work, the polysaccharide isolated from the corm of Colocasia esculenta (L.) Schott or taro tuber (CEM) was utilized for removing methylene blue (MB) from aqueous solution by batch adsorption method. The CEM adsorbent was characterized by FTIR spectroscopy, Brunauer–Emmett–Teller (BET), and scanning electron microscopy (SEM). The solution pH and adsorbent dose have been found to have a significant positive correlation with the adsorptive removal efficiency of CEM for MB dye. The removal efficiency of CEM was found to be 72.35% under the optimum conditions; 20?mg/L initial concentration of dye, 120?mg of adsorbent dose, solution pH 8.5, 311.2?K temperature and 80?min contact time. The adsorption of MB onto CEM followed best the Freundlich isotherm and pseudo-second-order kinetics. The adsorption was thermodynamically favorable and was endothermic in nature. The desorption/adsorption data justifiably indicated the reuse capability of CEM adsorbent for MB adsorption. Hence, CEM may be regarded as an eco-friendly and cost-effective natural adsorbent for MB dye removal from aqueous solution.  相似文献   

12.
Crosslinked potato starch was prepared as an affinity adsorbent for bacterial α-amylase. To this end, reaction parameters for crosslinking in an ethanol/water solvent were investigated. The degree of crosslinking, and consequently the suitability of crosslinked starch as an adsorbent for α-amylase, changed by altering these parameters. An increase in the degree of crosslinking of the adsorbent caused lower affinity for bacterial α-amylase which resulted in an unfavourable decrease in adsorption capacity and a favourable decrease in the degradation of the adsorbent by the enzyme. 1 g of a suitable adsorbent for bacterial α-amylase, prepared with an epichlorohydrin/glucose monomer ratio of 0·65 (starch concentration 150 mg/ml, ethanol/water ratio 2·0, sodium hydroxide/epichlorohydrin ratio 1·0), can adsorb 9·8 mg of an α-amylase from B. licheniformis at 4°C in 20 h.The equilibrium constant between bound and unbound α-amylase is dependent on the temperature. An effective desorption was possible by a shift to higher temperatures. Degradation values smaller than 0·1% were measured after an incubation of 1 h at 70°C in a desorption buffer with 20% glycerol.It was concluded that coulombic interactions and hydrogen bonds are of no or little importance in enzyme adsorption. Van der Waals forces, which are responsible for the large temperature effect, are the main forces in the interaction between α-amylase and crosslinked starch.  相似文献   

13.
Expanded bed adsorption (EBA) is an efficient protein purification process reducing time and steps of downstream processing (DSP) since nonclarified culture media can be processed directly without prior treatments such as filtration or centrifugation. However, cells and debris can interact with the adsorbent and affect bed stability as well as purification performance. To optimize EBA operating conditions these biomass/adsorbent interactions have to be understood and characterized. The adsorption of Human Embryonic Kidney cells (HEK 293) on unprimed and nickel-primed metal affinity adsorbent was studied in a closed loop EBA setup. With the unprimed adsorbent, the overall level of interaction observed was nonsignificant. With the nickel-primed adsorbent and an initial cell concentration ranging from 0.08 x 10(6) to 0.2 x 10(6) cells/mL, biomass/adsorbent interaction was found to be moderate and the adsorption apparent first-order kinetic rate constant was determined to be k = 0.009 to 0.011 min(-1).  相似文献   

14.
Hydrophobic interaction chromatography (HIC) is commonly used to separate protein monomer and aggregate species in the purification of protein therapeutics. Despite being used frequently, the HIC separation mechanism is quite complex and not well understood. In this paper, we examined the separation of a monomer and aggregate protein mixture using Phenyl Sepharose FF. The mechanisms of protein adsorption, desorption, and diffusion of the two species were evaluated using several experimental approaches to determine which processes controlled the separation. A chromatography model, which used homogeneous diffusion (to describe mass transfer) and a competitive Langmuir binary isotherm (to describe protein adsorption and desorption), was formulated and used to predict the separation of the monomer and aggregate species. The experimental studies showed a fraction of the aggregate species bound irreversibly to the adsorbent, which was a major factor governing the separation of the species. The model predictions showed inclusion of irreversible binding in the adsorption mechanism greatly improved the model predictions over a range of operating conditions. The model successfully predicted the separation performance of the adsorbent with the examined feed.  相似文献   

15.
The 'FLITRX' random peptide library, consisting of dodecamer loop peptides displayed on a thioredoxin-flagellin scaffold on Escherichia coli, was used to select peptide sequences with affinity for a monoclonal antibody. These peptides were further screened for pH- and metal-sensitive antibody binding. Several zinc-sensitive peptides were identified, termed 'switch epitopes'. A soluble, monomeric thioredoxin loop ('Trxloop') insertion analog of a FLITRX switch epitope was constructed and its antibody binding properties were characterized by Western blots. Zinc-dependent antibody recognition was maintained in the Trxloop protein although the apparent antibody affinity was lower. This Trxloop protein bound to an immobilized metal affinity chromatography matrix, similar to a 'histidine-patch' thioredoxin variant, and was reversibly precipitated by 1 mM Zn(2+) or Cu(2+) ions. Residues important for zinc and antibody binding were determined by site-directed mutagenesis. The Trxloop antibody affinity was increased by saturation mutagenesis. Biotinylated Trxloop ('Biotrxloop') variants of the original and improved affinity Trxloop proteins were constructed and characterized by surface plasmon resonance measurements. Increased antibody affinity was partially due to a slower antibody desorption rate, although the relative adsorption rates were dependent on the amount of immobilized Biotrxloop protein, indicating an influence of avidity on the apparent affinity.  相似文献   

16.
A new and inexpensive lignocellulose/montmorillonite (LNC/MMT) nanocomposite was prepared by a chemical intercalation of LNC into MMT and was subsequently investigated as an adsorbent in batch systems for the adsorption-desorption of Ni(II) ions in an aqueous solution. The optimum conditions for the Ni(II) ion adsorption capacity of the LNC/MMT nanocomposite were studied in detail by varying parameters such as the initial Ni(II) concentration, the solution pH value, the adsorption temperature and time. The results indicated that the maximum adsorption capacity of Ni(II) reached 94.86 mg/g at an initial Ni(II) concentration of 0.0032 mol/L, a solution pH of 6.8, an adsorption temperature of 70°C, and adsorption time of 40 min. The represented adsorption kinetics model exhibited good agreement between the experimental data and the pseudo-second-order kinetic model. The Langmuir isotherm equation best fit the experimental data. The structure of the LNC/MMT nanocomposite was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), whereas the adsorption mechanism was discussed in combination with the results obtained from scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy analyses (FTIR). The desorption capacity of the LNC/MMT nanocomposite depended on parameters such as HNO3 concentration, desorption temperature, and desorption time. The satisfactory desorption capacity of 81.34 mg/g was obtained at a HNO3 concentration, desorption temperature, and desorption time of 0.2 mol/L, 60 ºC, and 30 min, respectively. The regeneration studies showed that the adsorption capacity of the LNC/MMT nanocomposite was consistent for five cycles without any appreciable loss in the batch process and confirmed that the LNC/MMT nanocomposite was reusable. The overall study revealed that the LNC/MMT nanocomposite functioned as an effective adsorbent in the detoxification of Ni(II)-contaminated wastewater.  相似文献   

17.
To develop adsorbents for the specific removal of tumor necrosis factor-alpha (TNF) in extracorporeal blood purification, cellulose microparticles were functionalized either with a monoclonal anti-TNF antibody (mAb) or with recombinant human antibody fragments (Fab). The TNF binding capacity of the adsorbents was determined with in vitro batch experiments using spiked human plasma (spike: 1200 pg TNF/mL; 1 mg particles in 250 muL plasma). Random immobilization of the full-sized monoclonal antibody to periodate-activated cellulose yielded particles with excellent adsorption capacity (258.1 +/- 48.6 pg TNF per mg adsorbent wet weight). No leaching of antibody was detectable, and the adsorbents retained their activity for at least 12 months at 4 degrees C. We found that the conditions used during immobilization of the antibody (pH, nature of the reducing agent) profoundly influenced the biocompatibility of the resulting adsorbents, especially with respect to activation of the complement system. Particles obtained by random immobilization of the monovalent Fab fragments on periodate-activated cellulose using the same conditions as for immobilization of the mAb exhibited only low adsorption capacity (44 +/- 7 pg/mg adsorbent wet weight). Oriented coupling of the Fab fragments on chelate-epoxy cellulose via a C-terminal histidine tag, however, increased the adsorption capacity to 178.3 +/- 8.6 pg TNF/mg adsorbent wet weight. Thus, in the case of small, monovalent ligands, the orientation on the carrier is critical to retain full binding activity.  相似文献   

18.
A method for reducing endotoxin contamination in various solutions by immobilized histidine is described. Immobilized histidine is a porous adsorbent suitable for the adsorption of endotoxin with a high affinity over a wide range of pH and temperature and at low ionic strength (gamma/2 less than or equal to 0.1). When a purified endotoxin originating from Escherichia coli UKT-B was studied, the apparent dissociation constant between endotoxin and the adsorbent was 7.3 X 10(-13) M. The adsorbent was able to remove various kinds of endotoxin originating from gram-negative bacteria; the concentration of endotoxin was reduced from 1000 to less than 0.01 ng/ml in water. It is shown that the adsorbent specifically adsorbs endotoxin provided that the adsorption conditions are properly selected. Some examples of the specific removal of endotoxin from high-molecular-weight physiologically active substances such as tumor necrosis factor and lysozyme are shown.  相似文献   

19.
From a physico-chemical point of view, affinity chromatography has no unambiguous definition. It is generally understood as the one-step chromatographic isolation of a protein from a biological sample. For such processes the protein recovery and the adsorption capacity for a given adsorption time is limited by static and dynamic physico-chemical properties of the system. The protein recovery is limited by the ratio of the static capacity, n(s), and the dissociation constant, K, for the interaction with the immobilized binding site. The limits of these quantities for 90% and 99% protein recovery were estimated. The residence time required to reach 90% of the adsorptive capacity of an adsorbent is a function of the above static properties, the pore-diffusion coefficient, D(p), and the diffusion distance in the adsorbent. It was estimated and was found to correlate well with experimental data. The one-step discontinuous or continuous chromatographic isolation of one protein from a biological sample by means of adsorbents that separate with respect to different properties is reviewed. This is only possible with selective specific adsorbents and, in special cases, also with bifunctional adsorbents that use hydrophobic interactions for the adsorption, and electrostatic repulsion for the desorption.  相似文献   

20.
In this study, with flavonol glycosides (FG) and terpene lactones (TL) in ginkgo biloba extract (GBE) as the targets for separation, we investigated the effectiveness of molecular docking in adsorbent screening. Several polyamine-modified methyl acylate-co-divinylbenzene (MA-co-DVB) adsorbent models were built, and their affinity to rutin, quercetin and ginkgolide B (GB) was evaluated via molecular docking. The model of ethylenediamine-modified adsorbent showed the largest difference in affinity between to GB and to quercetin as well as rutin, and thus this adsorbent could have the best separation performance. The results of the subsequently conducted static adsorption and dynamic adsorption experiments correlated well with docking results. Finally, using ethylenediamine-modified MA-co-DVB adsorbent, nearly complete separation of the FG and TL in GBE was simply achieved by one step of adsorption-desorption. Thus, the reported molecular docking method is expected to be helpful for rapid adsorbent screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号