首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
多重PCR方法检测霍乱弧菌的研究   总被引:1,自引:0,他引:1  
霍乱弧菌是霍乱的病原体,可以分为O1群、O139群和非O1/非O139群。O1群和O139群霍乱弧菌产生的霍乱肠毒素(也称霍乱毒素)是产生霍乱的主要原因,也只有O1群和O139群霍乱弧菌可引起霍乱。其他群的霍乱弧菌毒性不高,但在食品中也不允许被检出。实验以霍乱胶原酶基因和霍乱毒素基因为目的基因,试图建立一种PCR方法对霍乱弧菌进行检测研究,结果表明此方法可以用于食品中的霍乱弧菌检测。  相似文献   

2.
Four hundred ninety seven strains of Vibrio cholerae selected from isolates in Romania in the last decade 1990-1999 were investigated for antibiotic resistance and for classical and putative virulence factors. V. cholerae O1 strains predominated in clinical cases and non O1 strains in the environment, excepting in 1992 when non O1 strains were frequent in clinical and environmental sources. V. cholerae O1 strains previously susceptible to tetracycline acquired clinically significant resistance to this drug during 1993-1994, but this trend was reversed in 1995, following the introduction of nalidixic acid in cholera treatment in 1994. V. cholerae O1 and non O1 clinical isolates acquired simultaneous resistance to the vibriostatic agent O/129 and cotrimoxazole during 1994-1995. High levels of intrinsic resistance to multiple antibiotics were exhibited by all strains examined. The presence of cholera toxin (CT) was concentrated in clinical V. cholerae O1 strains and was substituted in clinical non O1 strains by four putative virulence markers (Kanagawa haemolysin, slime, lipase, and colonial opacity). Colonial opacity (30%) was present only in clinical isolates of V. cholerae non O1. Pigmentogenesis (11.7%) has present only in environmental sources. Antibioresistance profiles differ for V. cholerae O1 and non O1 strains with respect to their source of isolation. This aspect may imply a role in virulence and survival of V. cholerae in the natural environment where they may serve as a reservoir of virulence and multiple drug resistance genes.  相似文献   

3.
Escherichia coli serogroup O103 has been associated with gastrointestinal illness and hemolytic uremic syndrome. To develop PCR-based methods for detection and identification of this serogroup, the DNA sequence of the 12,033-bp region containing the O antigen gene cluster of Escherichia coli O103 was determined. Of the 12 open reading frames identified, the E. coli O103 wzx (O antigen flippase) and wzy (O antigen polymerase) genes were selected as targets for development of both conventional and real-time PCR assays specific for this serogroup. In addition, a multiplex PCR targeting the Shiga toxin (Stx) 1 (stx1), Shiga toxin 2 (stx2), wzx, and wzy genes was developed to differentiate Stx-producing E. coli O103 from non-toxigenic strains. The PCR assays can be employed to identify E. coli serogroup O103, replacing antigen-based serotyping, and to potentially detect the organism in food, fecal, or environmental samples.  相似文献   

4.
The Kauffmann-White scheme for serotyping Salmonella recognizes 46 somatic (O) antigen groups, which together with detection of the flagellar (H) antigens form the basis for serotype identification. Although serotyping has become an invaluable typing method for epidemiological investigations of Salmonella, it does have some practical limitations. We have been characterizing the genes required for O and H antigen biosynthesis with the goal of developing a DNA-based system for the determination of serotype in Salmonella. The majority of the enzymes involved in O antigen biosynthesis are encoded by the rfb gene cluster. We report the sequencing of the rfb region from S. enterica serotype Sundsvall (serogroup O:6,14). The S. enterica serotype Sundsvall rfb region is 8.4 kb in length and comprises six open reading frames. When compared with other previously characterized rfb regions, the serogroup O:6,14 sequence is most related to serogroup C(1). On the basis of DNA sequence similarity, we identified two genes from the mannose biosynthetic pathway, two mannosyl transferase genes, the O unit flippase gene and, possibly, the O antigen polymerase. The whole cluster is derived from a low-G+C-content organism. Comparative sequencing of an additional serogroup O:6,14 isolate (S. enterica serotype Carrau) revealed a highly homologous sequence, suggesting that O antigen factors O:24 and O:25 (additional O factors associated with serogroup O:6,14) are encoded outside the rfb gene cluster. We developed a serogroup O:6,14-specific PCR assay based on a region of the putative wzx (O antigen flippase) gene. This provides the basis for a sensitive and specific test for the rapid identification of Salmonella serogroup O:6,14.  相似文献   

5.
6.
S Yamasaki  T Shimizu  K Hoshino  S T Ho  T Shimada  G B Nair  Y Takeda 《Gene》1999,237(2):321-332
Several studies have shown that the emergence of the O139 serogroup of Vibrio cholerae is a result of horizontal gene transfer of a fragment of DNA from a serogroup other than O1 into the region responsible for O-antigen biosynthesis of the seventh pandemic V. cholerae O1 biotype El Tor strain. In this study, we show that the gene cluster responsible for O-antigen biosynthesis of the O139 serogroup of V. cholerae is closely related to those of O22. When DNA fragments derived from O139 O-antigen biosynthesis gene region were used as probes, the entire O139 O-antigen biosynthesis gene region could be divided into five classes, designated as I-V based on the reactivity pattern of the probes against reference strains of V. cholerae representing serogroups O1-O193. Class IV was specific to O139 serogroup, while classes I-III and class V were homologous to varying extents to some of the non-O1, non-O139 serogroups. Interestingly, the regions other than class IV were also conserved in the O22 serogroup. Long and accurate PCR was employed to determine if a simple deletion or substitution was involved to account for the difference in class IV between O139 and O22. A product of approx. 15kb was amplified when O139 DNA was used as the template, while a product of approx. 12.5kb was amplified when O22 DNA was used as the template, indicating that substitution but not deletion could account for the difference in the region between O22 and O139 serogroups. In order to precisely compare between the genes responsible for O-antigen biosynthesis of O139 and O22, the region responsible for O-antigen biosynthesis of O22 serogroup was cloned and analyzed. In concurrence with the results of the hybridization test, all regions were well conserved in O22 and O139 serogroups, although wbfA and the five or six genes comprising class IV in O22 and O139 serogroups, respectively, were exceptions. Again the genes in class IV in O22 were confirmed to be specific to O22 among the 155 'O' serogroups of V. cholerae. These data suggest that the gene clusters responsible for O139 O-antigen biosynthesis are most similar to those of O22 and genes within class IV of O139, and O22 defines the unique O antigen of O139 or O22.  相似文献   

7.
The Kauffmann-White scheme for serotyping Salmonella recognizes 46 somatic (O) antigen groups, which together with detection of the flagellar (H) antigens form the basis for serotype identification. Although serotyping has become an invaluable typing method for epidemiological investigations of Salmonella, it does have some practical limitations. We have been characterizing the genes required for O and H antigen biosynthesis with the goal of developing a DNA-based system for the determination of serotype in Salmonella. The majority of the enzymes involved in O antigen biosynthesis are encoded by the rfb gene cluster. We report the sequencing of the rfb region from S. enterica serotype Sundsvall (serogroup O:6,14). The S. enterica serotype Sundsvall rfb region is 8.4 kb in length and comprises six open reading frames. When compared with other previously characterized rfb regions, the serogroup O:6,14 sequence is most related to serogroup C1. On the basis of DNA sequence similarity, we identified two genes from the mannose biosynthetic pathway, two mannosyl transferase genes, the O unit flippase gene and, possibly, the O antigen polymerase. The whole cluster is derived from a low-G+C-content organism. Comparative sequencing of an additional serogroup O:6,14 isolate (S. enterica serotype Carrau) revealed a highly homologous sequence, suggesting that O antigen factors O:24 and O:25 (additional O factors associated with serogroup O:6,14) are encoded outside the rfb gene cluster. We developed a serogroup O:6,14-specific PCR assay based on a region of the putative wzx (O antigen flippase) gene. This provides the basis for a sensitive and specific test for the rapid identification of Salmonella serogroup O:6,14.  相似文献   

8.
Vibrio cholerae O139, the new serogroup associated with epidemic cholera, came into being in the second half of the year 1992 in an explosive fashion and was responsible for several outbreaks in India and other neighbouring countries. This was an unprecedented event in the history of cholera and the genesis of the O139 serogroup was, at that time, thought to be the beginning of the next or the eighth pandemic of cholera. However, with the passage of time, the O1 serogroup of the El Tor biotype again reappeared and displaced the O139 serogroup on the Indian subcontinent, and there was a feeling among cholera workers that the appearance of this new serogroup may have been a one-time event. The resurgence of the O139 serogroup in September 1996 in Calcutta and the coexistence of both the O1 and O139 serogroups in much of the cholera endemic areas in India and elsewhere, suggested that the O139 serogroup has come to stay and is a permanent entity to contend with in the coming years. During the past 10 years, intensive work on all aspects of the O139 serogroup was carried out by cholera researchers around the world. The salient findings on this serogroup over the past 10 years pertinent to its prevalence, clinico-epidemiological features, virulence-associated genes, rapid screening and identification, molecular epidemiology, and vaccine developments have been highlighted.  相似文献   

9.
The results of the serotyping of 244 V. cholerae non O1/O139 cultures isolated from patients in Uzbekistan in 2000 and 2001 are presented. All isolates were studied by the method of molecular probing and in the polymerase chain reaction for the presence of virulence genes and for sensitivity to phages ctx+, ctx- and hemolytic activity. The use of monoreceptor O-sera O2-O83 made it possible to determine vibrios of 32 serogroups with the dominating role in the etiology of acute enteric diseases belonging to serogroups O18, O62, O82, O37. Genes ctx AB were detected in none of the isolates, 5 of them contained gene tcp A. A group of cultures, sensitive to phage ctx+ and belonging mainly to enteropathogenic serogroups, was detected.  相似文献   

10.
AIMS: The aim of this study was to isolate Escherichia coli O26, O103, O111 and O145 from 745 samples of bovine faeces using (i) immunomagnetic separation (IMS) beads coated with antibodies to lipopolysaccharide, and slide agglutination (SA) tests and (ii) PCR and DNA probes for the detection of the Verocytotoxin (VT) genes. METHODS AND RESULTS: IMS-SA tests detected 132 isolates of presumptive E. coli O26, 112 (85%) were confirmed as serogroup O26 and 102 had the VT genes. One hundred and twenty-two strains of presumptive E. coli O103 were isolated by IMS-SA, 45 (37%) were confirmed as serogroup O103 but only one of these strains was identified as Verocytotoxin-producing E. coli (VTEC). Using the PCR/DNA probe method, 40 strains of VTEC O26 and three strains of VTEC O103 were isolated. IMS-SA identified 21 strains of presumptive E. coli O145, of which only four (19%) were confirmed as serogroup O145. VTEC of this serogroup was not detected by either IMS-SA or PCR/DNA probes. E. coli O111 was not isolated by either method. CONCLUSION: IMS beads were 2.5 times more sensitive than PCR/DNA probe methods for the detection of VTEC O26 in bovine faeces. SIGNIFICANCE AND IMPACT OF THE STUDY: IMS-SA is a sensitive method for detecting specific E. coli serogroups. However, the specificity of this method would be enhanced by the introduction of selective media and the use of tube agglutination tests for confirmation of the preliminary SA results.  相似文献   

11.
Vibrio cholerae serogroup O139 Bengal is the first documented serogroup other than O1 to cause epidemic cholera. The O139 Bengal strains are very similar to V. cholerae serogroup O1 biotype El Tor strains. The major differences between the two serogroups are that O139 Bengal contains a distinct O antigen and produces a polysaccharide capsule. We previously described three Tn phoA mutants of O139 strain AI1837 which abolish both O antigen and capsule production. These Tn phoA insertions were mapped to a 21.5 kb Eco RI fragment of the O139 chromosome. We describe here the cloning and mapping of this 21.5 kb Eco RI fragment and it was shown to complement each of the mutants in trans to produce O antigen and capsule. The Eco RI fragment contains 13 kb of DNA that is specific to O139 and 8.5 kb of DNA that is common to O1 and O139. Sequence analysis of the 13 kb of O139-specific DNA revealed that it contains 11 open reading frames all of which are transcribed in the same direction. Eight of the 11 open reading frames are homologous to sugar biosynthesis genes from other organisms. Using extended polymerase chain reactions, we show that the extent of the DNA region in O139 that is not present in O1 is approximately 35kb. The site of insertion of this O139-specific DNA in the O1 chromosome was mapped to the rfb O1 region. We also demonstrate that O139 Bengal strain AI1837 contains a deletion of 22 kb that in serogroup O1 strains contains the rfb region. Therefore, O139 Bengal probably arose from an O1 strain that had undergone genetic rearrangements including deletion of the O1 rfb region and acquisition of a 35 kb region of DNA which encodes O139 surface polysaccharide.  相似文献   

12.
The organization and distribution of the genes responsible for O antigen biosynthesis in various serogroups of Vibrio cholerae were investigated using several DNA probes derived from various regions of the genes responsible for O1 antigen biosynthesis. Based on the reactivity pattern of the probes against the various serogroups, the cluster of genes responsible for the O1 antigen biosynthesis could be broadly divided into six groups, designated as class 1-6. The class 3 cluster of genes corresponding to gmd to wbeO, wbeT and a part of wbeU was specific for only the O1 serogroup. The other cluster of genes (class 1, 2, 4-6) reacted with other serogroups of V. cholerae. These data indicate that serotype conversion in V. cholerae does not depend on a simple mutational event but may involve horizontal gene transfer not only between V. cholerae strains but also between V. cholerae and species other than V. cholerae.  相似文献   

13.
14.
This study investigated the shedding of Escherichia coli O26, O103, O111, O145, and O157 in a cohort of beef calves from birth over a 5-month period and assessed the relationship between shedding in calves and shedding in their dams, the relationship between shedding and scouring in calves, and the effect of housing on shedding in calves. Fecal samples were tested by immunomagnetic separation and by PCR and DNA hybridization assays. E. coli O26 was shed by 94% of calves. Over 90% of E. coli O26 isolates carried the vtx(1), eae, and ehl genes, 6.5% carried vtx(1) and vtx(2), and one isolate carried vtx(2) only. Serogroup O26 isolates comprised seven pulsed-field gel electrophoresis (PFGE) patterns but were dominated by one pattern which represented 85.7% of isolates. E. coli O103 was shed by 51% of calves. Forty-eight percent of E. coli O103 isolates carried eae and ehl, 2% carried vtx(2), and none carried vtx(1). Serogroup O103 isolates comprised 10 PFGE patterns and were dominated by two patterns representing 62.5% of isolates. Shedding of E. coli O145 and O157 was rare. All serogroup O145 isolates carried eae, but none carried vtx(1) or vtx(2). All but one serogroup O157 isolate carried vtx(2), eae, and ehl. E. coli O111 was not detected. In most calves, the temporal pattern of E. coli O26 and O103 shedding was random. E. coli O26 was detected in three times as many samples as E. coli O103, and the rate at which calves began shedding E. coli O26 for the first time was five times greater than that for E. coli O103. For E. coli O26, O103, and O157, there was no association between shedding by calves and shedding by dams within 1 week of birth. For E. coli O26 and O103, there was no association between shedding and scouring, and there was no significant change in shedding following housing.  相似文献   

15.
Salmonella Dakar and Salmonella Telaviv bacteria belong to serogroup O:28, which represents 107 serovars and possesses only the epitope O28. Salmonella Telaviv has the subfactors O28(1) and O28(2) , whereas S. Dakar has O28(1) and O28(3) . So far, only limited serological and immunological information for this serogroup is available in the literature. Knowledge of the structures of their O-polysaccharides and the immunochemical investigations performed in this work allowed to reveal the nature of subfactor O28(1) as attributed to the presence of 3-linked (or 3,4-disubstituted) α-d-GalpNAc in the main chains of S. Dakar and S. Telaviv O-polysaccharides. An explanation for the cross-reactions between Salmonella enterica O28 O-antigens and other Salmonella O-polysaccharides and their structural similarity to Escherichia coli O-serogroups is also given.  相似文献   

16.
Complementation experiments, Tn5 mutagenesis, and DNA sequencing were used to identify a locus (lag-1) that participates in acetylation of Legionella pneumophila serogroup 1 lipopolysaccharide. Nuclear magnetic resonance analyses of lipopolysaccharides from mutant and complemented strains suggest that lag-1 is responsible for O acetylation of serogroup 1 O polysaccharide.  相似文献   

17.
Serological studies using SDS-PAGE and immunoblotting revealed that from five strains that are ascribed to Citrobacter serogroup O2, four strains, PCM 1494, PCM 1495, PCM 1496 and PCM 1507, are reactive with specific anti-Citrobacter O2 serum. In contrast, strain PCM 1573 did not react with anti-Citrobacter O2 serum and, hence, does not belong to serogroup O2. The LPS of Citrobacter youngae O2a,1b (strain PCM 1507) was degraded under mild acidic conditions and the O-specific polysaccharide (OPS) released was isolated by gel chromatography. Sugar and methylation analyses along with (1)H- and (13)C-NMR spectroscopy, including two-dimensional (1)H,(1)H COSY, TOCSY, NOESY and (1)H,(13)C HSQC experiments, showed that the repeating unit of the OPS has the following structure: [structure: see text]. NMR spectroscopic studies demonstrated that Citrobacter werkmanii O20 and C. youngae O25 have the same OPS structure as C. youngae O2. Sugar and methylation analyses of the core oligosaccharide fractions demonstrated structural differences in the lipopolysaccharide core regions of these strains, which may substantiate their classification in different serogroups.  相似文献   

18.
A total of 26 strains of Vibrio cholerae, including members of the O1, O139, and non-O1, non-O139 serogroups from both clinical and environmental sources, were examined for the presence of genes encoding cholera toxin (ctxA), zonula occludens toxin (zot), accessory cholera enterotoxin (ace), hemolysin (hlyA), NAG-specific heat-stable toxin (st), toxin-coregulated pilus (tcpA), and outer membrane protein (ompU), for genomic organization, and for the presence of the regulatory protein genes tcpI and toxR in order to determine relationships between epidemic serotypes and sources of isolation. While 22 of the 26 strains were hemolytic on 5% sheep blood nutrient agar, all strains were PCR positive for hlyA, the hemolysin gene. When multiplex PCR was used, all serogroup O1 and O139 strains were positive for tcpA, ompU, and tcpI. All O1 and O139 strains except one O1 strain and one O139 strain were positive for the ctxA, zot, and ace genes. Also, O1 strain VO3 was negative for the zot gene. All of the non-O1, non-O139 strains were negative for the ctxA, zot, ace, tcpA, and tcpI genes, and all of the non-O1, non-O139 strains except strain VO26 were negative for ompU. All of the strains except non-O1, non-O139 strain VO22 were PCR positive for the gene encoding the central regulatory protein, toxR. All V. cholerae strains were negative for the NAG-specific st gene. Of the nine non-ctx-producing strains of V. cholerae, only one, non-O1, non-O139 strain VO24, caused fluid accumulation in the rabbit ileal loop assay. The other eight strains, including an O1 strain, an O139 strain, and six non-O1, non-O139 strains, regardless of the source of isolation, caused fluid accumulation after two to five serial passages through the rabbit gut. Culture filtrates of all non-cholera-toxigenic strains grown in AKI media also caused fluid accumulation, suggesting that a new toxin was produced in AKI medium by these strains. Studies of clonality performed by using enterobacterial repetitive intergenic consensus sequence PCR, Box element PCR, amplified fragment length polymorphism (AFLP), and pulsed-field gel electrophoresis (PFGE) collectively indicated that the V. cholerae O1 and O139 strains had a clonal origin, whereas the non-O1, non-O139 strains belonged to different clones. The clinical isolates closely resembled environmental isolates in their genomic patterns. Overall, there was an excellent correlation among the results of the PCR, AFLP, and PFGE analyses, and individual strains derived from clinical and environmental sources produced similar fingerprint patterns. From the results of this study, we concluded that the non-cholera-toxin-producing strains of V. cholerae, whether of clinical or environmental origin, possess the ability to produce a new secretogenic toxin that is entirely different from the toxin produced by toxigenic V. cholerae O1 and O139 strains. We also concluded that the aquatic environment is a reservoir for V. cholerae O1, O139, non-O1, and non-O139 serogroup strains.  相似文献   

19.
Genetic and phenotypic virulence markers of different categories of diarrhoeagenic Escherichia coli were investigated in 106 strains of enteropathogenic E. coli (EPEC) serogroup O86. The most frequent serotype found was O86:H34 (86%). Strains of this serotype and the non motile ones behaved as EPEC i.e., carried eae, bfpA and EAF DNA sequences and presented localised adherence to HeLa cells. Serotypes O86:H2, O86:H6, O86:H10, O86:H18, O86:H27 and O86:H non determined, belonged to other categories. The majority of the strains of serotype O86:H34 and non motile strains produced cytolethal-distending toxin (CDT). The ribotyping analysis showed a correlation among ribotypes, virulence markers and serotypes, thus suggesting that CDT production might be a property associated with a universal clone represented by the O86:H34 serotype.  相似文献   

20.
Throughout most of history, epidemic and pandemic cholera was caused by Vibrio cholerae of the serogroup O1. In 1992, however, a V. cholerae strain of the serogroup O139 emerged as a new agent of epidemic cholera. Interestingly, V. cholerae O139 forms biofilms on abiotic surfaces more rapidly than V. cholerae O1 biotype El Tor, perhaps because regulation of exopolysaccharide synthesis in V. cholerae O139 differs from that in O1 El Tor. Here, we show that all flagellar mutants of V. cholerae O139 have a rugose colony morphology that is dependent on the vps genes. This suggests that the absence of the flagellar structure constitutes a signal to increase exopolysaccharide synthesis. Furthermore, although exopolysaccharide production is required for the development of a three-dimensional biofilm, inappropriate exopolysaccharide production leads to inefficient colonization of the infant mouse intestinal epithelium by flagellar mutants. Thus, precise regulation of exopolysaccharide synthesis is an important factor in the survival of V. cholerae O139 in both aquatic environments and the mammalian intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号