首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Deletion events that occur spontaneously in 36-kilobase-pair (kbp) plasmid pHH4 from the archaebacterium Halobacterium halobium were investigated. Four different deletion derivatives with sizes ranging from 5.7 to 17 kbp were isolated. Three of these deletion variants derived from pHH4 (pHH6 [17 kbp], pHH7 [16 kbp], and pHH8 [6.3 kbp]), whereas the 5.7-kbp plasmid pHH9 derived from pHH6. Strains containing pHH6, pHH7, or pHH9 each lacked the parental plasmid pHH4, while pHH8 occurred at a 1:1 ratio together with pHH4. Common to all of these plasmids was the 5.7-kbp region of pHH9 DNA. The regions containing the fusion site in the deletion derivatives were investigated and compared with the corresponding area of the parental plasmid. Each deletion occurred exactly at the terminus of an insertion element. In pHH6 and pHH7, a halobacterial insertion element (ISH2) was located at the deletion site. The DNA fused to ISH2 displayed a 7-base-pair (bp) (pHH7) or 10-bp (pHH6) sequence homology to the inverted repeat of ISH2. In the two smaller plasmids, pHH8 and pHH9, an ISH27 element was located at the deletion site. Most likely, all of these smaller plasmids resulted from an intramolecular transposition event. The ISH27 insertion sequence contains a 16-bp terminal inverted repeat and duplicates 5 bp of target DNA during the transposition with the specificity 5'ANNNT3'. Four ISH27 copies were analyzed, and two ISH27 element types were identified that have approximately 85% sequence similarity. The ISH27 insertion elements constitute a family which is related to the ISH51 family characterized for H. volcanii, another halophilic archaebacterium.  相似文献   

3.
4.
The DNA sequence of the 5.7 kb plasmid pHH9 containing the replicon region of the 150 kb plasmid pHH1 from Halobacterium salinarium was determined. The minimal region necessary for stable plasmid maintenance lies within a 2.9 kb fragment, as defined by transformation experiments. The DNA sequence contained two open reading frames arranged in opposite orientations, separated by an unusually high AT-rich (60–70% A + T) sequence of 350 bp. All H. salinarium strains (H. halobium, H. cutirubrum) investigated harbour endogenous plasmids containing the pHH1 replicon; however, these pHH1-type plasmids differ by insertions and deletions. Adjacent to the replicon, and separated by a copy of each of the insertion elements ISH27 and ISH26, is the 9 kb p-vac region required for gas vesicle synthesis. Analysis of these and other ISH element copies in pHH1 revealed that most of them lack the target DNA duplication usually found with recently transposed ISH elements. These results underline the plasticity of plasmid pHH1.  相似文献   

5.
The DNA sequence of the 5.7 kb plasmid pHH9 containing the replicon region of the 150 kb plasmid pHH1 from Halobacterium salinarium was determined. The minimal region necessary for stable plasmid maintenance lies within a 2.9 kb fragment, as defined by transformation experiments. The DNA sequence contained two open reading frames arranged in opposite orientations, separated by an unusually high AT-rich (60–70% A + T) sequence of 350 bp. All H. salinarium strains (H. halobium, H. cutirubrum) investigated harbour endogenous plasmids containing the pHH1 replicon; however, these pHH1-type plasmids differ by insertions and deletions. Adjacent to the replicon, and separated by a copy of each of the insertion elements ISH27 and ISH26, is the 9 kb p-vac region required for gas vesicle synthesis. Analysis of these and other ISH element copies in pHH1 revealed that most of them lack the target DNA duplication usually found with recently transposed ISH elements. These results underline the plasticity of plasmid pHH1.  相似文献   

6.
A series of deletions introduced into the gvp gene cluster of Haloferax mediterranei, comprising 14 genes involved in gas vesicle synthesis (mc-vac-region), was investigated by transformation experiments. Gas vesicle production and the expression of the gvpA gene encoding the major gas vesicle protein, GvpA, was monitored in each Haloferax volcanii transformant. Whereas transformants containing the entire mc-vac-region produced gas vesicles (Vac+), various deletions in the region 5' to gvpA (encompassing gvpD-gvpM) or 3' to gvpA (containing gvpC, gvpN and gvpO) revealed Vac- transformants. All these transformants expressed gvpA and contained the 8 kDa GvpA protein as shown by Western analysis. However, transformants containing the gvpA gene by itself indicated a lower level of GvpA than observed with each of the other transformants. None of these transformants containing deletion constructs assembled the GvpA protein into gas vesicles. In contrast, transformants containing a construct carrying a 918 bp deletion internal to gvpD exhibited a tremendous gas vesicle overproduction, suggesting a regulatory role for the gvpD gene or its product. This is the first assignment of a functional role for one of the 13 halobacterial gvp genes found in addition to gvpA that are involved in the synthesis of this unique structure.  相似文献   

7.
Transformation experiments with Haloferax volcanii show that the amino acid sequence of the gas vesicle protein GvpA influences the morphology and strength of gas vesicles produced by halophilic archaea. A modified expression vector containing p-gvpA was used to complement a Vac(-) strain of Hfx. volcanii that harboured the entire p-vac region (from Halobacterium salinarum PHH1) except for p-gvpA. Replacement of p-gvpA with mc-gvpA (from Haloferax mediterranei) led to the synthesis of gas vesicles that were narrower and stronger. Other gene replacements (using c-gvpA from Hbt. salinarum or mutated p-gvpA sequences) led to a significant but smaller increase in gas vesicle strength, and less marked effects on gas vesicle morphology.  相似文献   

8.
9.
10.
11.
Genetic variability in Halobacterium halobium.   总被引:36,自引:16,他引:20       下载免费PDF全文
Halobacterium halobium exhibits an extraordinary degree of spontaneous variability. Mutants which are defective in the formation of gas vacuoles (vac) arise at a frequency of 10(-2). Other easily detectable phenotypes, like the synthesis of bacterioruberin (Rub) or the synthesis of retinal (Ret) and bacterio-opsin (Ops), the two components which form the purple membrane (Pum) of H. halobium, are lost at a frequency of about 10(-4). With the same frequency a mutant type appears which exhibits an extremely high variability in these phenotypes. With the exception of the ret mutants, all spontaneously arising mutants show alterations, i.e., insertions, rearrangements, or deletions, in the plasmid pHH1. It appears that the introduction of one insertion into pHH1 triggers further insertions, which makes the identification of relationships between phenotypic and genotypic alterations rather difficult. From the analysis of a large number of spontaneous vac mutants and their vac+ revertants it can be concluded that the formation of the gas vacuoles is determined or controlled by plasmid genes. No such conclusion is yet possible for the rub mutants, although all mutants of this type so far analyzed exhibit a defined insertion. pum mutants which have lost the capability of forming bacterio-opsin carry insertions in the plasmid which are distributed over a rather large region of the plasmid. No strains of H. halobium could be obtained which had lost plasmid pHH1 completely.  相似文献   

12.
Halobacterium halobium contains two gas vacuole protein genes that are located in plasmid pHH1 (p-vac) and in the chromosomal DNA (c-vac). The mutation frequency for these genes is different: the constitutively expressed p-vac gene is mutated with a frequency of 10(-2), while the chromosomal gene expressed in the stationary phase of growth is mutated with a frequency of 10(-5). The difference in the mutation susceptibility is due to the dynamics of plasmid pHH1. p-vac gene mutations are caused (i) by the integration of an insertion element or (ii) by a deletion event encompassing the p-vac gene region. In contrast, c-vac mutants analyzed to date incurred neither insertion elements nor deletions. Deletion events within pHH1 occur at high frequencies during the development of a H. halobium culture. The investigation of the fusion regions resulting from deletion events indicates that insertion elements are involved. The analysis of pHH1 deletion variants led to a 4 kilobase pair DNA region containing the origin of replication of the pHH1 plasmid.  相似文献   

13.
14.
15.
16.
We have stably transformed both Haloarcula vallismortis and Haloarcula hispanica with the halobacterium-Escherichia coli shuttle vectors pWL102 (based on the Haloferax volcanii pHV2 replicon) and pUBP2 (based on the Halobacterium halobium pHH1 replicon). Haloferax volcanii, Halobacterium halobium, and Haloarcula vailismortis are equally distant from one another and span the phylogenetic depth of the halophilic Archaea; thus, these vectors may be generally useful for the halophiles. Both Haloarcula vallismortis and Haloarcula hispanica exhibit previously unreported complex life cycles and are therefore significant as genetically approachable models of cellular differentiation within the Archaea.  相似文献   

17.
Testosterone controls the synthesis of seminal vesicle protein F in male rats by regulating the cellular concentration of its mRNA (mRNAF). Phage lambda recombinants have been isolated containing the complete F gene. In addition plasmids have been constructed containing cDNAF sequences some of which are probably full-length (approximately 700 bp). Detailed restriction mapping shows that the F gene is 1.7 kbp long and contains approximately 1.0 kbp of intervening sequence arranged in at least two introns (420 bp and 600 bp). Part of cDNAF has been sequenced showing that the terminal 125 bp of the 3' untranslated region of mRNAF has substantial (greater than 70%) sequence homology with the 3' end of the mRNA coding for another androgen-dependent seminal vesicle protein (protein S). The cloned F gene has been detected in liver and seminal vesicle DNA along with an homologous but structurally different gene. The hormonal control of mRNAF was examined with cDNAF. A pronounced (approximately 3000-fold) differential response to testosterone was observed.  相似文献   

18.
J T Halladay  W L Ng  S DasSarma 《Gene》1992,119(1):131-136
The halophilic archaebacterium, Halobacterium halobium, and many other aquatic bacteria synthesize gas-filled vesicles for flotation. We recently identified a cluster of 13 genes (gvpMLKJIHGFEDACN) on a 200-kb H. halobium plasmid, pNRC100, involved in gas vesicle synthesis. We have cloned and reconstructed the gvp gene cluster on an H. halobium-E. coli shuttle plasmid. Transformation of H. halobium Vac- mutants lacking the entire gas vesicle gene region with the gvp gene cluster results in restoration of their ability to float. These results open the way toward further genetic analysis of gas vesicle gene functions and directed flotation of other microorganisms with potential biotechnological applications.  相似文献   

19.
Most halobacteria produce gas vesicles (GV). The well-characterized species Halobacterium halobium and some GV+ revertants of GV- mutants of H. halobium produce large amounts of GV which have a spindlelike shape. Most other GV+ revertants of H. halobium GV- mutants and other recently characterized halobacterial wild-type strains possess GV with a cylindrical form. The number of intact particles in the latter isolates is only 10 to 30% of that of H. halobium. Analysis of GV envelope proteins (GVPs) by electrophoresis on phenol-acetic acid-urea gels showed that the GVP of the highly efficient GV-producing strains migrated faster than the GVP of the low-GV-producing strains. The relative molecular mass of the GVP was estimated to be 19 kilodaltons (kDa) for high-producing strains (GVP-A) and 20 kDa for low-producing strains (GVP-B). Amino acid sequence analysis of the first 40 amino acids of the N-terminal parts of GVP-A and GVP-B indicated that the two proteins differed in two defined positions. GVP-B, in relation to GVP-A, had Gly-7 and Val-28 always replaced by Ser-7 and Ile-28, respectively. These data suggest that at least two different gvp genes exist in H. halobium NRL. This was directly demonstrated by hybridization experiments with gvp-specific DNA probes. A fragment of plasmid pHH1 and a chromosomal fragment of H. halobium hybridized to the probes. Only a chromosomal fragment hybridized to the same gyp probes when both chromosomal and plasmid DNAs from the low-GV-producing halobacterial wild-type strains SB3 and GN101 were examined. These findings support the assumption that GVP-A is expressed by a pHH1-associated gvp gene and GVP-B by a chromosomal gvp gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号