首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Pseudomonas syringae pv. syringae strain B359 secreted two main lipodepsipeptides (LDPs), syringomycin E (SRE) and syringopeptin 25A (SP25A), together with at least four types of cell wall-degrading enzymes (CWDEs). In antifungal bioassays, the purified toxins SRE and SP25A interacted synergistically with chitinolytic and glucanolytic enzymes purified from the same bacterial strain or from the biocontrol fungus Trichoderma atroviride strain P1. The synergism between LDPs and CWDEs occurred against all seven different fungal species tested and P. syringae itself, with a level dependent on the enzyme used to permeabilize the microbial cell wall. The antifungal activity of SP25A was much more increased by the CWDE action than was that of the smaller SRE, suggesting a stronger antifungal role for SP25A. In vivo biocontrol assays were performed by using P. syringae alone or in combination with T. atroviride, including a Trichoderma endochitinase knock-out mutant in place of the wild type and a chitinase-specific enzyme inhibitor. These experiments clearly indicate that the synergistic interaction LDPs-CWDEs is involved in the antagonistic mechanism of P. syringae, and they support the concept that a more effective disease control is given by the combined action of the two agents.  相似文献   

2.
Many strains of Pseudomonas syringae pv. syringae produce one of four classes of small cyclic lipodepsinonapeptides: syringomycins, syringostatins, syringotoxins, or pseudomycins. These metabolites are phytotoxic and growth inhibitory against a broad spectrum of fungi. Their production is dependent upon the expression of conserved biosynthesis and export genes syrB and syrD, respectively. PCR and oligonucleotide primers specific for a 752-bp fragment of syrB were used to identify cyclic lipodepsinonapeptide-producing strains of P. syringae pv. syringae. In contrast, PCR amplification with primers based on syrD did not always correlate with possession of the syrD gene, as indicated by Southern blot analysis, or with cyclic lipodepsinonapeptide production. Sequence comparisons of 400 nucleotides from the syrB PCR-amplified fragments showed 94% plot similarity among 27 strains. In a sequence phenogram, syringostatin and syringotoxin producers were grouped apart from syringomycin-producing strain B301D, with sequences that differed by eight and nine conserved base substitutions, respectively. PCR amplification of the 752-bp syrB fragment offers rapid and accurate detection of cyclic lipodepsinonapeptide-producing strains, and its sequence provides some predictive capabilities for identifying syringotoxin and syringostatin producers.  相似文献   

3.
Serologically active O-specific polysaccharides were obtained on mild acid hydrolysis of lipopolysaccharides from Pseudomonas cerasi 467 and Pseudomonas syringae pv. syringae strains 218 and P-55. On the basis of 1H- and 13C-NMR analysis, it was concluded that the P. cerasi polysaccharide has the following structure: ----3)-alpha-D-Rhap-(1----3)-alpha-D-Rhap-(1----2)-alpha-D-+ ++Rhap-(1---- which is identical to that of O-specific polysaccharide from P. syringae pv. morsprunorum C28 (Smith A. R. W. et al. Eur. J. Biochem., 1985, V. 149, No 1, p. 73-78). The polysaccharides from P. syringae pv. syringae strains possess the same backbone but differ by the presence of D-fucose as monosaccharide branches. Methylation and 1H- and 13C-NMR analysis revealed the following structure of these polysaccharides: (Formula: see text). The degree of substitution of the backbone trisaccharide units by the fucofuranose residues is about 35% for the strain 218 and about 85% for the strain P-55.  相似文献   

4.
Using a sensitive assay, we observed low levels of an unknown surfactant produced by Pseudomonas syringae pv. syringae B728a that was not detected by traditional methods yet enabled swarming motility in a strain that exhibited deficient production of syringafactin, the main characterized surfactant produced by P. syringae. Random mutagenesis of the syringafactin-deficient strain revealed an acyltransferase with homology to rhlA from Pseudomonas aeruginosa that was required for production of this unidentified surfactant, subsequently characterized by mass spectrometry as 3-(3-hydroxyalkanoyloxy) alkanoic acid (HAA). Analysis of other mutants with altered surfactant production revealed that HAA is coordinately regulated with the late-stage flagellar gene encoding flagellin; mutations in genes involved in early flagellar assembly abolish or reduce HAA production, while mutations in flagellin or flagellin glycosylation genes increase its production. When colonizing a hydrated porous surface, the bacterium increases production of both flagellin and HAA. P. syringae was defective in porous-paper colonization without functional flagella and was slightly inhibited in this movement when it lacked surfactant production. Loss of HAA production in a syringafactin-deficient strain had no effect on swimming but abolished swarming motility. In contrast, a strain that lacked HAA but retained syringafactin production exhibited broad swarming tendrils, while a syringafactin-producing strain that overproduced HAA exhibited slender swarming tendrils. On the basis of further analysis of mutants altered in HAA production, we discuss its regulation in Pseudomonas syringae.  相似文献   

5.
A cosmid clone isolated from a genomic library of Pseudomonas syringae pv. syringae 61 restored to all Tn5 mutants of this strain studied the ability to elicit the hypersensitive response (HR) in tobacco. Cosmid pHIR11 also enabled Escherichia coli TB1 to elicit an HR-like reaction when high levels of inoculum (10(9) cells per ml) were infiltrated into tobacco leaves. The cosmid, which contains a 31-kilobase DNA insert, was mobilized by triparental matings into Pseudomonas fluorescens 55 (a nonpathogen that normally causes no plant reactions), P. syringae pv. syringae 226 (a tomato pathogen that causes the HR in tobacco), and P. syringae pv. tabaci (a tobacco pathogen that causes the HR in tomato). The plant reaction phenotypes of all of the transconjugants were altered. P. fluorescens(pHIR11) caused the HR in tobacco and tomato leaves and stimulated an apparent proton influx in suspension-cultured tobacco cells that was indistinguishable from the proton influx caused by incompatible pathogenic pseudomonads. P. syringae pv. tabaci(pHIR11) and P. syringae pv. syringae 226(pHIR11) elicited the HR rather than disease symptoms on their respective hosts and were no longer pathogenic. pHIR11 was mutagenized with TnphoA (Tn5 IS50L::phoA). One randomly chosen mutant, pHIR11-18, no longer conferred the HR phenotype to P. fluorescens. The mutation was marker-exchanged into the genomes of P. syringae pv. syringae strains 61 and 226. The TnphoA insertions in the two pseudomonads abolished their ability to elicit any plant reactions in all plants tested. The results indicate that a relatively small portion of the P. syringae genome is sufficient for the elicitation of plant reactions.  相似文献   

6.
Cell-free extracts from phaseolotoxin-producing strains of Pseudomonas syringae pv. phaseolicola grown at 18 degrees C, the optimum temperature for phaseolotoxin production, contain an ornithine carbamoyltransferase activity that is insensitive to phaseolotoxin. Extracts from the same strains grown at 30 degrees C, a temperature at which little or no detectable phaseolotoxin is produced, and from phaseolotoxin-nonproducing strains contain a phaseolotoxin-sensitive ornithine carbamoyltransferase activity. The phaseolotoxin-insensitive ornithine carbamoyltransferase activity is also less senstive to N delta-(phosphonacetyl)-L-ornithine than the phaseolotoxin-sensitive ornithine carbamoyltransferase activity of the corresponding strain.  相似文献   

7.
Syringomycin E is an antifungal cyclic lipodepsinonapeptide produced by Pseudomonas syringae pv. syringae. To understand the mechanism of action of syringomycin E, a novel resistant Saccharomyces cerevisiae strain, BW7, was isolated and characterized. Lipid analyses revealed that BW7 contained only the hydrophobic subspecies of sphingolipids that are normally minor components in wild type strains. This aberrant sphingolipid composition was the result of lack of alpha-hydroxylation of the amide-linked very long chain fatty acids, suggesting a defective sphingolipid alpha-hydroxylase encoded by the FAH1 gene. A yeast strain that lacks the FAH1 gene was resistant to syringomycin E, and failed to complement BW7. These results demonstrate that BW7 carries a mutation in the FAH1 gene, and that the lack of alpha-hydroxylated very long chain fatty acids in yeast sphingolipids confers resistance to syringomycin E.  相似文献   

8.
We describe a simple method of purifying Pseudomonas syringae pv. syringae (P. s. pv. s.) specific polyclonal antibodies which are directed against a cell surface protein sized 31 kD. The actual purification step of the polyclonal antibodies occurs with denatured proteins after an SDS-PAGE gel electrophoresis and western blotting. Polyclonal antibodies were obtained which recognized a 31 kD protein. On a western blot no cross reaction of the purified polyclonal ‘monospecific 31 kD antibodies’ with other proteins from the same strain was observed. However, a positive “monospecific 31 kD antibody” reaction was only visible when either protein extracts from several selected pathogenic P. s. pv. s. strains from different hosts, or two isolates of Pseudomonas syringae pv. pisi (P. s. pv. p.) were used. An indication that this 31 kD protein is specific to P. s. pv. s. is that no cross reaction was found with protein extracts from the tested pathogenic and non-pathogenic pseudomonads. However, a differentiation of the tested P. s. pv. s. and P. s. pv. p. isolates was possible when cells were grown above 30 °C. Then protein extracts from P. s. pv. s. revealed the lack of the 31 kD protein but not P. s. pv. p. protein extracts. Polyclonal antibodies raised in rabbits against the 31 kD protein band from the western blot proved to be specific enough to agglutinate whole P. s. pv. s. strain R32 cells or for detecting a single 31 kD protein band on a western blot when whole cell protein extracts of P. s. pv. s. strain R32 were used.  相似文献   

9.
TvD1 is a small, cationic, and highly stable defensin from the weedy legume, Tephrosia villosa with demonstrated in vitro antifungal activity. We show here peptide modifications in TvD1 that lead to enhanced antifungal activities. Three peptide variants, S32R, D37R, and Alpha-TvD1 (-G-M-T-R-T-) with variations in and around the β2-β3 loop region that imposes the two β-strands, β2 and β3 were generated through in vitro mutagenesis. Alpha-TvD1 exhibited enhanced antifungal activity against the fungal pathogens, Fusarium culmorum and Fusarium oxysporum with respective IC(50) values of 2.5 μM and 3.0 μM, when compared to S32R (<5.0 μM and >5.0 μM), D37R (5.5 μM and 4.5 μM), and the wild type TvD1 (6.5 μM). Because of the enhanced antifungal activity, this variant peptide was characterized further. Growth of F. culmorum in the presence of Alpha-TvD1 showed deformities in hyphal walls and nuclear damage. With respect to the plant pathogenic bacterium, Pseudomonas syringae pv. tomato strain DC3000, both Alpha-TvD1 and the wild type TvD1 showed comparable antibacterial activity. Both wild type TvD1 and Alpha-TvD1 displayed inhibitory activity against the α-amylase of the mealworm beetle, Tenebrio molitor (TMA) with the latter showing enhanced activity. The human salivary as well as barley α-amylase activities were not inhibited even at concentrations of up to 50 μM, which has been predicted to be due to differences in the pocket size and the size of the interacting loops. Present study shows that the variant Alpha-TvD1 exhibits enhanced antifungal as well as insect α-amylase inhibitory activity.  相似文献   

10.
Pseudomonas aurantiaca S-1 can serve as a natural source of pesticides towards phytopathogens like Fusarium oxysporum P1 and Pseudomonas syringae pv. glycinea BIM B-280. The largest pool of produced antimicrobial compounds was found in four days-old spent culture supernatant. At least two groups of bioactive substances were identified, one responsible for the antibacterial activity and the other for the antifungal activity. The fraction with strong antibacterial activity had the molecular mass 282.8 and formula C18H36NO, and the fraction with strong antifungal activity had molecular mass 319.3 and molecular formula C20H31O3 which could be a new fungicide. Additionally, P. aurantiaca S-1 was able to produce indoleacetic acid and siderophores.  相似文献   

11.
The plant apoplast is the intercellular space that surrounds plant cells, in which metabolic and physiological processes relating to cell wall biosynthesis, nutrient transport, and stress responses occur. The apoplast is also the primary site of infection for hemibiotrophic pathogens such as P. syringae, which obtain nutrients directly from apoplastic fluid. We have used apoplastic fluid extracted from healthy tomato leaves as a growth medium for Pseudomonas spp. in order to investigate the role of apoplastic nutrients in plant colonization by Pseudomonas syringae. We have confirmed that apoplast extracts mimic some of the environmental and nutritional conditions that bacteria encounter during apoplast colonization by demonstrating that expression of the plant-induced type III protein secretion pathway is upregulated during bacterial growth in apoplast extracts. We used a modified phenoarray technique to show that apoplast-adapted P. syringae pv. tomato DC3000 expresses nutrient utilization pathways that allow it to use sugars, organic acids, and amino acids that are highly abundant in the tomato apoplast. Comparative analyses of the nutrient utilization profiles of the genome-sequenced strains P. syringae pv. tomato DC3000, P. syringae pv. syringae B728a, P. syringae pv. phaseolicola 1448A, and the unsequenced strain P. syringae pv. tabaci 11528 with nine other genome-sequenced strains of Pseudomonas provide further evidence that P. syringae strains are adapted to use nutrients that are abundant in the leaf apoplast. Interestingly, P. syringae pv. phaseolicola 1448A lacks many of the nutrient utilization abilities that are present in three other P. syringae strains tested, which can be directly linked to differences in the P. syringae pv. phaseolicola 1448A genome.  相似文献   

12.
Root colonization by a plant-beneficial rhizobacterium, Pseudomonas chlororaphis O6, induces disease resistance in tobacco against leaf pathogens Erwinia carotovora subsp. carotovora SCC1, causing soft-rot, and Pseudomonas syringae pv. tabaci, causing wildfire. In order to identify the bacterial determinants involved in induced systemic resistance against plant diseases, extracellular components produced by the bacterium were fractionated and purified. Factors in the culture filtrate inducing systemic resistance were retained in the aqueous fraction rather than being partitioned into ethyl acetate. Fractionation on high-performance liquid chromatography followed by nuclear magnetic resonance mass spectrometry analysis identified the active compound as 2R, 3R-butanediol. 2R, 3R butanediol induced systemic resistance in tobacco to E. carotovora subsp. carotovora SCC1, but not to P. syringae pv. tabaci. Treatment of tobacco with the volatile 2R, 3R-butanediol enhanced aerial growth, a phenomenon also seen in plants colonized by P. chlororaphis O6. The isomeric form of the butanediol was important because 2S, 3S-butandiol did not affect the plant. The global sensor kinase, GacS, of P. chlororaphis O6 was a key regulator for induced systemic resistance against E. carotovora through regulation of 2R, 3R-butanediol production. This is the first report of the production of these assumed fermentation products by a pseudomonad and the role of the sensor kinase GacS in production of 2R, 3R-butanediol.  相似文献   

13.
Pseudomonas species are known to be prolific producers of secondary metabolites that are synthesized wholly or in part by nonribosomal peptide synthetases. In an effort to identify additional nonribosomal peptides produced by these bacteria, a bioinformatics approach was used to "mine" the genome of Pseudomonas syringae pv. tomato DC3000 for the metabolic potential to biosynthesize previously unknown nonribosomal peptides. Herein we describe the identification of a nonribosomal peptide biosynthetic gene cluster that codes for proteins involved in the production of six structurally related linear lipopeptides. Structures for each of these lipopeptides were proposed based on amino acid analysis and mass spectrometry analyses. Mutations in this cluster resulted in the loss of swarming motility of P. syringae pv. tomato DC3000 on medium containing a low percentage of agar. This phenotype is consistent with the loss of the ability to produce a lipopeptide that functions as a biosurfactant. This work gives additional evidence that mining the genomes of microorganisms followed by metabolite and phenotypic analyses leads to the identification of previously unknown secondary metabolites.  相似文献   

14.
Periplasmic glucans of Pseudomonas syringae pv. syringae.   总被引:3,自引:3,他引:0       下载免费PDF全文
P Talaga  B Fournet    J P Bohin 《Journal of bacteriology》1994,176(21):6538-6544
We report the initial characterization of glucans present in the periplasmic space of Pseudomonas syringae pv. syringae (strain R32). These compounds were found to be neutral, unsubstituted, and composed solely of glucose. Their size ranges from 6 to 13 glucose units/mol. Linkage studies and nuclear magnetic resonance analyses demonstrated that the glucans are linked by beta-1,2 and beta-1,6 glycosidic bonds. In contrast to the periplasmic glucans found in other plant pathogenic bacteria, the glucans of P. syringae pv. syringae are not cyclic but are highly branched structures. Acetolysis studies demonstrated that the backbone consists of beta-1,2-linked glucose units to which the branches are attached by beta-1,6 linkages. These periplasmic glucans were more abundant when the osmolarity of the growth medium was lower. Thus, P. syringae pv. syringae appears to synthesize periplasmic glucans in response to the osmolarity of the medium. The structural characteristics of these glucans are very similar to the membrane-derived oligosaccharides of Escherichia coli, apart from the neutral character, which contrasts with the highly anionic E. coli membrane-derived oligosaccharides.  相似文献   

15.
The antifungal substances SH-1 and SH-2 were isolated from Streptomyces humidus strain S5-55 cultures by various purification procedures and identified as phenylacetic acid and sodium phenylacetate, respectively, based on the nuclear magnetic resonance, electron ionization mass spectral, and inductively coupled plasma mass spectral data. SH-1 and SH-2 completely inhibited the growth of Pythium ultimum, Phytophthora capsici, Rhizoctonia solani, Saccharomyces cerevisiae, and Pseudomonas syringae pv. syringae at concentrations from 10 to 50 microg/ml. The two compounds were as effective as the commercial fungicide metalaxyl in inhibiting spore germination and hyphal growth of P. capsici. However, the in vivo control efficacies of the two antifungal compounds against P. capsici infection on pepper plants were similar to those of H(3)PO(3) and fosetyl-AI but less than that of metalaxyl.  相似文献   

16.
AIMS: This study investigated the effect of growth conditions on proteolytic activity of a Pseudomonas strain, named Pseudomonas sp. LBSA1, isolated from bulk raw milk. It was compared with three Pseudomonas chlororaphis and one Pseudomonas fluorescens strain from culture collections. METHODS AND RESULTS: Bacteriae were grown in a minimal salt medium. For all the strains, addition of 1% (v/v) skim milk to the growth medium was sufficient to induce protease production in 48-h culture. Addition of 1 mmol l(-1) calcium chloride permitted the detection of proteolytic activity of four strains in 48-h cultures but not for Pseudomonas sp. LBSA1. The five strains presented two patterns of proteolytic activity when grown in the minimal salt medium supplemented with 2% (v/v) skim milk at various temperatures for 48 h. Two electrophoretic protease patterns were also obtained from the zymogram of extracellular medium for the five strains. CONCLUSIONS: The growth conditions permitting protease production are variable and do not depend on the genus of the producing strain. SIGNIFICANCE AND IMPACT OF THE STUDY: For the first time a study on proteolytic activity of P. chlororaphis strains is reported. Among the tested criteria, zymograms of extracellular medium were the only ones that permitted distinguishing the P. chlororaphis strains from the P. fluorescens strain.  相似文献   

17.
The siderophore production of the facultative anaerobe Pseudomonas stutzeri, strain CCUG 36651, grown under both aerobic and anaerobic conditions, was investigated by liquid chromatography and mass spectrometry. The bacterial strain has been isolated at a 626-m depth at the Äspö Hard Rock Laboratory, where experiments concerning the geological disposal of nuclear waste are performed. In bacterial culture extracts, the iron in the siderophore complexes was replaced by gallium to facilitate siderophore identification by mass spectrometry. P. stutzeri was shown to produce ferrioxamine E (nocardamine) as the main siderophore together with ferrioxamine G and two cyclic ferrioxamines having molecular masses 14 and 28 atomic mass units lower than that of ferrioxamine E, suggested to be ferrioxamine D2 and ferrioxamine X1, respectively. In contrast, no siderophores were observed from anaerobically grown P. stutzeri. None of the siderophores produced by aerobically grown P. stutzeri were found in anaerobic natural water samples from the Äspö Hard Rock Laboratory.  相似文献   

18.
The recently discovered ubiquity of the plant pathogen Pseudomonas syringae in headwaters and alpine ecosystems worldwide elicits new questions about the ecology of this bacterium and subsequent consequences for disease epidemiology. Because of the major contribution of snow to river run-off during crop growth, we evaluated the population dynamics of P.syringae in snowpack and the underlying leaf litter during two years in the Southern French Alps. High population densities of P.syringae were found on alpine grasses, and leaf litter was identified as the main source of populations of P.syringae in snowpack, contributing more than the populations arriving with the snowfall. The insulating properties of snow foster survival of P.syringae throughout the winter in the 10 cm layer of snow closest to the soil. Litter and snowpack harboured populations of P.syringae that were very diverse in terms of phenotypes and genotypes. Neither substrate nor sampling site had a marked effect on the structure of P.syringae populations, and snow and litter had genotypes in common with other non-agricultural habitats and with crops. These results contribute to the mounting evidence that a highly diverse P.syringae metapopulation is disseminated throughout drainage basins between cultivated and non-cultivated zones.  相似文献   

19.
Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and cause extended environmental pollution. Moreover, an increasing number of phytopathogens develop resistance to them. Recently, we have reported on a new family of ultrashort antimicrobial lipopeptides which are composed of only four amino acids linked to fatty acids (A. Makovitzki, D. Avrahami, and Y. Shai, Proc. Natl. Acad. Sci. USA 103:15997-16002, 2006). Here, we investigated the activities in vitro and in planta and the modes of action of these short lipopeptides against plant-pathogenic bacteria and fungi. They act rapidly, at low micromolar concentrations, on the membranes of the microorganisms via a lytic mechanism. In vitro microscopic analysis revealed wide-scale damage to the microorganism's membrane, in addition to inhibition of pathogen growth. In planta potent antifungal activity was demonstrated on cucumber fruits and leaves infected with the pathogen Botrytis cinerea as well as on corn leaves infected with Cochliobolus heterostrophus. Similarly, treatment with the lipopeptides of Arabidopsis leaves infected with the bacterial leaf pathogen Pseudomonas syringae efficiently and rapidly reduced the number of bacteria. Importantly, in contrast to what occurred with many native lipopeptides, no toxicity was observed on the plant tissues. These data suggest that the ultrashort lipopeptides could serve as native-like antimicrobial agents economically feasible for use in plant protection.  相似文献   

20.
Epiphytic populations of Pseudomonas syringae and Erwinia herbicola are important sources of ice nuclei that incite frost damage in agricultural crop plants. We have cloned and characterized DNA segments carrying the genes (ice) responsible for the ice-nucleating ability of these bacteria. The ice region spanned 3.5 to 4.0 kilobases and was continuous over this region in P. syringae Cit7R1. The cloned fragments imparted ice-nucleating activity in Escherichia coli. Substantial increases in the nucleating activity of both E. coli and P. syringae were obtained by subcloning the DNA fragments on multicopy plasmid vectors. Southern blot analysis showed substantial homology between the ice regions of P. syringae and E. herbicola, although individual restriction sites within the ice regions differed between the two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号