首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
15N-ammonium sulphate equivalent to 0.5 kg N/ha was added as a tracer to lysimeters containing the organic horizons of an acid forest soil. The effect of logging debris (brash), vegetation and second rotationPicea sitchensis seedlings on the amount of the15N found in various soil, vegetation and leachate pools was followed over a period of 60 days. Transformation of15N-ammonium to nitrate occurred within 24 hours. Although total nitrate leachate losses were high, tracer-derived nitrate represented only 0.4%–4.2% of the applied15N-ammonium. The atom % excess of the KCI-extractable organic-N pool was initially lower than for the inorganic species but due to the large pool size, consistently represented 3–6% of the applied15N-ammonium. The similarity of the atom % excess of the ammonium and nitrate pools indicated an autotrophic nitrification pathway.A significant proportion of the15N-ammonium passed through the microbial biomass which contained between 16 and 48% of the15N-ammonium 2 days after addition of the15N-ammonium. This nitrogen was in a readily available form or short-term pool for the first two weeks (with no change in the overall biomass pool), after which the nitrogen appeared to become transformed into more stable compounds representing a long-term pool. Total recovery of the15N was between 68% and 99% for the different treatments. The presence of brash reduced microbial immobilisation of the15N-ammonium and total retention in the organic matter. This is suggested to be a consequence of greater nitrification and denitrificatiion rate in organic horizons beneath a brash covering due to different microclimatic conditions.  相似文献   

2.
Nitrification mediated nitrogen immobilization in soils   总被引:2,自引:0,他引:2  
Summary The influence of nitrification on the status of soil organic nitrogen is examined by applying NH 4 + -15N to the soil in the absence and the presence of a selective inhibitori.e. nitrapyrin. Parallel with nitrification, formation of organic nitrogen from the added fertilizer was followed. In the soil examined (pH 6.5, 4% organic carbon),ca. 55% of the fertilizer-N was immobilized during the 60 days incubation period, as a consequence of the nitrification process. Nitrification not only appeared to contribute to the binding of added mineral nitrogen onto soil organic matter, but also to re-immobilization of mineralised soil nitrogen.  相似文献   

3.
White clover plants were grown for 97 days under two temperature regimes (20/15°C and 8/5°C day/night temperatures) and were supplied with either small amounts (a total of 80 mg N pot–1) of ammonium (NH 4 + ) or nitrate (NO 3 ) nitrogen, or received no mineral N and relied on N2 fixation. Greatest growth and total leaf area of clover plants occurred in N2 fixing and NO 3 -fed plants grown at 20/15°C and poorest growth occurred in NH 4 + -fed plants grown at 8/5°C. Nodule mass per plant was greater at 8/5°C due to increased nodule numbers rather than increased dry weight per nodule. This compensated to some extent for the reduced N2-fixing activity per unit dry weight of nodule tissue found at the low growth temperature up to 116 d after sowing, but thereafter both activity per nodule dry weight and activity per plant were greater at the low temperature. Highest nitrate reductase activity (NRA) per g fresh weight and total activity per leaf, petiole or root occurred in NO 3 -fed plants at 8/5°C. Low growth temperature resulted in a greater partitioning of total plant NRA to the roots of NO 3 -fed plants. The results are considered in relation to the use of N fertiliser in the spring under field conditions.  相似文献   

4.
Nitrogen cycling in a northern hardwood forest: Do species matter?   总被引:23,自引:7,他引:16  
To investigate the influence of individual tree species on nitrogen (N) cycling in forests, we measured key characteristics of the N cycle in small single-species plots of five dominant tree species in the Catskill Mountains of New York State. The species studied were sugar maple (Acer saccharum), American beech (Fagus grandifolia), yellow birch (Betula alleghaniensis), eastern hemlock (Tsuga canadensis), and red oak (Quercus rubra). The five species varied markedly in N cycling characteristics. For example, hemlock plots consistently showed characteristics associated with "slow" N cycling, including low foliar and litter N, high soil C:N, low extractable N pools, low rates of potential net N mineralization and nitrification and low NO 3 amounts trapped in ion-exchange resin bags buried in the mineral soil. Sugar maple plots had the lowest soil C:N, and the highest levels of soil characteristics associated with NO 3 production and loss (nitrification, extractable NO 3 , and resin bag NO 3 ). In contrast, red oak plots had near-average net mineralization rates and soil C:N ratios, but very low values of the variables associated with NO 3 production and loss. Correlations between soil N transformations and litter concentrations of N, lignin, lignin:N ratio, or phenolic constituents were generally weak. The inverse correlation between net nitrification rate and soil C:N that has been reported in the literature was present in this data set only if red oak plots were excluded from the analysis. This study indicates that tree species can exert a strong control on N cycling in forest ecosystems that appears to be mediated through the quality of soil organic matter, but that standard measures of litter quality cannot explain the mechanism of control.  相似文献   

5.
Nitrification in Dutch heathland soils   总被引:10,自引:0,他引:10  
A survey was conducted over a range of 17 Dutch heathland locations, subdivided into 41 sites dominated by either dwarf-shrubs (Calluna vulgaris or Erica tetralix) or grass species (Deschampsia flexuosa or Molinia caerulea). Among the habitats of the dominant plant species relatively little differences in general soil properties were observed. The P status of Deschampsia sites was relatively high as well as the NO3 -N concentrations in the 0–10 cm layer (FH included) at the grass-dominated sites. At sites with a dead or degenerating dwarf-shrub vegetation, NH4 +-N concentrations reached very high levels.Net production of nitrate was observed during incubation of intact 0–10 cm soil cores (FH-layer included) in the laboratory for all sites, even though in some instances, particularly at Calluna and Erica sites, no nitrate was initially measured. Generally, a higher nitrification rate was found for the grass-dominated sites, and for Deschampsia in particular. The net production of nitrate was highly significantly correlated with net N mineralization, being a reasonable predictor of nitrification in a simple regression model (R2=0.47; P<0.001). Net nitrification was also significantly correlated with the NO3 -N initially present at the start of the growing season (R=0.65; P<0.001) and with the labile organic P content of the soil (R=0.65; P<0.001). By including initial NO3 -N and labile organic P, together with net N mineralization and pH, in a multiple regression model, net nitrate production could be predicted with a much higher precision (R2=0.75; P<0.001). Although apparent nitrification was not significantly correlated with pH, the latter contributed significantly to the multiple regression equation for the prediction of the former.The influence of the labile organic P pool may act via its positive correlation with microbial biomass, thus more or less reflecting the potential mineralization/nitrifying capacity of a particular site.  相似文献   

6.
Summary The pattern of release of ammonium and nitrate nitrogen during decomposition of glyricidia, sunflower, centrosema, calapagonium and crotolaria under aerobic and anaerobic conditions, in an alluvial soil over a period of 7 weeks was studied. Under aerobic conditions, the NH4 +–N production reached the maximum after the 4th week. Nitrate-N and total available-N increased in all cases throughout the incubation period except in sunflower. This showed a nitrification inhibitory effect and had a relatively high C/N ratio (11.0) and low total N content (2.8%). In general the increase in NH4 +–N and NO3 –N was more rapid in the early stages of incubation.Under anaerobic conditions, the production of these nutrients was considerably low. Soil organic matter mineralized faster than the added organic material which started to decompose slowly after sometime. Nitrate-N tend to decrease during incubation attributable to denitrification.  相似文献   

7.
The influence of soil nitrate availability, crop growth rate and phenology on the activity of symbiotic nitrogen fixation (SNF) during the growth cycle of pea (Pisum sativum cv. Baccara) was investigated in the field under adequate water availability, applying various levels of fertiliser N at the time of sowing. Nitrate availability in the ploughed layer of the soil was shown to inhibit both SNF initiation and activity. Contribution of SNF to total nitrogen uptake (%Ndfa) over the growth cycle could be predicted as a linear function of mineral N content of the ploughed layer at sowing. Nitrate inhibition of SNF was absolute when mineral N at sowing was over 380 kg N ha–1. Symbiotic nitrogen fixation was not initiated unless nitrate availability in the soil dropped below 56 kg N ha–1. However, SNF could no longer be initiated after the beginning of seed filling (BSF). Other linear relationships were established between instantaneous %Ndfa and instantaneous nitrate availability in the ploughed layer of the soil until BSF. Instantaneous %Ndfa decreased linearly with soil nitrate availability and was nil above 48 and 34 kg N ha–1 for the vegetative and reproductive stages, respectively, levels after which no SNF occurred. Moreover, SNF rate was shown to be closely related to the crop growth rate until BSF. The ratio of SNF rate over crop growth rate decreased linearly with thermal time. Maximum SNF rate was about 40 mg N m–2 degree-day–1, equivalent to 7 kg N ha–1, regardless of the N treatment. From BSF to the end of the growth cycle, the high N requirements of the crop were supported by both SNF and nitrate root absorption but, of the two sources, nitrate root absorption seemed to be less affected by the presence of reproductive organs. However, since soil nitrate availability was low at the end of the growth cycle, SNF was the main source of nitrogen acquisition. The onset of SNF decrease at the end of the growth cycle seemed to be first due to nodule age and then associated to the slowing of the crop growth rate.  相似文献   

8.
Globally, land-use change is occurring rapidly, and impacts on biogeochemical cycling may be influenced by previous land uses. We examined differences in soil C and N cycling during long-term laboratory incubations for the following land-use sequence: indigenous forest (soil age = 1800 yr); 70-year-old pasture planted after forest clearance; 22-year-old pine (Pinus radiata) planted into pasture. No N fertilizer had been applied but the pasture contained N-fixing legumes. The sites were adjacent and received 3–6 kg ha–1 yr–1volcanic N in rain; NO3 -N leaching losses to streamwater were 5–21 kg ha–1 yr–1, and followed the order forest < pasture = pine. Soil C concentration in 0–10 cm mineral soil followed the order: pasture > pine = forest, and total N: pasture > pine > forest. Nitrogen mineralization followed the order: pasture > pine > forest for mineral soil, and was weakly related to C mineralization. Based on radiocarbon data, the indigenous forest 0–10 cm soil contained more pre-bomb C than the other soils, partly as a result of microbial processing of recent C in the surface litter layer. Heterotrophic activity appeared to be somewhat N limited in the indigenous forest soil, and gross nitrification was delayed. In contrast, the pasture soil was rich in labile N arising from N fixation by clover, and net nitrification occurred readily. Gross N cycling rates in the pine mineral soil (per unit N) were similar to those under pasture, reflecting the legacy of N inputs by the previous pasture. Change in land use from indigenous forest to pasture and pine resulted in increased gross nitrification, net nitrification and thence leaching of NO3 -N.  相似文献   

9.
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in 15N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (⩽372 nM NO2 d−1) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ∼9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO3 was re-oxidized back to NO3 via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways.  相似文献   

10.
Turnover and distribution of root exudates of Zea mays   总被引:1,自引:0,他引:1  
Decomposition and distribution of root exudates of Zea mays L. were studied by means of 14CO2 pulse labeling of shoots on a loamy Haplic Luvisol. Plants were grown in two-compartment pots, where the lower part was separated from the roots by monofilament gauze. Root hairs, but not roots, penetrated through the gauze into the lower part of the soil. The root-free soil in the lower compartment was either sterilized with cycloheximide and streptomycin or remained non-sterile. In order to investigate exudate distribution, 3 days after the 14C labeling, the lower soil part was frozen and sliced into 15, one-mm thick layers using a microtome. Cumulative 14CO2 efflux from the soil during the first 3 days after 14C pulse labeling did not change during plant growth and amounted to about 13–20% of the total recovered 14C (41–55% of the carbon translocated below ground). Nighttime rate of total CO2 efflux was 1.5 times lower than during daytime because of tight coupling of exudation with photosynthesis intensity. The average CO2 efflux from the soil with Zea mays was about 74 g C g–1 day–1 (22 g C m–2 day–1), although, the contribution of plant roots to the total CO2 efflux from the soil was about 78%, and only 22% was respired from the soil organic matter. Zea mays transferred about 4 g m–2 of carbon under ground during 26 days of growth. Three zones of exudate concentrations were identified from the distribution of the 14C-activity in rhizosphere profiles after two labeling periods: (1) 1–2 (3) mm (maximal concentration of exudates) 2) 3–5 mm (presence of exudates is caused by their diffusion from the zone 1); (3) 6–10 mm (very insignificant amounts of exudates diffused from the previous zones). At the distance further than 10 mm no exudates were found. The calculated coefficient of exudate diffusion in the soil was 1.9 × 10–7 cm2 s–1.  相似文献   

11.
Recous  S.  Fresneau  C.  Faurie  G.  Mary  B. 《Plant and Soil》1988,112(2):205-214
Labelled urea or ammonium nitrate was applied to winter wheat growing on a loamy soil in Northern France. Two applications of fertilizer were given: 50 kg N ha–1 at tillering (early March) and 110 kg N ha–1 at the beginning of stem elongation (mid-April). The kinetics of urea hydrolysis, nitrification of ammonium and the disappearance of inorganic nitrogen were followed at frequent intervals. Inorganic nitrogen soon disappeared, mainly immobilized by soil microflora and absorbed by the crop. Net immobilization of fertilizer N occured at a very similar rate for urea and ammonium nitrate. Maximum immobilization (16 kg N ha1) was found at harvest for the first dressing and at anthesis for the second dressing (23 kg N ha1). During the nitrification period, the labelled ammonium pool was immobilized two to three times faster than the labelled nitrate pool. No significant net15N remineralization was found during the growth cycle.The actual denitrification and volatilization losses were probably more important than indicated from calculations made by extrapolation of fluxes measured over short intervals. However microbial immobilization was the most important of the processes which compete with plant uptake for nitrogen.  相似文献   

12.
V. K. Rajasekhar  H. Mohr 《Planta》1986,169(4):594-599
Nitrate-induced and phytochrome-modulated appearance of nitrate reductase (NR; EC 1.6.6.1) and nitrite reductase (NIR; EC 1.7.7.1) in the cotyledons of the mustard (Sinapis alba L.) seedling is strongly affected by externally supplied ammonium (NH 4 + ). In short-term experiments between 60 and 78 h after sowing it was found that in darkness NH 4 + —simultaneously given with NO 3 - —strongly inhibits appearance of nitrate-inducible NR and NIR whereas in continuous far-red light—which operates exclusively via phytochrome without significant chlorophyll formation —NH 4 + (simultaneously given with NO 3 - ) strongly stimulates appearance of NR. The NIR levels are not affected. This indicates that NR and NIR levels are regulated differently. In the absence of external NO 3 - appearance of NR is induced by NH4 in darkness as well as in continuous far-red light whereas NIR levels are not affected. On the other hand, in the absence of external NO 3 - , exogenous NH 4 + strongly inhibits growth of the mustard seedling in darkness as well as in continuous far-red light. This effect can be abolished by simultaneously supplying NO 3 - . The adverse effect of NH 4 + on growth (NH 4 + -toxicity) cannot be attributed to pH-changes in the medium since it was shown that neither the growth responses nor the changes of the enzyme levels are related to pH changes in the medium. Non-specific osmotic effects are not involved either.Abbreviations c continuous - D darkness - FR far-red light - NIR nitrite reductase (EC 1.7.7.1) - NR nitrate reductase (EC 1.6.6.1)  相似文献   

13.
N2O gas is involved in global warming and ozone depletion. The major sources of N2O are soil microbial processes. Anthropogenic inputs into the nitrogen cycle have exacerbated these microbial processes, including nitrification. Ammonia-oxidizing archaea (AOA) are major members of the pool of soil ammonia-oxidizing microorganisms. This study investigated the isotopic signatures of N2O produced by soil AOA and associated N2O production processes. All five AOA strains (I.1a, I.1a-associated and I.1b clades of Thaumarchaeota) from soil produced N2O and their yields were comparable to those of ammonia-oxidizing bacteria (AOB). The levels of site preference (SP), δ15Nbulk and δ18O -N2O of soil AOA strains were 13–30%, −13 to −35% and 22–36%, respectively, and strains MY1–3 and other soil AOA strains had distinct isotopic signatures. A 15N-NH4+-labeling experiment indicated that N2O originated from two different production pathways (that is, ammonia oxidation and nitrifier denitrification), which suggests that the isotopic signatures of N2O from AOA may be attributable to the relative contributions of these two processes. The highest N2O production yield and lowest site preference of acidophilic strain CS may be related to enhanced nitrifier denitrification for detoxifying nitrite. Previously, it was not possible to detect N2O from soil AOA because of similarities between its isotopic signatures and those from AOB. Given the predominance of AOA over AOB in most soils, a significant proportion of the total N2O emissions from soil nitrification may be attributable to AOA.  相似文献   

14.
Rates of N uptake by spring wheat as ammonium and as nitrate, and rates of nitrification, gross N immobilization and gross N mineralization were measured in a pot experiment during 84 days of growth in a clay soil. Soil treatments included an unfertilized control and addition of 15NH4NO3 or NH4 15NO3 in the absence and presence of N-serve 24E. Incorporation of ammonium into the soil organic N pool was considerably higher in the presence compared to the absence of nitrapyrin, but the processes contributing to this effect could not be positively identified. Both dry matter and grain yield as well as N uptake by wheat were enhanced in the presence of the inhibitor in N fertilized soil, despite the increased immobilization of N. On the other hand, inhibitor application had a detrimental effect on yield and N uptake by wheat in unfertilized soil. Both ammonium and nitrate forms of inorganic N were absorbed by wheat, but nitrate uptake was dominant in the absence of the inhibitor. The uptake of N as ammonium was higher and the uptake of N as nitrate was less, both in absolute and proportional terms, in the presence compared to the absence of inhibitor. In addition, the proportion of N taken up as ammonium was higher than the proportion of N as ammonium in the available N pool up to day 56 in the inhibitor treatment, which indicated a preference for ammonium uptake by wheat. Evidence was obtained which suggested that several factors may have contributed to the positive response of wheat to inhibitor application in N fertilized soil, including reduced N losses, higher gross N mineralization and a physiological response due to the proportional increase in uptake of inorganic N as ammonium.  相似文献   

15.
Summary Seasonal and diurnal variations in sediment-water fluxes of O2, NO 3 , and NH 4 + as well as rates of nitrification, denitrification, and nitrate ammonification were determined in two different coastal lagoons of southern France: The seagrass (Zostera noltii) dominated tidal Bassin d'Arcachon and the dystrophic Etang du Prévost. Overall, denitrification rates in both Bassin d'Arcachon (<0.4 mmol m–2 d–1) and Etang du Prévost (<1 mmol m–2 d–1) were low. This was mainly caused by a combination of low NO 3 concentrations in the water column and a low nitrification activity within the sediment. In both Bassin d'Arcachon and Etang du Prévost, rates of nitrate ammonification were quantitatively as important as denitrification.Denitrification played a minor role as a nitrogen sink in both systems. In the tidal influenced Bassin d'Arcachon, Z. noltii was quantitatively more important than denitrification as a nitrogen sink due to the high assimilation rates of the plants. Throughout the year, Z. noltii stabilized the mudflats of the bay by its well- developed root matrix and controlled the nitrogen cycle due to its high uptake rates. In contrast, the lack of rooted macrophytes, and dominance of floating macroalgae, made nitrogen cycling in Etang du Prévost more unstable and unpredictable. Inhibition of nitrification and denitrification during the dystrophic crisis in the summer time increased the inorganic nitrogen flux from the sediment to the water column and thus increased the degree of benthic-pelagic coupling within this bay. During winter, however, benthic microalgae colonizing the sediment surface changed the sediment in the lagoon from being a nitrogen source to the over lying water to being a sink due to their high assimilation rates. It is likely, however, that this assimilated nitrogen is liberated to the water column at the onset of summer thereby fueling the extensive growth of the floating macroalgae, Ulva sp. The combination of a high nitrogen coupling between sediment and water column, little water exchange and low denitrification rates resulted in an unstable system with fast growing algal species such as phytoplankton and floating algae.  相似文献   

16.
Within a long-term research project studying the biogeochemical budget of an oak-beech forest ecosystem in the eastern part of the Netherlands, the nitrogen transformations and solute fluxes were determined in order to trace the fate of atmospherically deposited NH4 + and to determine the contribution of nitrogen transformations to soil acidification.The oak-beech forest studied received an annual input of nitrogen via throughfall and stemflow of 45 kg N ha–1 yr–1, mainly as NH4 +, whereas 8 kg N ha–1 yr–1 was taken up by the canopy. Due to the specific hydrological regime resulting in periodically occurring high groundwater levels, denitrification was found to be the dominant output flux (35 kg N ha–1 yr–1). N20 emmission rate measurements indicated that 57% of this gaseous nitrogen loss (20 kg N ha–1 yr–1) was as N2O. The forest lost an annual amount of 11 kg N ha–1 yr–1 via streamwater output, mainly as N03 .Despite the acid conditions, high nitrification rates were measured. Nitrification occurred mainly in the litter layer and in the organic rich part of the mineral soil and was found to be closely correlated with soil temperature. The large amount of NH4 + deposited on the forest floor via atmospheric deposition and produced by mineralization was to a large extent nitrified in the litter layer. Almost no NH4 + reached the subsurface soil horizons. The N03 was retained, taken up or transformed mainly in the mineral soil. A small amount of N03 (9 kg N ha–1 yr–1) was removed from the system in streamwater output. A relatively small amount of nitrogen was measured in the soil water as Dissolved Organic Nitrogen.On the basis of these data the proton budget of the system was calculated using two different approaches. In both cases net proton production rates were high in the vegetation and in the litter layer of the forest ecosystem. Nitrogen transformations induced a net proton production rate of 2.4 kmol ha–1 yr–1 in the soil compartment.  相似文献   

17.
The effects of dairy cow urine and defoliation severity on biological nitrogen fixation and pasture production of a mixed ryegrass-white clover sward were investigated over 12 months using mowing for defoliation. A single application of urine (equivalent to 746 kg N ha–1), was applied in late spring to plots immediately after light and moderately-severe defoliation (35 mm and 85 mm cutting heights, respectively) treatments were imposed. Estimates of percentage clover N derived from N2 fixation (%Ndfa) were compared by labelling the soil with 15N either by applying a low rate of 15N-labelled ammonium sulphate, immobilising 15N in soil organic matter, adding 15N to applied urine, or by utilising the small differences in natural abundance of 15N in soil. Urine application increased annual grass production by 85%, but had little effect on annual clover production. However, urine caused a marked decline in %Ndfa (using an average of all 15N methods) from 84% to a low of 22% by 108 days, with recovery to control levels taking almost a year. As a result, total N fixed (in above ground clover herbage) was reduced from 232 to 145 kg N ha–1 yr–1. Moderately–severe defoliation had no immediate effect on N2 fixation, but after 108 days the %Ndfa was consistently higher than light defoliation during summer and autumn, and increased by up to 18%, coinciding with an increase in growth of weeds and summer-grass species. Annual N2 fixation was 218 kg N ha–1 yr–1 under moderately-severe defoliation compared to 160 kg N ha–1 yr–1 under light defoliation. Estimates of %Ndfa were generally similar when 15N-labelled or immobilised 15N were used to label soil regardless of urine and defoliation severity. The natural abundance technique gave highly variable estimates of %Ndfa (–56 to 24%) during the first 23 days after urine application but, thereafter, estimates of %Ndfa were similar to those using 15N-labelling methods. In contrast, in urine treated plots the use of 15N-labelled urine gave estimates of %Ndfa that were 20–30% below values calculated using conventional 15N-labelling during the first 161 days. These differences were probably due to differences in the rooting depth between ryegrass and white clover in conjunction with treatment differences in 15N distribution with depth. This study shows that urine has a prolonged effect on reducing N2 fixation in pasture. In addition, defoliation severity is a potential pasture management tool for strategically enhancing N2 fixation.  相似文献   

18.
Soil carbon distribution with depth, stable carbon isotope ratios in soil organic matter and their changes as a consequence of the presence of legume were studied in three 12-year-old tropical pastures (grass alone —Brachiaria decumbens (C4), legume alone —Pueraria phaseoloides (C3) and grass + legume) on an Oxisol in Colombia. The objective of this study was to determine the changes that occurred in the13C isotope composition of soil from a grass + legume pasture that was established by cultivation of a native savanna dominated by C4 vegetation. The13C natural abundance technique was used to estimate the amount of soil organic carbon originating from the legume. Up to 29% of the organic carbon in soil of the grass + legume pasture was estimated to be derived from legume residues in the top 0–2-cm soil depth, which decreased to 7% at 8–10 cm depth. Improvements in soil fertility resulting from the soil organic carbon originated from legume residues were measured as increased potential rates of nitrogen mineralization and increased yields of rice in a subsequent crop after the grass + legume pasture compared with the grass-only pasture. We conclude that the13C natural abundance technique may help to predict the improvements in soil quality in terms of fertility resulting from the presence of a forage legume (C3) in a predominantly C4 grass pasture.  相似文献   

19.
M. R. Davis 《Plant and Soil》1990,126(2):237-246
Concentrations of ions were measured in soil solutions from beech (Nothofagus) forests in remote areas of New Zealand and in solutions from beech (Fagus sylvatica) and Norway spruce (Picea abies) forests in North-East Bavaria, West Germany, to compare the chemistry of soil solutions which are unaffected by acid deposition (New Zealand) with those that are affected (West Germany). In New Zealand, soil solution SO4 2– concentrations ranged between <2 and 58 mol L–1, and NO3 concentrations ranged between <1 and 3 mol L–1. In West Germany, SO4 2– concentrations ranged between 80 and 700 mol L–1, and NO3 concentrations at three of six sites ranged between 39 and 3750 mol L–1, but was not detected at the remaining three sites. At all sites in New Zealand, and at sites where the soil base status was moderately high in West Germany, pH levels increased, and total Al (Alt) and inorganic monomeric Al (Ali) levels decreased rapidly with increasing soil depth. In contrast, at sites on soils of low base status in West Germany, pH levels increased only slightly, and Al levels did not decline with increasing soil depth.Under a high-elevation Norway spruce stand showing severe Mg deficiency and dieback symptoms in West Germany, soil solution Mg2+ levels ranged between 20 and 60 mol L, and were only half those under a healthy stand. Alt and Ali levels were substantially higher the healthy stand than under the unhealthy stand, indicating that Al toxicity was not the main cause of spruce decline.  相似文献   

20.
Two experiments have been conducted, one in semi-solid Hoagland nutrient medium and the other in shallow pots containing saline soil. N2-fixing bacteria belonging toAzospirillum, Azotobacter, Klebsiella andEnterobacter were inoculated separately on kallar grass grown in semi-solid nutrient medium. It was shown that inoculation affects root proliferation and also results in15N isotopic dilution. The % Ndfa ranged from 47–70 whereas no significant effect on the total nitrogen uptake was observed. The bacterial colonization of the root surface and the presence of enteric bacteria inside the root hair cells is reported. In a soil pot experiment, non-N2-fixingPolypogon monspeliensis was used as a reference plant (control). A treatment receiving a high rate of nitrogen was also used as a non-N2-fixing control.15N-labelled ammonium sulphate at 20 kg N ha–1 and 90 kg N ha–1 was used. The % Ndfa in the aerial parts of kallar grass was 12–15 whenP. monspeliensis was used as reference plant whereas 37–39% Ndfa was estimated when the treatment receiving high nitrogen fertilizer was used as a non-N2-fixing control. These investigations revealed some problems of methodology which are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号