首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fast atom bombardment mass spectral data are presented for the polypeptides insulin, oxidized insulin A-chain, carboxymethylated insulin B-chain, and glucagon. The doubly-charged molecular ion of the intact insulin molecule produced with fast atom bombardment with xenon atoms is observed at a reduced accelerating voltage (4 kV).  相似文献   

2.
Insulin signaling at target tissues is essential for growth and development and for normal homeostasis of glucose, fat, and protein metabolism. Control over this process is therefore tightly regulated. It can be achieved by a negative feedback control mechanism whereby downstream components inhibit upstream elements along the insulin-signaling pathway (autoregulation) or by signals from apparently unrelated pathways that inhibit insulin signaling thus leading to insulin resistance. Phosphorylation of insulin receptor substrate (IRS) proteins on serine residues has emerged as a key step in these control processes under both physiological and pathological conditions. The list of IRS kinases implicated in the development of insulin resistance is growing rapidly, concomitant with the list of potential Ser/Thr phosphorylation sites in IRS proteins. Here, we review a range of conditions that activate IRS kinases to phosphorylate IRS proteins on "hot spot" domains. The flexibility vs. specificity features of this reaction is discussed and its characteristic as an "array" phosphorylation is suggested. Finally, its implications on insulin signaling, insulin resistance and type 2 diabetes, an emerging epidemic of the 21st century are outlined.  相似文献   

3.
Type 2 diabetes occurs when pancreatic beta-cells become unable to compensate for the underlying insulin resistance. Insulin secretion requires beta-cell insulin stores to be replenished by insulin biosynthesis, which is mainly regulated at the translational level. Such translational regulation often involves the 5'-untranslated region. Recently, we identified a human insulin splice-variant (SPV) altering only the 5'-untranslated region and conferring increased translation efficiency. We now describe a mouse SPV (mSPV) that is found in the cytoplasm and exhibits increased translation efficiency resulting in more normal (prepro)insulin protein per RNA. The RNA stability of mSPV is not increased, but the predicted secondary RNA structure is altered, which may facilitate translation. To determine the role of mSPV in insulin resistance and diabetes, mSPV expression was measured by quantitative real-time RT-PCR in islets from three diabetic and/or insulin-resistant, obese and nonobese, mouse models (BTBRob/ob, C57BL/6ob/ob, and C57BL/6azip). Interestingly, mSPV expression was significantly higher in all diabetic/insulin-resistant mice compared with wild-type littermates and was dramatically induced in primary mouse islets incubated at high glucose. This raises the possibility that the mSPV may represent a compensatory beta-cell mechanism to enhance insulin biosynthesis when insulin requirements are elevated by hyperglycemia/insulin resistance.  相似文献   

4.
In health insulin is secreted in discrete insulin secretory bursts from pancreatic beta-cells, collectively referred to as beta-cell mass. We sought to establish the relationship between beta-cell mass, insulin secretory-burst mass, and hepatic insulin clearance over a range of age-related insulin sensitivity in adult rats. To address this, we used a novel rat model with chronically implanted portal vein catheters in which we recently established the parameters to permit deconvolution of portal vein insulin concentration profiles to measure insulin secretion and resolve its pulsatile components. In the present study, we examined total and pulsatile insulin secretion, insulin sensitivity, hepatic insulin clearance, and beta-cell mass in 35 rats aged 2-12 mo. With aging, insulin sensitivity declined, but euglycemia was sustained by an adaptive increase in fasting and glucose-stimulated insulin secretion through the mechanism of a selective augmentation of insulin pulse mass. The latter was attributable to a closely related increase in beta-cell mass (r=0.8, P<0.001). Hepatic insulin clearance increased with increasing portal vein insulin pulse amplitude, damping the delivery of insulin in the systemic circulation. In consequence, the curvilinear relationship previously reported between insulin secretion and insulin sensitivity was extended to both insulin pulse mass and beta-cell mass vs. insulin sensitivity. These data support a central role of adaptive changes in beta-cell mass to permit appropriate insulin secretion in the setting of decreasing insulin sensitivity in the aging animal. They emphasize the cooperative role of pancreatic beta-cells and the liver in regulating the secretion and delivery of insulin to the systemic circulation.  相似文献   

5.
Obesity is often associated with diabetes and insulin resistance. This review summarizes evidence obtained in our lab on the role of the serine phosphorylation of the insulin receptor substrate 1 in the down regulation of insulin signalling. The role of the ERK1 isoform in the development of adipose tissue and insulin sensitivity is also presented.  相似文献   

6.
7.
8.
PURPOSE OF REVIEW: Both insulin resistance and dyslipidaemia are determined by genetic and environmental factors. Depending on their expression and their function, gene variants (mutations, polymorphisms) can primarily regulate either insulin action or dyslipidaemia. The purpose of this review is to give some examples from recent studies on gene variants regulating primarily insulin signalling or lipoprotein metabolism. RECENT FINDINGS: Common polymorphisms in the PC-1, insulin receptor substrate 1 and 2, and PPAR-gamma 2 genes have been linked to insulin resistance and dyslipidaemia, although the results have not been consistent. However, the Pro12Pro genotype of the PPAR-gamma 2 gene has been consistently associated with insulin resistance and the risk of type 2 diabetes. Promoter polymorphisms in the hepatic lipase gene, the 54Thr allele of the fatty acid binding protein 2 gene, and genes regulating LDL particle size have been associated with lipid metabolism, but on the other hand their association with insulin resistance is not consistent. SUMMARY: Although results have not always been consistent, gene variants affecting primary insulin action or dyslipidaemia, and particularly their interaction with the environment, are important modulators of glucose and lipoprotein metabolism.  相似文献   

9.
Oxidative stress has been implicated as a contributor to both the onset and the progression of diabetes and its associated complications. Some of the consequences of an oxidative environment are the development of insulin resistance, β-cell dysfunction, impaired glucose tolerance, and mitochondrial dysfunction, which can lead ultimately to the diabetic disease state. Experimental and clinical data suggest an inverse association between insulin sensitivity and ROS levels. Oxidative stress can arise from a number of different sources, whether disease state or lifestyle, including episodes of ketosis, sleep restriction, and excessive nutrient intake. Oxidative stress activates a series of stress pathways involving a family of serine/threonine kinases, which in turn have a negative effect on insulin signaling. More experimental evidence is needed to pinpoint the mechanisms contributing to insulin resistance in both type 1 diabetics and nondiabetic individuals. Oxidative stress can be reduced by controlling hyperglycemia and calorie intake. Overall, this review outlines various mechanisms that lead to the development of oxidative stress. Intervention and therapy that alter or disrupt these mechanisms may serve to reduce the risk of insulin resistance and the development of diabetes.  相似文献   

10.
11.
12.
Rise in rectal temperature (Tre) and survival time was determined on exposure to 38°C in adult normoglycemic and diabetic (streptozotocin treated) rats and 1 h following glucose feeding or insulin administration or both, and in young rats with and without glucose feeding or insulin treatment. The heat tolerance of adult animals treated with streptozotocin and insulin plus glucose and of adult and young animals treated with glucose feeding or insulin was less than that of their respective normoglycemic controls. The rectal temperature on exposure to heat in the treated animals was significantly higher than that of controls in the adult, but not in young rats. Exposure to heat of the normoglycemic and glucose-fed animals resulted in a rise in blood glucose in the adults and a fall in the young. The already raised blood glucose level in the streptozotocin-treated animals rose further on exposure to heat. The rate of recovery of the blood glucose was not significantly altered by exposure of the animals to heat 60 min after administration of insulin or insulin plus glucose.  相似文献   

13.
In vivo studies have demonstrated that the liver is the main site of insulin resistance in hyperthyroidism. To further investigate the effect of thyroid hormone in the liver, we have incubated primary cultures of rat hepatocytes in the presence and absence of triiodothyronine (T3) 1 ng/ml and 5 ng/ml for 20 hr. Without affecting basal activity, T3 5 ng/ml decreased insulin-stimulated (1 x 10(-7) M) lipid synthesis but not insulin-stimulated alpha-aminoisobutyric acid uptake. These changes occur in the absence of any abnormalities in 125I-insulin binding, degradation, internalization or insulin receptors structure as determined by affinity-labeling methods. However, basal insulin receptor kinase activity using Glu4: Tyrl as phospho-acceptor was decreased by T3 without altering its insulin responsiveness. These results demonstrate the heterogeneity of T3's effects at the postinsulin binding level in the liver.  相似文献   

14.
Insulin receptor substrates (IRS) mediate biological actions of insulin, growth factors, and cytokines. All four mammalian IRS proteins contain pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains at their N termini. However, the molecules diverge in their C-terminal sequences. IRS3 is considerably shorter than IRS1, IRS2, and IRS4, and is predicted to interact with a distinct group of downstream signaling molecules. In the present study, we investigated interactions of IRS3 with various signaling molecules. The PTB domain of mIRS3 is necessary and sufficient for binding to the juxtamembrane NPXpY motif of the insulin receptor in the yeast two-hybrid system. This interaction is stronger if the PH domain or the C-terminal phosphorylation domain is retained in the construct. As determined in a modified yeast two-hybrid system, mIRS3 bound strongly to the p85 subunit of phosphatidylinositol 3-kinase. Although high affinity interaction required the presence of at least two of the four YXXM motifs in mIRS3, there was not a requirement for specific YXXM motifs. mIRS3 also bound to SHP2, Grb2, Nck, and Shc, but less strongly than to p85. Studies in COS-7 cells demonstrated that deletion of either the PH or the PTB domain abolished insulin-stimulated phosphorylation of mIRS3. Insulin stimulation promoted the association of mIRS3 with p85, SHP2, Nck, and Shc. Despite weak association between mIRS3 and Grb2, this interaction was not increased by insulin, and may not be mediated by the SH2 domain of Grb2. Thus, in contrast to other IRS proteins, mIRS3 appears to have greater specificity for activation of the phosphatidylinositol 3-kinase pathway rather than the Grb2/Ras pathway.  相似文献   

15.
16.
Fall in rectal temperature (Tre) and survival time was determined on exposure to–20°C in adult normoglycemic and diabetic (streptozotocin treated) rats and 1 h following glucose feeding or insulin administration or both and on exposure to–10°C in young rats with and without glucose feeding. The susceptibility to frostbite was determined by exposure of the limbs to freezing mixture of–19°C or–23°C. The rate of fall of Tre was less and the survival time more in glucose and insulin plus glucose treated animals. On the other hand, the rate of fall of Tre was more and the survival time less, in dia betic and insulin-treated animals. The rectal temperature at which the animal died was the same in the control and the treated animals. The susceptibility to frost bite was more in insulin treated and diabetic animals and less in glucose-fed animals. Exposure to cold during the second h after glucose or glucose plus insulin injection did not alter the blood glucose from that obtained at room temperature. In insulin-treated animals the rate of rise of blood glucose during the second h was much higher at low temperature than at room temperature. The rise in blood glucose in diabetic animals was much higher than in normoglycemic animals exposed to cold.  相似文献   

17.
Isolated pancreatic islets exposed to 100 mM acetazolamide (AZM) and low glucose concentration exhibited increased insulin release, whereas those subjected to AZM and high glucose concentration exhibited decreased secretion of insulin. A slight transient hyperglycaemia was found 24 h after administration of 1.5 g/kg b.wt. of AZM to fed mice, whereas no such response was seen in starved mice. The serum insulin concentration was increased in the 24 h after AZM injection. Pretreatment with AZM caused decreased glucose tolerance and protection against alloxan toxicity. Inhibited carbonic anhydrase activity and ionic alterations might have played a role in the development of these effects of AZM in mice.  相似文献   

18.
Insulin can influence cancer risk through its effect on cell proliferation, differentiation and apoptosis. Although hyperinsulinemia is considered as a risk factor in the pathogenesis of various cancers, the data related to insulin sensitivity, insulin secretion and lipid profile is lacking in non-diabetic prostate carcinoma cases. The present study was undertaken to evaluate lipid profile parameters and insulin sensitivity and secretion using surrogate markers derived from the measurements of fasting glucose and fasting insulin. The study group comprises 27 prostate carcinoma cases and 27 controls having similar age. Fasting serum insulin, glucose and lipid profile parameters were estimated in both the groups. Insulin sensitivity was assessed by Homeostasis model assessment of insulin sensitivity and Quantitative insulin sensitivity check index. Insulin secretion was assessed by insulinogenic index. Fasting serum insulin, insulinogenic index and LDL-cholesterol were significantly increased (p < 0.05) and HOMA-IS, QUICKI and HDL-cholesterol was significantly decreased (p < 0.05) in carcinoma cases compared to controls. PSA level was significantly associated with fasting insulin (R2 = 0.150, beta = 0.387, p = 0.046) and QUICKI (R2 = 0.173, beta = -0.416, p = 0.031). Fasting insulin was significantly correlated with triglyceride (r = 0.404, p = 0.037) and HDL-cholesterol (r = -0.474, p = 0.013). The present study concludes that hyperinsulinemia associated with reduced insulin sensitivity may play a role in the pathogenesis of prostate carcinoma.  相似文献   

19.
Thiazolidinediones, dyslipidaemia and insulin resistance syndrome   总被引:1,自引:0,他引:1  
Insulin resistance is known to unite several metabolic abnormalities. The associated dyslipidaemia appears to play a central role in this atherogenic syndrome. Thiazolidinediones, which are recently introduced insulin sensitizing agents, have been shown to be effective not only in reducing elevated glucose levels, but also in improving the other metabolic abnormalities that are associated with insulin resistance. The present review focuses on these potential effects of thiazolidinediones.  相似文献   

20.
Conclusions drawn from the pancreatic (or islet) clamp technique (suppression of endogenous insulin, glucagon, and growth hormone secretion with somatostatin and replacement of basal hormone levels by intravenous infusion) are critically dependent on the biological appropriateness of the selected doses of the replaced hormones. To assess the appropriateness of representative doses we infused saline alone, insulin (initially 0.20 mU.kg(-1).min(-1)) alone, glucagon (1.0 ng.kg(-1).min(-1)) alone, and growth hormone (3.0 ng.kg(-1).min(-1)) alone intravenously for 4 h in 13 healthy individuals. That dose of insulin raised plasma insulin concentrations approximately threefold, suppressed glucose production, and drove plasma glucose concentrations down to subphysiological levels (65 +/- 3 mg/dl, P < 0.0001 vs. saline), resulting in nearly complete suppression of insulin secretion (P < 0.0001) and stimulation of glucagon (P = 0.0059) and epinephrine (P = 0.0009) secretion. An insulin dose of 0.15 mU.kg(-1).min(-1) caused similar effects, but a dose of 0.10 mU.kg(-1).min(-1) did not. The glucagon and growth hormone infusions did not alter plasma glucose levels or those of glucoregulatory factors. Thus, insulin "replacement" doses of 0.20 and even 0.15 mU.kg(-1).min(-1) are excessive, and conclusions drawn from the pancreatic clamp technique using such doses may need to be reassessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号