首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For soil carbon to be effectively sequestered beyond a timescale of a few decades, this carbon must become incorporated into passive reservoirs or greater depths, yet the actual mechanisms by which this occurs is at best poorly known. In this study, we quantified the magnitude of dissolved organic carbon (DOC) leaching and subsequent retention in soils of a coniferous forest and a coastal prairie ecosystem. Despite small annual losses of DOC relative to respiratory losses, DOC leaching plays a significant role in transporting C from surface horizons and stabilizing it within the mineral soil. We found that DOC movement into the mineral soil constitutes 22% of the annual C inputs below 40 cm in a coniferous forest, whereas only 2% of the C inputs below 20 cm in a prairie soil could be accounted for by this process. In line with these C input estimates, we calculated advective transport velocities of 1.05 and 0.45 mm year?1 for the forested and prairie sites, respectively. Radiocarbon measurements of field-collected DOC interpreted with a basic transport-turnover model indicated that DOC which was transported and subsequently absorbed had a mean residence time of 90–150 years. Given these residence times, the process of DOC movement and retention is responsible for 20% of the total mineral soil C stock to 1 m in the forest soil and 9% in the prairie soil. These results provide quantitative data confirming differences in C cycles in forests and grasslands, and suggest the need for incorporating a better mechanistic understanding of soil C transport, storage and turnover processes into both local and regional C cycle models.  相似文献   

2.
We established a long-term field study in an old growth coniferous forest at the H.J. Andrews Experimental Forest, OR, USA, to address how detrital quality and quantity control soil organic matter accumulation and stabilization. The Detritus Input and Removal Treatments (DIRT) plots consist of treatments that double leaf litter, double woody debris inputs, exclude litter inputs, or remove root inputs via trenching. We measured changes in soil solution chemistry with depth, and conducted long-term incubations of bulk soils from different treatments in order to elucidate effects of detrital inputs on the relative amounts and lability of different soil C pools. In the field, the addition of woody debris increased dissolved organic carbon (DOC) concentrations in O-horizon leachate and at 30 cm, but not at 100 cm, compared to control plots, suggesting increased rates of DOC retention with added woody debris. DOC concentrations decreased through the soil profile in all plots to a greater degree than did dissolved organic nitrogen (DON), most likely due to preferential sorption of high C:N hydrophobic dissolved organic matter (DOM) in upper horizons; percent hydrophobic DOM decreased significantly with depth, and hydrophilic DOM had a much lower and less variable C:N ratio. Although laboratory extracts of different litter types showed differences in DOM chemistry, percent hydrophobic DOM did not differ among soil solutions from different detrital treatments in the field, suggesting that microbial processing of DOM leachate in the field consumed easily degradable components, thus equalizing leachate chemistry among treatments. Total dissolved N leaching from plots with intact roots was very low (0.17 g m−2 year−1), slightly less than measured deposition to this very unpolluted forest (~s 0.2 g m−2 year−1). Total dissolved N losses showed significant increases in the two treatments without roots whereas concentrations of DOC decreased. In these plots, N losses were less than half of estimated plant uptake, suggesting that other mechanisms, such as increased microbial immobilization of N, accounted for retention of N in deep soils. In long-term laboratory incubations, soils from plots that had both above- and below-ground litter inputs excluded for 5 years showed a trend towards lower DOC loss rates, but not lower respiration rates. Soils from plots with added wood had similar respiration and DOC loss rates as control soils, suggesting that the additional DOC sorption observed in the field in these soils was stabilized in the soil and not readily lost upon incubation.  相似文献   

3.
Khomutova  T. E.  Shirshova  L. T.  Tinz  S.  Rolland  W.  Richter  J. 《Plant and Soil》2000,219(1-2):13-19
The conversion of natural forests into cultivated lands causes changes of the carbon cycle, which are of particular importance for fragile landscapes. We examined the mobilization of organic carbon in undisturbed soil monoliths of a deciduous forest, a pine plantation, and a pasture under constant temperature (20°C) and moisture via a leaching experiment. Soil percolation was performed with synthetic rainfall solution (pH 5) for a period of 20 weeks. The leachates of the first 12 weeks were analyzed for the pH, DOC content, light absorbance at 260 and 330 nm. At the end of the experiment soil pH, total carbon, C:N ratio, content of fractions of humic substances were examined. After 20 weeks of the leaching experiment the decrease of soil total Corg reached 29, 23, and 50% in soil monoliths of deciduous forest, pasture, and coniferous forest, respectively. The amounts of DOC removed constituted 6.4, 3.8, and 6.2% of initial soil Corg, respectively. Cumulative values of DOC production decreased in the sequence coniferous forest > deciduous forest > pasture. UV-Vis absorptivities of DOC were similar in both forests and differed from those in pasture. UV-Vis characteristics showed that DOC composition changed during the experiment. The intensive soil percolation caused alterations of the properties of soil organic matter, in particular a change of fraction composition of humic substances occurred.  相似文献   

4.
Although dissolved organic matter (DOM) released from the forest floor plays a crucial role in transporting carbon and major nutrients through the soil profile, its formation and responses to changing litter inputs are only partially understood. To gain insights into the controlling mechanisms of DOM release from the forest floor, we investigated responses of the concentrations and fluxes of dissolved organic carbon (DOC) and nitrogen (DON) in forest floor leachates to manipulations of throughfall (TF) flow and aboveground litter inputs (litter removal, litter addition, and glucose addition) at a hardwood stand in Bavaria, Germany. Over the two-year study period, litter manipulations resulted in significant changes in C and N stocks of the uppermost organic horizon (Oi). DOC and DON losses via forest floor leaching represented 8 and 11% of annual litterfall C and N inputs at the control, respectively. The exclusion of aboveground litter inputs caused a slight decrease in DOC release from the Oi horizon but no change in the overall leaching losses of DOC and DON in forest floor leachates. In contrast, the addition of litter or glucose increased the release of DOC and DON either from the Oi or from the lower horizons (Oe + Oa). Net releases of DOC from the Oe + Oa horizons over the entire manipulation period were not related to changes in microbial activity (measured as rates of basal and substrate-induced respiration) but to the original forest floor depths prior to manipulation, pointing to the flux control by the size of source pools rather than a straightforward relationship between microbial activity and DOM production. In response to doubled TF fluxes, net increases in DOM fluxes occurred in the lower forest floor, indicating the presence of substantial pools of potentially soluble organic matter in the Oe + Oa horizons. In contrast to the general assumption of DOM as a leaching product from recent litter, our results suggest that DOM in forest floor leachates is derived from both newly added litter and older organic horizons through complex interactions between microbial production and consumption and hydrologic transport.  相似文献   

5.
Recent reviews indicate that N deposition increases soil organic matter (SOM) storage in forests but the undelying processes are poorly understood. Our aim was to quantify the impacts of increased N inputs on soil C fluxes such as C mineralization and leaching of dissolved organic carbon (DOC) from different litter materials and native SOM. We added 5.5 g N m?2 yr?1 as NH4NO3 over 1 year to two beech forest stands on calcareous soils in the Swiss Jura. We replaced the native litter layer with 13C‐depleted twigs and leaves (δ13C: ?38.4 and ?40.8‰) in late fall and measured N effects on litter‐ and SOM‐derived C fluxes. Nitrogen addition did not significantly affect annual C losses through mineralization, but altered the temporal dynamics in litter mineralization: increased N inputs stimulated initial mineralization during winter (leaves: +25%; twigs: +22%), but suppressed rates in the subsequent summer. The switch from a positive to a negative response occurred earlier and more strongly for leaves than for twigs (?21% vs. 0%). Nitrogen addition did not influence microbial respiration from the nonlabeled calcareous mineral soil below the litter which contrasts with recent meta‐analysis primarily based on acidic soils. Leaching of DOC from the litter layer was not affected by NH4NO3 additions, but DOC fluxes from the mineral soils at 5 and 10 cm depth were significantly reduced by 17%. The 13C tracking indicated that litter‐derived C contributed less than 15% of the DOC flux from the mineral soil, with N additions not affecting this fraction. Hence, the suppressed DOC fluxes from the mineral soil at higher N inputs can be attributed to reduced mobilization of nonlitter derived ‘older’ DOC. We relate this decline to an altered solute chemistry by NH4NO3 additions, an increased ionic strength and acidification resulting from nitrification, rather than to a change in microbial decomposition.  相似文献   

6.

Soils represent important pools of soil organic carbon (SOC) that can be greatly influenced by labile C inputs, which are expected to increase in future due to CO2 enrichment of atmosphere and a concomitant rise in plant primary productivity. Studying effects of variable labile C inputs on SOC pool helps to understand how soils respond to global change. However, this knowledge is missing for coniferous forest soils despite being widespread throughout the northern temperate zone. We conducted a 7-month field manipulation experiment to study the effects of variable labile C inputs (simulated by additions of C4 sucrose) on the C content in soil fractions and on microbial abundance in the organic (O), surface mineral (A), and subsoil mineral (B) horizons of a temperate coniferous forest soil. SOC in less-protected soil fractions and total organic C were substantially decreased by labile C additions that simulated future increases in C inputs. The SOC losses were comparable between the A and B horizon (40% vs. 30%). However, because sucrose availability estimated from its incorporation into soil fractions and microbial biomass sharply decreased with soil depth, the loss of C was higher in the B than in the A horizon when related to the amount of sucrose added. Utilization of sucrose was highest by fungi in the O horizon and by bacteria in the mineral soil horizons. The results indicate that future increases in labile C inputs to coniferous forest soils will cause rapid and substantial losses of SOC in both the surface and subsoil mineral horizons.

  相似文献   

7.
Leaching of dissolved organic carbon (DOC) from the forest floor and transport in soil solution into the mineral soil are important for carbon cycling in boreal forest ecosystems. We examined DOC concentrations in bulk deposition, throughfall and in soil solutions collected under the O and B horizons in three Norway spruce stands along a climatic gradient in Sweden. Mean annual temperature for the three sites was 5.5, 3.4 and 1.2 °C. At each site we also examined the effect of soil moisture on DOC dynamics along a moisture gradient (dry, mesic and moist plots). To obtain information about the fate of DOC leached from the O horizon into the mineral soil, 14C measurements were made on bulk organic matter and DOC. The concentration and fluxes of DOC in O horizon leachates were highest at the southern site and lowest at the northern. Average DOC concentrations at the southern, central and northern sites were 49, 39 and 30 mg l−1, respectively. We suggest that DOC leaching rates from O horizons were related to the net primary production of the ecosystem. Soil temperature probably governed the within-year variation in DOC concentration in O horizon leachates, but the peak in DOC was delayed relative to that of temperature, probably due to sorption processes. Neither soil moisture regime (dry, mesic or moist plots) nor seasonal variation in soil moisture seemed to be of any significance for the concentration of DOC leached from the O horizon. The 14C measurements showed that DOC in soil solution collected below the B horizon was derived mainly from the B horizon itself, rather than from the O horizon, indicating a substantial exchange (sorption–desorption reactions) between incoming DOC and soil organic carbon in the mineral soil.  相似文献   

8.
Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its δ13C signature. Leaching of biogenic DIC was 8.3±4.9 g m?2 yr?1 for forests, 24.1±7.2 g m?2 yr?1 for grasslands, and 14.6±4.8 g m?2 yr?1 for croplands. DOC leaching equalled 3.5±1.3 g m?2 yr?1 for forests, 5.3±2.0 g m?2 yr?1 for grasslands, and 4.1±1.3 g m?2 yr?1 for croplands. The average flux of total biogenic carbon across land use systems was 19.4±4.0 g C m?2 yr?1. Production of DOC in topsoils was positively related to their C/N ratio and DOC retention in subsoils was inversely related to the ratio of organic carbon to iron plus aluminium (hydr)oxides. Partial pressures of CO2 in soil air and soil pH determined DIC concentrations and fluxes, but soil solutions were often supersaturated with DIC relative to soil air CO2. Leaching losses of biogenic carbon (DOC plus biogenic DIC) from grasslands equalled 5–98% (median: 22%) of net ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems.  相似文献   

9.
Soil organic matter (SOM) is the largest terrestrial C pool, and retention and release of dissolved organic matter (DOM) cause formation and loss of SOM. However, we lack information on how different sources of DOM affect its chemical composition, and how DOM chemical composition affects retention. We studied seasonal controls on DOM production and chemical controls on retention in soils of a temperate coniferous forest. The O horizon was not usually the dominant source for dissolved organic C (DOC) or N (DON) as has been reported for other sites. Rather, net production of both DOC and DON was often greater in the shallow mineral soil (0–10 cm) than in the O horizon. DOM production in the shallow mineral soil may be from root exudation as well as turnover of fine roots and microflora in the rhizosphere. In the field, the two acid fractions (hydrophobic and hydrophilic acids) dominated the soil solution at all depths. A major portion of net production and removal of total DOC within the soil column was explained by increases and decreases in these fractions, although a shift in chemical composition of DOM between the O and mineral soil horizons suggested different origins of DOM in these layers. A larger loss of the free amino fraction to deep soil water at this study site than at other sites suggested lower retention of labile DON. Field DOM removal measurements suggest that field-measured parameters may provide a good estimate for total DOM retained in mineral soil.  相似文献   

10.
Dissolved organic carbon (DOC) and nitrogen (DON)represent an important part of the C and N cycles inforest ecosystems. Little is known about the controlson fluxes and concentrations of these compounds insoils under field conditions. Here we compiledpublished data on concentrations and fluxes of DOC andDON from 42 case studies in forest ecosystems of thetemperate zone in order to evaluate controls on alarger temporal and spatial scale. The focus was onannual fluxes and concentrations in throughfall,forest floor leachates and soil solutions. In allcompartments considered, concentrations and fluxesdiffered widely between the sites. Highestconcentrations of DOC and DON were generally observedin forest floor leachates and in A horizons. Highestfluxes occurred in forest floor leachates. The fluxesof DOC and DON in forest floor leachates increasedwith increasing annual precipitation and were alsopositively related to DOC and DON fluxes withthroughfall. Variation in throughfall fluxes couldexplain 46% and 65% of the variation in DOC and DONfluxes from the forest floor, respectively. No generaldifference in DOC and DON concentrations and fluxes inforest floor leachates was found when comparingconiferous and hardwood sites. Concentrations of DOCin forest floor leachates were positively correlatedto the pH of the forest floor. Furthermore, there wasno relationship between organic C and N stocks, soilC/N, litterfall or mineral N inputs and concentrationsand fluxes of DOC and DON in forest floor leachates.Including all compartments, fluxes of DOC and DON werehighly correlated. Ratios of DOC to DON calculatedfrom fluxes from the forest floor were independent ofthe amount of annual precipitation, pointing to asimilar response of DOC and DON to precipitationconditions. A decrease in the ratio of DOC to DON withsoil depth as observed on a plot-scale, was notconfirmed by data analysis on a large scale. Thecontrols observed on annual fluxes and concentrationsof DON and DOC at regional scale differed from thosereported for smaller time and space scales.  相似文献   

11.
Decomposition of leaf litter and its incorporation into the mineral soil are key components of the C cycle in forest soils. In a 13C tracer experiment, we quantified the pathways of C from decomposing leaf litter in calcareous soils of a mixed beech forest in the Swiss Jura. Moreover, we assessed how important the cold season is for the decomposition of freshly fallen leaves. The annual C loss from the litter layer of 69–77% resulted mainly from the C mineralization (29–34% of the initial litter C) and from the transfer of litter material to the deeper mineral soil (>4 cm) by soil fauna (30%). Although only 4–5% of the initial litter C was leached as dissolved organic carbon (DOC), this pathway could be important for the C sequestration in soils in the long term: The DOC leached from the litter layer was mostly retained (95%) in the first 5 cm of the mineral soil by both physico-chemical sorption and biodegradation and, thus, it might have contributed significantly to the litter-derived C recovered in the heavy fraction (>1.6 g cm?3) at 0–4 cm depth (4% of the initial litter C). About 80% of the annual DOC leaching from the litter layer occurred during the cold season (Nov–April) due to an initial DOC flush of water-soluble substances. In contrast, the litter mineralization in winter accounted for only 25% of the annual C losses through CO2 release from the labelled litter. Nevertheless, the highest contributions (45–60%) of litter decay to the heterotrophic soil respiration were observed on warm winter days when the mineral soil was still cold and the labile litter pool only partly mineralized. Our 13C tracing also revealed that: (1) the fresh litter C only marginally primed the mineralization of older SOM (>1 year); and (2) non-litter C, such as throughfall DOC, contributed significantly to the C fluxes from the litter layer since the microbial biomass and the DOC leached from the litter layer contained 20–30% and up to 60% of unlabelled C, respectively. In summary, our study shows that significant amounts of recent leaf litter C (<1 year) are incorporated into mineral soils and that the cold season is clearly less important for the litter turnover than the warm season in this beech forest ecosystem.  相似文献   

12.
Although tropical wet forests play an important role in the global carbon (C) and nitrogen (N) cycles, little is known about the origin, composition, and fate of dissolved organic C (DOC) and N (DON) in these ecosystems. We quantified and characterized fluxes of DOC, DON, and dissolved inorganic N (DIN) in throughfall, litter leachate, and soil solution of an old-growth tropical wet forest to assess their contribution to C stabilization (DOC) and to N export (DON and DIN) from this ecosystem. We found that the forest canopy was a major source of DOC (232 kg C ha–1 y–1). Dissolved organic C fluxes decreased with soil depth from 277 kg C ha–1 y–1 below the litter layer to around 50 kg C kg C ha–1 y–1 between 0.75 and 3.5m depth. Laboratory experiments to quantify biodegradable DOC and DON and to estimate the DOC sorption capacity of the soil, combined with chemical analyses of DOC, revealed that sorption was the dominant process controlling the observed DOC profiles in the soil. This sorption of DOC by the soil matrix has probably led to large soil organic C stores, especially below the rooting zone. Dissolved N fluxes in all strata were dominated by mineral N (mainly NO3). The dominance of NO3 relative to the total amount nitrate of N leaching from the soil shows that NO3 is dominant not only in forest ecosystems receiving large anthropogenic nitrogen inputs but also in this old-growth forest ecosystem, which is not N-limited.  相似文献   

13.
DyDOC describes soil carbon dynamics, with a focus on dissolved organic carbon (DOC). The model treats the soil as a three-horizon profile, and simulates metabolic carbon transformations, sorption reactions and water transport. Humic substances are partitioned into three fractions, one of which is immobile, while the other two (hydrophilic and hydrophobic) can pass into solution as DOC. DyDOC requires site-specific soil characteristics, and is driven by inputs of litter and water, and air and soil temperatures. The model operates on hourly and daily time steps, and can simulate carbon cycling over both long (hundreds-to-thousands of years) and short (daily) time scales. An important feature of DyDOC is the tracking of 14C, from its entry in litter to its loss as DO14C in drainage water, enabling information about C dynamics to be obtained from both long-term radioactive decay, and the characteristic 14C pulse caused by thermonuclear weapon testing during the 1960s ("bomb carbon"). Parameterisation is performed by assuming a current steady state. Values of a range of variables, including C pools, annual DOC fluxes, and 14C signals, are combined into objective functions for least-squares minimisation. DyDOC has been applied successfully to spruce forest sites at Birkenes (Norway) and Waldstein (Germany), and most of the parameters have similar values at the two sites. The results indicate that the supply of DOC from the surface soil horizon to percolating water depends upon the continual metabolic production of easily leached humic material. In contrast, concentrations and fluxes of DOC in the deeper soil horizons are controlled by sorption processes, involving comparatively large pools of leachable organic matter. Times to reach steady state are calculated to be several hundred years in the organic layer, and hundreds-to-thousands of years in the deeper mineral layers. It is estimated that DOC supplies 89% of the mineral soil carbon at Birkenes, and 73% at Waldstein. The model, parameterised with "steady state" data, simulates short-term variations in DOC concentrations and fluxes, and in DO14C, which are in approximate agreement with observations.  相似文献   

14.
To identify the controls on dissolved organic carbon (DOC) production, we incubated soils from 18 sites, a mixture of 52 forest floor and peats and 41 upper mineral soil samples, at three temperatures (3, 10, and 22°C) for over a year and measured DOC concentration in the leachate and carbon dioxide (CO2) production from the samples. Concentrations of DOC in the leachate were in the range encountered in field soils (<2 to >50 mg l−1). There was a decline in DOC production during the incubation, with initial rates averaging 0.03–0.06 mg DOC g−1 soil C day−1, falling to averages of 0.01 mg g−1 soil C day−1; the rate of decline was not strongly related to temperature. Cumulative DOC production rates over the 395 days ranged from less than 0.01 to 0.12 mg g−1 soil C day−1 (0.5–47.6 mg g−1 soil C), with an average of 0.021 mg g−1 soil C day−1 (8.2 mg g−1 soil C). DOC production rate was weakly related to temperature, equivalent to Q10 values of 0.9 to 1.2 for mineral samples and 1.2 to 1.9 for organic samples. Rates of DOC production in the organic samples were correlated with cellulose (positively) and lignin (negatively) proportion in the organic matter, whereas in the mineral samples C and nitrogen (N) provided positive correlations. The partitioning of C released into CO2–C and DOC showed a quotient (CO2–C:DOC) that varied widely among the samples, from 1 to 146. The regression coefficient of CO2–C:DOC production (log10 transformed) ranged from 0.3 to 0.7, all significantly less than 1. At high rates of DOC production, a smaller proportion of CO2 is produced. The CO2–C:DOC quotient was dependent on incubation temperature: in the organic soil samples, the CO2–C:DOC quotient rose from an average of 6 at 3 to 16 at 22°C and in the mineral samples the rise was from 7 to 27. The CO2–C:DOC quotient was related to soil pH in the organic samples and C and N forms in the mineral samples.  相似文献   

15.
The turnover of organic carbon in rivers could represent a large source of greenhouse gases to the atmosphere and studies have suggested that of the order of 70% of the dissolved organic carbon exported from soils could be lost in rivers before it flows to continental seas. The Environmental Change Network (ECN) monitoring of the dominantly peat-covered Trout Beck catchment within the Moor House site enabled the amount of dissolved organic carbon (DOC) lost within a stream over a 20-year period to be estimated. The study compared DOC concentrations of precipitation, shallow and deep soil waters with those at the catchment outlet. The mass balance between source and outlet was reconstructed by two methods: a single conservative tracer; and based upon a principal component analysis (PCA) using multiple tracers. The study showed the two methods had different outcomes, with the PCA showing a DOC gain and the single tracer showing a DOC loss. The DOC gain was attributed to an unmeasured groundwater contribution that dominates when the river discharge is lower. The DOC loss was related to the in-stream residence time, the soil temperature and month of the year, with longer in-stream residence times, warmer soils and summer months having larger DOC losses. The single tracer study suggested a 10 year average loss of 8.77 g C m−2 year−1, which is 33.1 g CO2eq m−2 year−1, or 29% of the DOC flux from the source over a mean in-stream residence time of 4.33 h.  相似文献   

16.
Influence of dolomitic lime on DOC and DON leaching in a forest soil   总被引:3,自引:1,他引:2  
The influence of liming on leaching and distribution of dissolved organic carbon (DOC) and nitrogen (DON) in mineral soil was investigated in a leaching experiment with soil columns. Soil samples from separate horizons (O, A and B horizons) were collected from control and limed plots in a field liming experiment in a spruce forest in southern Sweden. The field liming (0.88 kg m-2) had been carried out 8 years before sampling. To minimize the variation among replicates, soil profiles were reconstructed in the laboratory so that the dry weight was the same for each individual soil horizon regardless of treatment. Two soil column types were used with either the O+A horizons or the O+A+B horizons. One Norway spruce seedling (Picea abies (L.) Karst) was planted in each soil column. Average pH in the leachate water was greater in the limed treatment than in the control treatment (5.0 versus 4.0 for O+A columns and 4.3 versus 3.8 for O+A+B columns). After reaching an approximate steady state, the leaching of DOC was 3--4 times greater from the limed O+A and O+A+B columns than from the corresponding control columns but the leaching of DON increased (3.5 times) only in the limed O+A columns. There was a significant correlation between DOC and DON in the leachates from all columns except for the control O+A+B columns, which indicated a decoupling of DOC and DON retention in the B horizon in the control treatment. This might be explained by a selective adsorption of nitrogen poor hydrophobic compounds (C/N ratio: 32--77) while there was a lower retention of nitrogen rich hydrophilic compounds (C/N ratio: 14--20). Proportionally more hydrophobic compounds were leached from the limed soil compared to the unlimed soil. These hydrophobic compounds also became more enriched in nitrogen after liming so in the limed treatment nitrogen might be adsorbed at nearly the same proportion as carbon, which might explain the fact that there was no decoupling of leached DOC and DON from the B horizon after liming.  相似文献   

17.
Soil mineral weathering may serve as a sink for atmospheric carbon dioxide (CO2). Increased weathering of soil minerals induced by elevated CO2 concentration has been reported previously in temperate areas. However, this has not been well documented for the tropics and subtropics. We used model forest ecosystems in open-top chambers to study the effects of CO2 enrichment alone and together with nitrogen (N) addition on inorganic carbon (C) losses in the leachates. Three years of exposure to an atmospheric CO2 concentration of 700 ppm resulted in increased annual inorganic C export through leaching below the 70 cm soil profile. Compared to the control without any CO2 and N treatments, net biocarbonate C (HCO3 -C) loss increased by 42%, 74%, and 81% in the high CO2 concentration treatment in 2006, 2007, and 2008, respectively. Increased inorganic C export following the exposure to the elevated CO2 was related to both increased inorganic C concentrations in the leaching water and the greater amount of leaching water. Net annual inorganic C (HCO3 -C and carbonate C: CO3 2−-C) loss via the leaching water in the high CO2 concentration chambers reached 48.0, 49.5, and 114.0 kg ha−1 y−1 in 2006, 2007, and 2008, respectively, compared with 33.8, 28.4, and 62.8 kg ha−1 y−1 in the control chambers in the corresponding years. The N addition showed a negative effect on the mineral weathering. The decreased inorganic C concentration in the leaching water and the decreased leaching water amount induced by the high N treatment were the results of the adverse effect. Our results suggest that tropical forest soil systems may be able to compensate for a small part of the atmospheric CO2 increase through the accelerated processing of CO2 into HCO3 -C during soil mineral weathering, which might be transported in part into ground water or oceans on geological timescales.  相似文献   

18.
Dissolved organic matter (DOM) plays an important role in transporting carbon and nitrogen from forest floor to mineral soils in temperate forest ecosystems. Thus, the retention of DOM via sorption or microbial assimilation is one of the critical steps for soil organic matter formation in mineral soils. The chemical properties of DOM are assumed to control these processes, yet we lack fundamental information that links litter quality, DOM chemistry, and DOM retention. Here, we studied whether differences in litter quality affect solution chemistry and whether changes in litter inputs affect DOM quality and removal in the field. The effects of litter quality on solution chemistry were evaluated using chemical fractionation methods for laboratory extracts and for soil water collected from a temperate coniferous forest where litter inputs had been altered. In a laboratory extraction, litter type (needle, wood, root) and the degree of decomposition strongly influenced solution chemistry. Root litter produced more than 10 times more water-extractable dissolved organic N (DON) than any other litter type, suggesting that root litter may be most responsible for DON production in this forest ecosystem. The chemical composition of the O-horizon leachate was similar under all field treatments (doubled needle, doubled wood, and normal litter inputs). O-horizon leachate most resembled laboratory extracts of well-decomposed litter (that is, a high proportion of hydrophobic acids), in spite of the significant amount of litter C added to the forest floor and a tendency toward higher mean DOM under doubled-Litter treatments. A lag in DOM production from added litter or microbial modification might have obscured chemical differences in DOM under the different treatments. Net DOM removal in this forest soil was strong; DOM concentration in the water deep in the mineral soil was always low regardless of concentrations in water that entered the mineral soil and of litter input manipulation. High net removal of DOM from O-horizon leachate, in spite of extremely low initial hydrophilic neutral content (labile DOM), coupled with the lack of influence by season or soil depth, suggests that DOM retention in the soil was mostly by abiotic sorption.  相似文献   

19.
Abstract Sugar maple (Acer saccharum Marsh.)-dominated northern hardwood forests of the Great Lakes Region commonly receive elevated levels of atmospheric nitrate (NO3) deposition, which can alter belowground carbon (C) cycling. Past research has demonstrated that chronic experimental NO3 deposition (3 g N m−2 y−1 above ambient) elicits a threefold increase in the leaching loss of dissolved organic carbon (DOC). Here, we used DOC collected from tension-cup lysimeters to test whether increased DOC export under experimental NO3 deposition originated from forest floor or mineral soil organic matter (SOM). We used DOC radiocarbon dating to quantify C sources and colorimetric assays to measure DOC aromaticity and soluble polyphenolic content. Our results demonstrated that DOC exports are primarily derived from new C (<50-years-old) in the forest floor under both ambient and experimental NO3 deposition. Experimental NO3 deposition increased soluble polyphenolic content from 25.03 ± 4.26 to 49.19 ± 4.23 μg phenolic C mg DOC−1, and increased total aromatic content as measured by specific UV absorbance. However, increased aromatic compounds represented a small fraction (<10%) of the total observed increased DOC leaching. In combination, these findings suggest that experimental NO3 deposition has altered the production or retention as well as phenolic content of DOC formed in forest floor, however exact mechanisms are uncertain. Further elucidation of the mechanism(s) controlling enhanced DOC leaching is important for understanding long-term responses of Great Lakes forests to anthropogenic N deposition and the consequences of those responses for aquatic ecosystems.  相似文献   

20.
We determined concentrations and fluxes of dissolved organic carbon (DOC) in precipitation, throughfall, forest floor and mineral soil leachates from June 2004 to May 2006 across an age-sequence (2-, 15-, 30-, and 65-year-old) of white pine (Pinus strobus L.) forests in southern Ontario, Canada. Mean DOC concentration in precipitation, throughfall, leachates of forest floor, Ah-horizon, and of mineral soil at 1 m depth ranged from ∼2 to 7, 9 to 18, 32 to 88, 20 to 66, and 2 to 3 mg DOC L−1, respectively, for all four stands from April (after snowmelt) through December. DOC concentration in forest floor leachates was highest in early summer and positively correlated to stand age, aboveground biomass and forest floor carbon pools. DOC fluxes via precipitation, throughfall, and leaching through forest floor and Ah-horizon between were in the range of ∼1 to 2, 2 to 4, 0.5 to 3.5, and 0.1 to 2 g DOC m−2, respectively. DOC export from the forest ecosystem during that period through infiltration and groundwater discharge was estimated as ∼7, 4, 3, and 2 g DOC m−2 for the 2-, 15-, 30-, and 65-year-old sites, respectively, indicating a decrease with increasing stand age. Laboratory DOC sorption studies showed that the null-point DOC concentration fell from values of 15 to 60 mg DOC L−1 at 0 to 5 cm to <15 mg DOC L−1 at 50 cm. Specific ultraviolet light absorption at 254 nm (SUVA254) increased from precipitation and throughfall to a maximum in forest floor and decreased with mineral soil depth. No age-related pattern was observed for SUVA254 values. DOC concentration in forest floor soil solutions showed a positive exponential relationship with soil temperature, and a negative exponential relationship with soil moisture at all four sites. Understanding the changes and controls of DOC concentrations, chemistry, and fluxes at various stages of forest stand development is necessary to estimate and predict DOC dynamics on a regional landscape level and to evaluate the effect of land-use change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号