首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A self-incompatibility system is used for F(1) hybrid breeding in Brassicaceae vegetables. The determinants of recognition specificity of self-incompatibility in Brassica are SRK in the stigma and SP11/SCR in the pollen. Nucleotide sequences of SP11 alleles are more highly variable than those of SRK. We analyzed the S haplotype specificity of SP11 DNA by Southern-blot analysis and dot-blot analysis using 16 S haplotypes in Brassica oleracea, and found that DNA fragments of a mature protein region of SP11 cDNA, SP11(m), of eight S haplotypes can detect only the SP11 alleles of the same S haplotypes. This specificity makes these methods useful for S haplotype identification. Therefore, we developed two methods of dot-blot analysis for SP11. One is dot blotting of DNA samples, i.e. plant genomic DNA probed with labeled SP11(m), and the other is dot blotting of SP11(m) DNA fragments probed with labeled DNA samples, i.e. the SP11 coding region labeled by PCR using a template of plant genomic DNA. The former is useful for testing many plant materials. The latter is suitable, if there is no previous information on the S haplotypes of plant materials.  相似文献   

2.
The nucleotide sequences of ten SP11 and nine SRK alleles in Raphanus sativus were determined, and deduced amino acid sequences were compared with those of Brassica SP11 and SRK. The amino acid sequence identity of class-I SP11s in R. sativus was about 30% on average, the highest being 52.2%, while that of the S domain of class-I SRK was 77.0% on average and ranged from 70.8% to 83.9%. These values were comparable to those of SP11 and SRK in Brassica oleracea and B. rapa. SP11 of R. sativus S-21 was found to be highly similar to SP11 of B. rapa S-9 (89.5% amino acid identity), and SRK of R. sativus S-21 was similar to SRK of B. rapa S-9 (91.0%). SP11 and SRK of R. sativus S-19 were also similar to SP11 and SRK of B. oleracea S-20, respectively. These similarities of both SP11 and SRK alleles between R. sativus and Brassica suggest that these S haplotype pairs originated from the same ancestral S haplotypes.  相似文献   

3.
In Brassica, the thioredoxinhproteins, THL1 and THL2, were previously found to be potential inhibitors of the S receptor kinase (SRK) in the Brassica self-incompatibilty response. To investigate the biological roles of THL1 and THL2 in pollen–pistil interactions, the stigma-specific SLR1 promoter was used to drive antisense THL1/2 expression in Brassica napus cv. Westar. This cultivar is normally compatible, but antisense suppression of THL1/2 led to a low level constitutive rejection of all Brassica napus pollen tested. Fluorescence microscopy revealed that the pollen rejection was a typical Brassica self-incompatibility rejection response with reduced pollen adhesion, germination and pollen tube growth. In addition, Westar was found to express the SLG15 and SRK15 proteins which may be the target of regulation by THL1 and THL2. Thus, these results indicate that the THL1 and THL2 are required for full pollen acceptance in B. napus cv. Westar.  相似文献   

4.
Three new yeast species, Candida kashinagacola (JCM 15019(T) = CBS 10903(T)), C. pseudovanderkliftii (JCM 15025(T) = CBS 10904(T)), and C. vanderkliftii (JCM 15029(T) = CBS 10905(T)) are described on the basis of comparison of nucleotide sequences of large subunit ribosomal DNA D1/D2 region (LSU rDNA D1/D2). The nearest assigned species of the three new species was Candida llanquihuensis. Candida kashinagacola and C. pseudovanderkliftii differed from C. llanquihuensis by 3.8% nucleotide substitution of the region, while C. vanderkliftii did by 4.4%. Three new species differed in a number of physiological and growth characteristics from any previously assigned species and from one another. A phylogenetic tree based on the sequences of LSU rDNA D1/D2 showed that these new species together with Candida sp. ST-246, Candida sp. JW01-7-11-1-4-y2, Candida sp. BG02-7-20-001A-2-1 and C. llanquihuensis form a clade near Ambrosiozyma species. The new species did not assimilate methanol as a sole source of carbon, which supported the monophyly of these non methanol-assimilating species which are closely related to the methylotrophic yeasts. Candida kashinagacola was frequently isolated from the beetle galleries of Platypus quercivorus in three different host trees (Quercus serrata, Q. laurifolia and Castanopsis cuspidata) located in the sourthern part of Kyoto, Japan, thus indicating that this species may be a primary ambrosia fungus of P. quercivorus. On the other hand, C. pseudovanderkliftii and C. vanderkliftii were isolated only from beetle galleries in Q. laurifolia. Candida vanderkliftii was isolated from beetle gallery of Platypus lewisi as well as those of P. quercivorus. Candida pseudovanderkliftii and C. vanderkliftii are assumed to be auxiliary ambrosia fungi of P. quercivorus.  相似文献   

5.
6.
To construct an evolutionary hypothesis for the genus Frankia, gyrB (encoding gyrase B), nifH (encoding nitrogenase reductase) and glnII (encoding glutamine synthetase II) gene sequences were considered for 38 strains. The overall clustering pattern among Frankia strains based on the three analyzed sequences varied among themselves and with the previously established 16S rRNA gene phylogeny and they did not reliably reflect clear evolution of the four discerned Frankia clusters (1, 2, 3 and 4). Based on concatenated gyrB, nifH and glnII, robust phylogenetic trees were observed with the three treeing methods (Maximum Likelihood, Parsimony and Neighbor-Joining) and supported by strong bootstrap and posterior probability values (>75%) for overall branching. Cluster 4 (non-infective and/or non-nitrogen-fixing Frankia) was positioned at a deeper branch followed by cluster 3 (Rhamnaceae and Elaeagnaceae infective Frankia), while cluster 2 represents uncultured Frankia microsymbionts of the Coriariaceae, Datiscaceae, Rosaceae and of Ceanothus sp. (Rhamnaceae); Cluster 1 (Betulaceae, Myricaceae and Casuarinaceae infective Frankia) appears to have diverged more recently. The present study demonstrates the utility of phylogenetic analyses based upon concatenated gyrB, nifH and glnII sequences to help resolve previously unresolved or poorly resolved nodes and will aid in describing species among the genus Frankia.  相似文献   

7.
MC4R gene was proved to play important roles in body weight regulation in many mammals and exhibit higher homology among different species. The mutations MC4R significantly correlated to the restricted feeding weight, fat deposition and energy balance. In this work, ORF sequences of MC4R gene of Bos grunniens were cloned and phylogenetic relationships of yak and other mammals were analyzed on the basis of MC4R genes. Totally 290 variable sites were examined in 25 sequences from 22 different mammals, and 23 haplotypes were defined with a haplotype diversity of 0.9900. All the sequences were clustered into phylogenetic clades representing different orders or families. The individuals of Bos grunniens, Bos taurus and Ovis aries which belonged to the family of Bovidae were more divergent from the other orders or families and bovid animals may have branched out from the phylogenetic tree earlier than other mammals analyzed during 450 million years of vertebrate evolution. Amino acid sequences inferred from MC4R genes exhibited 54 variable sites, while high conservation of MC4R was observed within the same order or family. We concluded that coding region of MC4R gene displayed abundant variations among different mammal phylogenetic clades, whereas, the conservation of MC4R within order or family could be explained that MC4R gene may have been subjected to substantial constraints or strong purifying selection during several million years of mammal evolution.  相似文献   

8.
Recent collections and the type specimen of Marasmiellus juniperinus, the type species of the genus, were examined. Phylogenetic placement, based on ribosomal large subunit (LSU) and internally transcribed spacer (ITS) sequences, is within the lentinuloid clade, nested among Gymnopus taxa. This placement dictates genus name usage and phylogenetic position of other putative species of Marasmiellus. The mating system is tetrapolar.  相似文献   

9.
Nucleotide sequences of the immunoglobulin constant heavy chain genes of the horse have been described for IGHM, IGHG and IGHE genes, but not for IGHA. Here, we provide the nucleotide sequence of the genomic IGHA gene of the horse (Equus caballus), including its secretion region and the transmembrane exon. The equine IGHA gene shows the typical structure of a mammalian IGHA gene, with only three exons, separated by two introns of similar size. The hinge exon is located at the 5 end of the CH2 exon and encodes a hinge region of 11 amino acids, which contains five proline residues. The coding nucleotide sequence of the secreted form of the equine IGHA gene shares around 72% identity with the human IGHA1 and IGHA2 genes, as well as the bovine, ovine, porcine and canine IGHA genes, without distinct preference for any of these species. The same species also cluster together in a phylogenetic tree of the IGHA coding regions of various mammals, whereas rodent, rabbit, marsupial and monotreme IGHA genes each build a separate cluster.The nucleotide sequences reported in this paper have been assigned the EMBL/GenBank accession numbers AY247966 and AY351982  相似文献   

10.
Polymerase chain reaction fragment length polymorphisms and nucleotide sequences for a cytochrome P450 gene encoding flavonoid-3',5'-hydroxylase, Hf1, were studied in 19 natural taxa of Petunia. Natural Petunia taxa were classified into six groups based on major insertion or deletion events that occurred only in intron II of the locus. The maximum parsimony method was used to calculate strict consensus trees based on nucleotide sequences in selected regions of the Hf1 locus. Petunia taxa were divided into two major clades in the phylogenetic trees. Petunia axillaris (including three subspecies), P. exserta, and P. occidentalis formed a clade with 100% bootstrap support. This clade is associated with a consistently inflexed pedicel, self-compatibility in most taxa, and geographical distribution in southern and western portions of the genus range. The other clade, which comprised the remainder of the genus is, however, less supported (up to 71% bootstrap); it is characterized by a deflexed pedicel in the fruiting state (except P. inflata), self-incompatibility, and a northeastern distribution. A nuclear gene, Hf1, seems to be a useful molecular marker for elucidating the phylogeny of the genus Petunia when compared with the nucleotide sequence of trnK intron of chloroplast DNA.  相似文献   

11.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

12.
Expressed sequence tags (ESTs) from the Arabidopsis thaliana sequencing project were used to construct a genetic RFLP map for Brassica oleracea. Of the 110 A. thaliana ESTs tested, 95 were found to be informative RFLP probes in map construction. In total, 212 new loci corresponding to the 95 ESTs were added to the existing genetic map of B. oleracea. The enriched map covers all nine basic linkage groups and confirms that the chromosomes of B. oleracea and A. thaliana are similar in linear organization. However, varying levels of sequence conservation between the chromosomes of B. oleracea and A. thaliana were detected in different regions of the genomes. Long conserved regions encompassing entire chromosome arms in both genomes were identified; these are probably shared by descent. On the other hand, extensive rearrangements were observed in numerous chromosome regions, producing a mosaic of A. thaliana-like segments in the genome of Brassica. The presence of extensive chromosome duplication in A. thaliana was taken into consideration in the construction of the comparative maps of B. oleracea and A. thaliana.  相似文献   

13.
Sugars are important molecules that function not only as primary metabolites, but also as nutrients and signal molecules in plants. The sugar transport protein genes family SWEET has been recently identified. The availability of the Dendrobium officinale and Phalaenopsis equestris genome sequences offered the opportunity to study the SWEET gene family in this two orchid species. We identified 22 and 16 putative SWEET genes, respectively, in the genomes of D. officinale and P. equestris using comprehensive bioinformatics analysis. Based on phylogenetic comparisons with SWEET proteins from Arabidopsis and rice, the DoSWEET and PeSWEET proteins could be divided into four clades; among these, clade II specifically lacked PeSWEETs and clade IV specifically lacked DoSWEETs, and there were orthologs present between D. officinale and P. equestris. Protein sequence alignments suggest that there is a predicted serine phosphorylation site in each of the highly conserved MtN3/saliva domain regions. Gene expression analysis in four tissues showed that three PeSWEET genes were most highly expressed in the flower, leaf, stem, and root, suggesting that these genes might play important roles in growth and development in P. equestris. Analysis of gene expression in different floral organs showed that five PeSWEET genes were highly expressed in the column (gynostemium), implying their possible involvement in reproductive development in this species. The expression patterns of seven PeSWEETs in response to different abiotic stresses showed that three genes were upregulated significantly in response to high temperature and two genes were differently expressed at low temperature. The results of this study lay the foundation for further functional analysis of SWEET genes in orchids.  相似文献   

14.
Molecular markers derived from the complete chloroplast genome can provide effective tools for species identification and phylogenetic resolution. Complete chloroplast (cp) genome sequences of Capsicum species have been reported. We herein report the complete chloroplast genome sequence of Capsicum baccatum var. baccatum, a wild Capsicum species. The total length of the chloroplast genome is 157,145 bp with 37.7 % overall GC content. One pair of inverted repeats, 25,910 bp in length, was separated by a small single-copy region (17,974 bp) and large single-copy region (87,351 bp). This region contains 86 protein-coding genes, 30 tRNA genes, 4 rRNA genes, and 11 genes contain one or two introns. Pair-wise alignments of chloroplast genome were performed for genome-wide comparison. Analysis revealed a total of 134 simple sequence repeat (SSR) motifs and 282 insertions or deletions variants in the C. baccatum var. baccatum cp genome. The types and abundances of repeat units in Capsicum species were relatively conserved, and these loci could be used in future studies to investigate and conserve the genetic diversity of the Capsicum species.  相似文献   

15.
A nuclear gene, FLOWERING LOCUS T (FT) homolog, was cloned from Phyllostachys meyeri as PmFT. Its putative copy number was estimated as four by Southern blot analysis, and the two copies were completely sequenced. Twenty-seven FT homolog sequences of bambusoid and early diverging grasses comprised 172-bp exons, and 357- to 785-bp introns exhibited 0-58.9% pairwise divergence with six modal levels. Parsimony analyses of the FT homologs rooted at Pharus virescens produced six equally parsimonious trees. In the strict consensus tree, five clades were resolved; they were affected by divergence of the intron region rather than exon region. The basal clade was Puelioideae, followed by Olyreae clade including Oryza sativa. Streptogyneae clade combined the Olyreae clade with terminal sister clades of the Bambuseae, i.e., pantropical bamboos and East Asiatic temperate bamboos. The global topology suggested that FT homologs are significant for resolving the tribe level. However, the phylogeny of FT homologs does not resolve monophyly in Bambusoideae because of intercalary positioning by Streptogyneae clade. We discussed the role of FT homologs in controlling the inflorescence architecture and position of Streptogyneae in the bamboo phylogeny.  相似文献   

16.
17.
The genetic diversity and evolutionary divergence in Liquidambar species and Liquidambar orientalis varieties were compared with respect to the matK gene. A total of 66 genotypes from 18 different populations were sampled in southwestern Turkey. The matK region, which is about 1,512 bp in length, was sequenced and studied. L. orientalis, L. styraciflua, and L. formosana had similar magnitude of nucleotide diversity, while L. styraciflua and L. acalycina possessed higher evolutionary divergence. The highest evolutionary divergence was found between L. styraciflua and eastern Asian Liquidambar species (0.0102). However, the evolutionary divergence between L. orientalis and other species was of a similar magnitude. The maximum-parsimony phylogenetic tree showed that L. styraciflua and L. orientalis formed a closer clade while East Asian species were in a separate clade. This suggests that the North Atlantic Land Bridge through southern Greenland may have facilitated continuous distribution of Liquidambar species from southeastern Europe to eastern North America in early Tertiary period. The maximum-parsimony tree with only 18 Oriental sweetgum populations indicated that there were two main clusters: one with mainly L. orientalis var. integriloba and the other with var. orientalis and undetermined populations. High nucleotide diversity (0.0028) and divergence (0.00072) were found in L. orientalis var. integriloba populations and Muğla-1 geographical region. This region could be considered as the major refugium and genetic diversity center for the species. The low genetic diversity and divergence at intraspecies level suggest that L. orientalis populations in Turkey share an ancestral polymorphism from which two varieties may have evolved.  相似文献   

18.
19.
Rallidae, with 34 genera including 142 species, is the largest family in the Gruiformes, the phylogenetic placement of this family was still in debate. The complete mitochondrial genomes (mitogenomes), with many advantageous characters, have become popular markers in phylogenetic analyses. We sequenced the mitogenomes of brown crake (Amaurornis akool) and white-breasted waterhen (Amaurornis phoenicurus), analyzed the genomic characters of mitogenomes in Rallidae, and explored the phylogenetic relationships between Rallidae and other four families in Gruiformes based on mitogenome sequences of 32 species with Bayesian method. The mitogenome of A. akool/A. phoenicurus was 16,950/17,213 bp in length, and contained 37 genes typical to avian mitogenomes and one control region, respectively. The genomic characters of mitogenomes in Rallidae were similar. The phylogenetic results indicated that, among five families, Rallidae had closest relationship with Heliornithidae, which formed a sister taxa to Gruidae, while Rhynochetidae located in the basal lineage. Within Rallidae, Rallina was ancestral clade. Gallirallus & Rallus and Aramides were closely related, Gallicrex & Amaurornis and Fulica & Gallinula had close relationships, and these two taxa formed a sister clade to Porphyrio & Coturnicops. Our phylogenetic analyses provided solid evidence for the phylogenetic placement of Rallidae and the evolutionary relationships among different genus within this family. In addition, the mitogenome data presented here provide useful information for further molecular systematic investigations on Gruiformes as well as conservation biology research of these species.  相似文献   

20.
Hao da C  Yang L  Huang B 《Genetica》2009,135(2):123-135
Evolutionary patterns of sequence divergence were analyzed in genes from the conifer genus Taxus (yew), encoding paclitaxel biosynthetic enzymes taxadiene synthase (TS) and 10-deacetylbaccatin III-10β-O-acetyltransferase (DBAT). N-terminal fragments of TS, full-length DBAT and internal transcribed spacer (ITS) were amplified from 15 closely related Taxus species and sequenced. Premature stop codons were not found in TS and DBAT sequences. Codon usage bias was not found, suggesting that synonymous mutations are selectively neutral. TS and DBAT gene trees are not consistent with the ITS tree, where species formed monophyletic clades. In fact, for both genes, alleles were sometimes shared across species and parallel amino acid substitutions were identified. While both TS and DBAT are, overall, under purifying selection, we identified a number of amino acids of TS under positive selection based on inference using maximum likelihood models. Positively selected amino acids in the N-terminal region of TS suggest that this region might be more important for enzyme function than previously thought. Moreover, we identify lineages with significantly elevated rates of amino acid substitution using a genetic algorithm. These findings demonstrate that the pattern of adaptive paclitaxel biosynthetic enzyme evolution can be documented between closely related Taxus species, where species-specific taxane metabolism has evolved recently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号