首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
The three-dimensional structure of a modified human lysozyme (HL), Glu 53 HL, in which Asp 53 was replaced by Glu, has been determined at 1.77 A resolution by X-ray analysis. The backbone structure of Glu 53 HL is essentially the same as the structure of wild-type HL. The root mean square difference for the superposition of equivalent C alpha atoms is 0.141 A. Except for the Glu 53 residue, the structure of the active site region is largely conserved between Glu 53 HL and wild-type HL. However, the hydrogen bond network differs because of the small shift or rotation of side chain groups. The carboxyl group of Glu 53 points to the carboxyl group of Glu 35 with a distance of 4.7 A between the nearest carboxyl oxygen atoms. A water molecule links these carboxyl groups by a hydrogen bond bridge. The active site structure explains well the fact that the binding ability for substrates does not significantly differ between Glu 53 HL and wild-type HL. On the other hand, the positional and orientational change of the carboxyl group of the residue 53 caused by the mutation is considered to be responsible for the low catalytic activity (ca. 1%) of Glu 53 HL. The requirement of precise positioning for the carboxyl group suggests the possibility that the Glu 53 residue contributes more than a simple electrostatic stabilization of the intermediate in the catalysis reaction.  相似文献   

2.
Effective van der Waals radii were calibrated in such a way that molecular models built from standard bond lengths and bond angles reproduced the amino acid conformations observed by crystallography in proteins and peptides. The calibrations were based on the comparison of the Ramachandran plots prepared from high-resolution X-ray data of proteins and peptides with the allowed phi, psi torsional angle space for the dipeptide molecular models. The calibrated radii are useful as criteria with which to filter energetically improbable conformations in molecular modeling studies of proteins and peptides.  相似文献   

3.
4.
Carbon‐coated van der Waals stacked Sb2S3 nanorods (SSNR/C) are synthesized by facile hydrothermal growth as anodes for sodium ion batteries (SIBs). The sodiation kinetics and phase evolution behavior of the SSNR/C anode during the first and subsequent cycles are unraveled by coupling in situ transmission electron microscopy analysis with first‐principles calculations. During the first sodiation process, Na+ ions intercalate into the Sb2S3 crystals with an ultrafast speed of 146 nm s?1. The resulting amorphous Nax Sb2S3 intermediate phases undergo sequential conversion and alloying reactions to form crystalline Na2S, Na3Sb, and minor metallic Sb. Upon desodiation, Na+ ions extract from the nanocrystalline phases to leave behind the fully desodiated Sb2S3 in an amorphous state. Such unique phase evolution behavior gives rise to superb electrochemical performance and leads to an unexpectedly small volume expansion of ≈54%. The first‐principles calculations reveal distinctive phase evolution arising from the synergy between the extremely low Na+ ion diffusion barrier of 190 meV and the sharply increased electronic conductivity upon the formation of amorphous Nax Sb2S3 intermediate phases. These findings highlight an anomalous Na+ ion storage mechanism and shed new light on the development of high performance SIB anodes based on van der Waals crystals.  相似文献   

5.
A series of 24 mutants was made in the buried core of chicken lysozyme at positions 40, 55, and 91. The midpoint temperature of thermal denaturation transition (Tm) values of these core constructs range from 60.9 to 77.3 degrees C, extending an earlier, more limited investigation on thermostability. The Tm values of variants containing conservative replacements for the wild type (WT) (Thr 40-Ile 55-Ser 91) triplet are linearly correlated with hydrophobicity (r = 0.81) and, to a lesser degree, with combined side-chain volume (r = 0.75). The X-ray structures of the S91A (1.9 A) and I55L/S91T/D101S (1.7 A) mutants are presented. The former amino acid change is found in duck and mammalian lysozymes, and the latter contains the most thermostable core triplet. A network of four conserved, buried water molecules is associated with the core. It is postulated that these water molecules significantly influence the mutational tolerance at the individual triplet positions. The pH dependence of Tm for the S91D mutant was compared with that of WT enzyme. The pKa of S91D is 1.2 units higher in the native than in the denatured state, corresponding to delta delta G298 = 1.7 kcal/mol. This is a low value for charge burial and likely reflects the moderating influence of the buried water molecules or a conformational change. Thermal and chemical denaturation and far UV CD spectroscopy were used to characterize the in vitro properties of I55T. This variant, which buries a hydroxyl group, has similar properties to those of the human amyloidogenic variant I56T.  相似文献   

6.
Two mutant forms of fumarase C from E. coli have been made using PCR and recombinant DNA. The recombinant form of the protein included a histidine arm on the C-terminal facilitating purification. Based on earlier studies, two different carboxylic acid binding sites, labeled A- and B-, were observed in crystal structures of the wild type and inhibited forms of the enzyme. A histidine at each of the sites was mutated to an asparagine. H188N at the A-site resulted in a large decrease in specific activity, while the H129N mutation at the B-site had essentially no effect. From the results, we conclude that the A-site is indeed the active site, and a dual role for H188 as a potential catalytic base is proposed. Crystal structures of the two mutant proteins produced some unexpected results. Both mutations reduced the affinity for the carboxylic acids at their respective sites. The H129N mutant should be particularly useful in future kinetic studies because it sterically blocks the B-site with the carboxyamide of asparagine assuming the position of the ligand's carboxylate. In the H188N mutation at the active site, the new asparagine side chain still interacts with an active site water that appears to have moved slightly as a result of the mutation.  相似文献   

7.
The recombinant catalytic subunit of human protein kinase CK2 bas been mutagenised at the C-terminal region in an attempt to induce this tail to fold. We suppose in fact that this unstructured C-terminus just might be responsible for the high degradability of the human enzyme. On the basis of theoretical calculations we choose to substitute two distal prolines with alanines (PA 382-384). The mutant bas been purified to the electrophoretic homogeneity by means of three chromatographic steps. By circular dichroism Spectroscopy we verified if the double amino acids substitution reflected on the secondary structure of the recombinant subunit. According to our theoretical predictions, we observed that the -helix content of the protein increased when the two distal prolines were substituted by alanines. Moreover the mutant catalytic subunit shows a reduced ability to bind a classical inhibitor such as heparin.  相似文献   

8.
Colorectal cancer (CRC) is the third most prevalent cancer and fourth leading cause of cancer-related deaths globally. It has been shown that the nsSNP variants play an important role in diseases, however it remained unclear how these variants are associated with the disease. Recently, several CRC risk associated SNPs have been discovered, however rs961253 (Lys25Arg at 20p12.3) located in the proximity of bone morphogenetic protein 2 (Bmp2) and fermitin family homolog 1 Fermt1 genes have been reported to be highly associated with the CRC risk. Here we provide evidence for the first time in silico biological functional and structural implications of non-synonymous (nsSNPs) CRC disease-associated variant Lys25Arg via molecular dynamic (MD) simulation. Protein structural analysis was performed with a particular variant allele (A/C, Lys25Arg) and compared with the predicted native protein structure. Our results showed that this nsSNP will cause changes in the protein structure and as a result is associated with the disease. In addition to the native and mutant 3D structures of CRC associated risk allele protein domain (CRAPD), they were also analyzed using solvent accessibility models for further protein stability confirmation. Taken together, this study confirmed that this variant has functional effect and structural impact on the CRAPD and may play an important role in CRC disease progression; hence it could be a reasonable approach for studying the effect of other deleterious variants in future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号