首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A quantitative technique for the assessment of sporozoite infectivity in vivo, using intra-cecal inoculation of Eimeria tenella sporozoites, has been developed. Evaluation of the infection using cecal lesion scores and oocyst counts showed that this technique should be useful for the quantitation of sporozoite viability and thus for the anti-sporozoite activity of different treatments prior to inoculation. Pre-treatment of sporozoites with heat-inactivated hyperimmune antisera neutralized sporozoite infectivity in vivo and indicated that antibodies in the absence of complement inhibited sporozoite infectivity in vivo.  相似文献   

2.
ABSTRACT. A quantitative technique for the assessment of sporozoite infectivity in vivo, using intra-cecal inoculation of Eimeria tenella sporozoites, has been developed. Evaluation of the infection using cecal lesion scores and oocyst counts showed that this technique should be useful for the quantitation of sporozoite viability and thus for the anti-sporozoite activity of different treatments prior to inoculation. Pre-treatment of sporozoites with heat-inactivated hyperimmune antisera neutralized sporozoite infectivity in vivo and indicated that antibodies in the absence of complement inhibited sporozoite infectivity in vivo.  相似文献   

3.
We have studied the mechanism of inhibition by interferon-gamma (IFN-gamma) of the development of exoerythrocytic forms (EEF) of Plasmodium berghei in the livers of rats. At the time corresponding to the maximum development of EEF (44 hr after injection of sporozoites), the livers of the IFN-gamma-treated rats contained less parasite DNA as compared with controls. Twenty-four to 72 hr later, the livers of both groups of animals were free of parasites; that is, IFN-gamma treatment does not delay the development of the EEF. The decrease in parasite DNA observed in the IFN-gamma-treated rats was due to a diminution in the number, but not the size, of EEF. It appears, therefore, that treatment with the lymphokine either destroys the parasites or does not affect their replication. To study the mechanism of resistance to IFN-gamma of a small population of EEF, we subjected the parasites to four cycles of selection by IFN-gamma. The parasites from the "selected" and "nonselected" populations were equally susceptible to inhibition by IFN-gamma, indicating that the escape from IFN-gamma activity is not inherited.  相似文献   

4.
We evaluated the effect of using Medium 199 alone and Medium 199 supplemented with 5% normal mouse serum, 5% fetal calf serum, 5% bovine serum albumin or 5% Albumax on Plasmodium yoelii sporozoite yield from infected mosquitoes and infectivity in BALB/c mice. The sporozoites yield, as well as their infectivity, was statistically lower (P = 0.0031) when unsupplemented Medium 199 was used to separate sporozoites from infected mosquitoes. Although Medium 199 supplemented with Albumax led to lower sporozoite yield (P < 0.0009), infectivity of the sporozoites was similar to those obtained with the other medium supplements. Because normal mouse serum supports good sporozoite infections and is also the supplement that can be used repeatedly in mice during multiple sporozoite injections without inducing anaphylaxis, we selected it to evaluate the infectivity of P. yoelii sporozoites in different strains of mice. After injecting mice with serial dilutions of sporozoites and detecting patent infections, we determined that the infective dose 50 (ID50) for BALB/c, C57Bl/6, A/J, and B10BR mice ranged between 4.9 and 10.6 sporozoites. The ID50 obtained for CD-1 mice (147 sporozoites) was significantly higher.  相似文献   

5.
Cryptosporidiosis is a diarrheal disease of humans, calves, and other mammals caused by the coccidian parasite Cryptosporidium parvum. Immune bovine serum and two surface-reactive antisporozoite mAb with neutralizing activity were used to identify sporozoite surface Ag by radioimmunoprecipitation/SDS-PAGE and immunoblotting. When isolated sporozoites were incubated with mAb 18.44, 12 to 25 times the ID50 for mice was completely neutralized. This mAb binds diffusely to the sporozoite surface and recognizes a sporozoite surface Ag that eluted in the void volume of a Bio Gel A column with an exclusion limit of 500,000 daltons. The Ag recognized by mAb 18.44 was not radiolabeled with 125I or [35S] methionine, migrated with the dye front in SDS-PAGE, and was insensitive to proteinase K digestion, suggesting a non-protein composition. mAb 17.41 significantly neutralized 25 times the ID50 of sporozoites for mice. This mAb binds multifocally to the sporozoite surface and recognizes [35S] methionine-labeled sporozoite surface Ag of 28,000 m.w., 55,000 m.w., and 98,000 m.w. Immune bovine serum immunoprecipitated [35S] methionine- or 125I-labeled sporozoite Ag ranging from less than 14,300 m.w. to greater than 200,000 m.w., including surface Ag of 28,000 m.w. and 55,000 m.w. The results indicate that two different molecules capable of inducing neutralizing antibody are exposed on the surface of C. parvum sporozoites.  相似文献   

6.
ABSTRACT. A correlation was observed between in vivo and in vitro activity of six monoclonal antibodies (mAb) against the major circumsporozoite protein of the avian malaria Plasmodium gallinaceum as follows. (1) Two mAb were protective, totally abrogating sporozoite infectivity to chicks, its natural host, in vivo; they caused 100% inhibition of sporozoite invasion (ISI) in vitro to SL-29 chicken fibroblasts and intense ISI to cultured chicken macrophages, as well as inhibited the exoerythrocytic development of sporozoites taken up by macrophages, the initial cell host of P. gallinaceum sporozoites. (2) Two mAb were partially protective in that they reduced sporozoite infectivity to chicks, caused partial ISI to SL-29 and macrophage cells and partial inhibition to the exoerythrocytic development of sporozoites in macrophages in vitro. (3) Two mAb were totally inactive in vivo although they both bound to the sporozoite antigens as detected by indirect immunofluorescence, western blot, and ELISA; they both failed to induce ISI or inhibit the exoerythrocytic development in macrophages. The possible participation of macrophages as the initial cell type involved in sporozoite destruction in the presence of anti-circumsporozoite antibodies is discussed.  相似文献   

7.
The malarial parasite has two hosts in its life cycle, a vertebrate and a mosquito. We report here that malarial invasion into these hosts is mediated by a protein, designated cell-traversal protein for ookinetes and sporozoites (CelTOS), which is localized to micronemes that are organelles for parasite invasive motility. Targeted disruption of the CelTOS gene in Plasmodium berghei reduced parasite infectivity in the mosquito host approximately 200-fold. The disruption also reduced the sporozoite infectivity in the liver and almost abolished its cell-passage ability. Liver infectivity was restored in Kupffer cell-depleted rats, indicating that CelTOS is necessary for sporozoite passage from the circulatory system to hepatocytes through the liver sinusoidal cell layer. Electron microscopic analysis revealed that celtos-disrupted ookinetes invade the midgut epithelial cell by rupturing the cell membrane, but then fail to cross the cell, indicating that CelTOS is necessary for migration through the cytoplasm. These results suggest that conserved cell-passage mechanisms are used by both sporozoites and ookinetes to breach host cellular barriers. Elucidation of these mechanisms might lead to novel antimalarial strategies to block parasite's transmission.  相似文献   

8.
Plasmodium sporozoites are transmitted through the bite of infected mosquitoes and invade hepatocytes as a first and obligatory step of the parasite life cycle in man. Hepatocyte invasion involves proteins secreted from parasite vesicles called micronemes, the most characterized being the thrombospondin-related adhesive protein (TRAP). Here we investigated the expression and function of another microneme protein recently identified in Plasmodium falciparum sporozoites, apical membrane antigen 1 (AMA-1). P. falciparum AMA-1 is expressed in sporozoites and is lost after invasion of hepatocytes, and anti-AMA-1 antibodies inhibit sporozoite invasion, suggesting that the protein is involved during invasion of hepatocytes. As observed with TRAP, AMA-1 is initially mostly sequestered within the sporozoite. Upon microneme exocytosis, AMA-1 and TRAP relocate to the sporozoite surface, where they are proteolytically cleaved, resulting in the shedding of soluble fragments. A subset of serine protease inhibitors blocks the processing and shedding of both AMA-1 and TRAP and inhibits sporozoite infectivity, suggesting that interfering with sporozoite proteolytic processing may constitute a valuable strategy to prevent hepatocyte infection.  相似文献   

9.
Plasmodium falciparum and P. vivax sporozoites were observed to invade cultured human hepatoma cells in vitro. Monoclonal antibodies to the circumsporozoite (CS) protein of each of these malarial species blocked invasion. Inhibition was species-specific, but was independent of the geographic origin of each strain. Because these monoclonal antibodies have been shown to diminish or abolish sporozoite infectivity to susceptible primate hosts, it is suggested that inhibition of invasion of sporozoites (ISI) into cultured cells may represent in in vitro assay for protective antibodies. This was confirmed by the finding that serum taken from volunteers immune to sporozoite challenge also totally blocked sporozoite invasion. The ISI assay also detected naturally acquired invasive-neutralizing antibodies in areas endemic for malaria. This ISI assay may therefore be useful in determining the incidence of inhibitory anti-sporozoite antibodies in general populations, and allow the monitoring of the effect of an anti-malarial vaccine using sporozoite-derived antigens.  相似文献   

10.
In this study, we examined the activity of recombinant interferon (IFN)-gamma against Plasmodium berghei exoerythrocytic forms (EEF) grown in vitro within the highly differentiated human hepatoma cell line HEPG2. We assayed the effect of IFN-gamma on parasite growth by DNA hybridization using a P. berghei specific DNA probe. The specific activity of IFN-gamma against EEF is very high, and depends upon the time of lymphokine addition. When IFN-gamma is added to HEPG2 cells containing intracellular EEF, 6 hr after sporozoite invasion, parasite DNA replication is inhibited by approximately 75% at 10(3) U/ml and 50% at 1 U/ml. This treatment can either abolish or greatly reduce the infectivity of EEF for mice. When added earlier, 3 hr after completion of sporozoite invasion, IFN-gamma inhibits parasite replication to an even greater degree. The highest levels of inhibition were obtained when IFN-gamma was added 6 hr prior to sporozoite invasion (100% inhibition at 10(2) U/ml, approximately 55% inhibition at 0.1 U/ml, and 17% inhibition at 0.001 U/ml). We found that HEPG2 cells express approximately 44,000 surface receptors for IFN-gamma. These data are consistent with the view that IFN-gamma exerts its antimalarial activity by binding to surface receptors on hepatocytes and inducing intracellular changes unfavorable for parasite development. Tryptophan starvation does not appear to be involved in this process. These findings also support the idea that IFN-gamma, released from immune T cells upon encountering sporozoite antigen, may be an important effector mechanism in sterile immunity to sporozoite challenge.  相似文献   

11.
Plasmodium sporozoites are transmitted through the bite of infected mosquitoes and first invade the liver of the mammalian host, as an obligatory step of the life cycle of the malaria parasite. Within hepatocytes, Plasmodium sporozoites reside in a membrane-bound vacuole, where they differentiate into exoerythrocytic forms and merozoites that subsequently infect erythrocytes and cause the malaria disease. Plasmodium sporozoite targeting to the liver is mediated by the specific binding of major sporozoite surface proteins, the circumsporozoite protein and the thrombospondin-related anonymous protein, to glycosaminoglycans on the hepatocyte surface. Still, the molecular mechanisms underlying sporozoite entry and differentiation within hepatocytes are largely unknown. Here we show that the tetraspanin CD81, a putative receptor for hepatitis C virus, is required on hepatocytes for human Plasmodium falciparum and rodent Plasmodium yoelii sporozoite infectivity. P. yoelii sporozoites fail to infect CD81-deficient mouse hepatocytes, in vivo and in vitro, and antibodies against mouse and human CD81 inhibit in vitro the hepatic development of P. yoelii and P. falciparum, respectively. We further demonstrate that the requirement for CD81 is linked to sporozoite entry into hepatocytes by formation of a parasitophorous vacuole, which is essential for parasite differentiation into exoerythrocytic forms.  相似文献   

12.
Mature exoerythrocytic forms (EEF) of Plasmodium falciparum from the chimpanzee were examined by light- and transmission electron microscopy from a liver biopsy taken on Day 6 after sporozoite inoculation. Infectivity of the sporozoites obtained from whole mosquitoes which were membrane fed on cultured gametocytes was about 4-6%. In comparison, salivary gland sporozoites added to human hepatocytes in vitro had only a developmental percentage of 0.02 to 0.05% at Day 5. The EEF found in the liver biopsy were not all at the same stage of development. Immature compact parasites were seen simultaneously with stages with fully formed merozoites, indicating a rapid final maturation or asynchrony. At Day 7.5, large numbers of rings were already seen in the peripheral blood, indicating a duration of the liver development of P. falciparum in the chimpanzee of about 5.5-6 days. The process of merogony at the fine structural level was comparable to that described for rodent and other primate parasites in vivo. Compared to the fine structure of EEF in vitro in cultured human hepatocytes, the parasites described here were much more advanced in development. There appeared to be some cell infiltration with collagen deposition around the intracellular parasite; however, no marked degeneration of EEF was observed.  相似文献   

13.
A monoclonal antibody specific for the Theileria parva sporozoite, which recognizes a determinant on the surface coat and blocks sporozoite infectivity, was used to investigate the presence of the determinant on other stages of the parasite lifecycle. Immunofluorescence techniques did not demonstrate this determinant on the kinete, schizont, merozoite, or piroplasm stages of the parasite. Immunoautoradiography, using a tritiated form of the monoclonal antibody, on sections of infected salivary glands collected from ticks that had fed for 0, 1, 2, 3, or 4 days revealed that the determinant recognized was synthesized predominantly during sporogony, between 2 to 3 days after the tick started feeding. Immunoelectron microscopy was performed on ultrathin frozen sections of infected tick salivary glands incubated with the monoclonal antibody followed by Protein-A--colloidal gold. The antigen or its precursor could be detected in the developing parasite. In ticks fed 2 days, the sporoblast was labeled, both in the cytoplasm and on parasite membranes, often including the nuclear envelope. In sections from ticks fed 4 days, the sporozoite surface membrane was labeled, as were membrane-bounded sporozoite organelles identified as micronemes. Observation by immunofluorescence, on sporozoites incubated with bovine peripheral blood lymphocytes, suggested that the antigen recognized by the monoclonal antibody does not enter the lymphocyte during sporozoite endocytosis. We conclude that synthesis of the antigen or its precursor(s) occurs during sporogony in the feeding tick, at the time of maximal parasite proliferation, and precedes the formation of morphologically mature sporozoites; the antigen's role in the parasite life cycle also appears to be limited to events associated with the sporozoite entry process.  相似文献   

14.
Sporozoites and merozoites are stages in the life cycle of Cryptosporidium parvum that can cyclically infect intestinal cells, causing persistent infection and severe diarrhea in immunodeficient patients. Infection by sporozoites can be neutralized by surface-reactive mAb. We show that merozoite infectivity can also be neutralized by surface-reactive mAb. To do this, viable C. parvum merozoites were isolated by differential and isopycnic. centrifugation, and distinguished from sporozoites by transmission electron microscopy. Differential reactivity with a panel of seven mAb was used to determine the amount of sporozoite contamination in isolated merozoite preparations. The isolated merozoites were distinguished from sporozoites (p less than 0.0001) by four sporozoite-specific mAb (16.332, 16.502, 17.25, and 18.357) in an indirect immunofluorescence assay. Three mAb (16.29, 17.41, and 18.44) consistently reacted with both merozoites and sporozoites. Isolated merozoites were infectious for neonatal mice when administered by intraintestinal injection. Infectivity for mice was significantly neutralized (p less than 0.05) when 1 to 2 x 10(5) merozoites were incubated with sporozoite-neutralizing mAb 17.41 or 18.44, before inoculation. Merozoites incubated with an isotype control mAb remained infectious for neonatal mice. We conclude that C. parvum merozoites share neutralization-sensitive epitopes with sporozoites.  相似文献   

15.
In this study we present the first systematic analysis of the immunity induced by normal Plasmodium yoelii sporozoites in mice. Immunization with sporozoites, which was conducted under chloroquine treatment to minimize the influence of blood stage parasites, induced a strong protection against a subsequent sporozoite and, to a lesser extent, against infected RBC challenges. The protection induced by this immunization protocol proved to be very effective. Induction of this protective immunity depended on the presence of liver stage parasites, as primaquine treatment concurrent with sporozoite immunization abrogated protection. Protection was not found to be mediated by the Abs elicited against pre-erythrocytic and blood stage parasites, as demonstrated by inhibition assays of sporozoite penetration or development in vitro and in vivo assays of sporozoite infectivity or blood stage parasite development. CD4(+) and CD8(+) T cells were, however, responsible for the protection through the induction of IFN-gamma and NO.  相似文献   

16.
17.
Invasion of hepatocytes by Plasmodium sporozoites deposited by Anopheles mosquitoes, and their subsequent transformation into infective merozoites is an obligatory step in the initiation of malaria. Interactions between the sporozoites and hepatocytes lead to a distinct, complex and coordinated cellular and systemic host response. Little is known about host liver cell response to sporozoite invasion, or whether it is primarily adaptive for the parasite, for the host, or for both. Our present study used gene expression profiling of human HepG2-A16 liver cells infected with Plasmodium falciparum sporozoites to understand the host early cellular events and factors influencing parasite infectivity and sporozoite development. Our results show that as early as 30 min following wild-type, non-irradiated sporozoite exposure, the expressions of at least 742 genes was selectively altered. These genes regulate diverse biological functions, such as immune processes, cell adhesion and communications, metabolism pathways, cell cycle regulation, and signal transduction. These functions reflect cellular events consistent with initial host cell defense responses, as well as alterations in host cells to sustain sporozoites growth and survival. Irradiated sporozoites gave very similar gene expression pattern changes, but direct comparative analysis between liver gene expression profiles caused by irradiated and non-irradiated sporozoites identified 29 genes, including glypican-3, that were specifically up-regulated only in irradiated sporozoites. Elucidating the role of this subset of genes may help identify the molecular basis for the irradiated sporozoites inability to develop intrahepatically, and their usefulness as an immunogen for developing protective immunity against pre-erythrocytic stage malaria.  相似文献   

18.
Plasma samples from individuals infected with human immunodeficiency virus type 1 (HIV-1) are known to be highly strain specific in their ability to neutralize HIV-1 infectivity. Such plasma samples exhibit significant neutralizing activity against autologous HIV-1 isolates but typically exhibit little or no activity against heterologous strains, although some cross-neutralizing activity can develop late in infection. Monkeys infected with the simian-human immunodeficiency virus (SHIV) clone DH12 generated antibodies that neutralized SHIV DH12, but not SHIV KB9. Conversely, antibodies from monkeys infected with the SHIV clone KB9 neutralized SHIV KB9, but not SHIV DH12. To investigate the role of the variable loops of the HIV-1 envelope glycoprotein gp120 in determining this strain specificity, variable loops 1 and 2 (V1/V2), V3, or V4 were exchanged individually or in combination between SHIV DH12 and SHIV KB9. Despite the fact that both parental viruses exhibited significant infectivity and good replication in the cell lines examined, 3 of the 10 variable-loop chimeras exhibited such poor infectivity that they could not be used further for neutralization assays. These results indicate that a variable loop that is functional in the context of one particular envelope background will not necessarily function within another. The remaining seven replication-competent chimeras allowed unambiguous assignment of the sequences principally responsible for the strain specificity of the neutralizing activity present in SHIV-positive plasma. Exchange of the V1/V2 loop sequences conferred a dominant loss of sensitivity to neutralization by autologous plasma and a gain of sensitivity to neutralization by heterologous plasma. Substitution of V3 or V4 had little or no effect on the sensitivity to neutralization. These data demonstrate that the V1/V2 region of HIV-1 gp120 is principally responsible for the strain specificity of the neutralizing antibody response in monkeys infected with these prototypic SHIVs.  相似文献   

19.
Nine monoclonal antibodies (MAbs) developed against Plasmodium vivax (Grassi & Feletti) salivary gland sporozoites were evaluated for use in an enzyme-linked immunosorbent assay (ELISA), using sporozoites developed in Anopheles dirus Peyton & Harrison An. gambiae Giles and An.maculatus Theobald. Four of the antibodies were unsuitable due to the low sensitivity of the resulting assays or the requirement for high concentrations of capture antibody. An additional two MAbs were rejected because they resulted in assays with high background absorbance, attributed to self-binding. Of the three remaining MAbs, the use of Navy vivax sporozoite (NVS) 3 resulted in an ELISA with the highest sensitivity and the lowest concentration requirement for capture antibody. Assay sensitivity varied with sporozoite strain indicating possible quantitative epitope heterogeneity. None of the MAbs cross-reacted with the heterologous sporozoites tested by immunofluorescence antibody assay (IFA). The IFA activity was not an indicator of ELISA sensitivity. The use of MAb NVS 3 in a standardized ELISA method resulted in an assay 10 times more sensitive than reported previously for P. vivax sporozoites, with a detection limit of fewer than 100 sporozoites per mosquito.  相似文献   

20.
Sporozoites of rodent and simian malaria (Plasmodium berghei and P. cynomolgi) were purified by centrifugation on a linear Renografin/BSA gradient. This procedure made it possible to process rapidly a large number of infected mosquitoes leading to the recovery of a considerable proportion of sporozoites. Gradient-recovered sporozoites (GRS) freed of most bacteria and mosquito tissue contaminants, retained their infectivity and immunogenicity. Mice repeatedly injected i.v. with irradiated GRS of P. berghei acquired total protection against an otherwise lethal sporozoite challenge. GRS of P. berghei and P. cynomolgi induced antisporozoite (CSP) antibody production in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号