首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J W Taylor 《Biochemistry》1990,29(22):5364-5373
Two peptide models of dynorphin A(1-17) have been synthesized. These peptides incorporate a minimally homologous substitute sequence for residues 6-17, including alternating lysine and valine residues substituting for the potential amphiphilic beta-strand structure in positions 7-15. Model 1 retains Pro10 from the native sequence, but model 2 does not. Compression isotherms of peptide monolayers at the air-water interface and CD spectra of peptide films adsorbed from aqueous solution onto siliconized quartz slides were evaluated by comparison to those of idealized amphiphilic alpha-helical, beta-sheet, and disordered peptides. Dynorphin A(1-17) was mostly disordered, whereas beta-endorphin was alpha helical. Dynorphin model 1 had properties similar to those of dynorphin A(1-17) at these interfaces, but model 2 formed strongly amphiphilic beta sheets. In binding assays to mu-, delta-, and kappa-opioid receptors in guinea pig brain membranes, model 1 reproduced the high potency and selectivity of dynorphin A(1-17) for kappa receptors, and model 2 was only 3 times less potent and less selective for these receptors. Both peptide models retained the high, kappa-selective agonist activity of dynorphin A(1-17) in guinea pig ileum assays, and like dynorphin A(1-17), model 1 had little activity in the rat vas deferens assay. In view of the minimal homology of the modeled dynorphin structures, these studies support current models of membrane-catalyzed opioid ligand-receptor interactions and suggest a role for the amphiphilic alpha-helical and beta-strand structures in beta-endorphin and dynorphin A(1-17), respectively, in this process.  相似文献   

2.
The structural requirements for the binding of dynorphin to the kappa-opioid receptor are of profound clinical interest in the search for a powerful nonaddictive analgesic. These requirements are thought to be met by the membrane-mediated conformation of the opioid peptide dynorphin A-(1-13)-peptide, Tyr1-Gly2-Gly3-Phe4-Leu5-Arg6-Arg7-Ile8-Arg9-Pro10- Lys11-Leu12-Lys13. Schwyzer has proposed an essentially alpha-helical membrane-mediated conformation of the 13 amino acid peptide [Schwyzer, R. (1986) Biochemistry 25, 4281-4286]. In the present study, circular dichroism (CD) studies on dynorphin A-(1-13)-peptide bound to an anionic phospholipid signified negligible helical content of the peptide. CD studies also demonstrated that the aqueous-membraneous interphase may be mimicked by methanol. The 500- and 620-MHz 1H nuclear magnetic resonance (NMR) spectra of dynorphin A-(1-13)-peptide in methanolic solution were sequence-specifically assigned with the aid of correlated spectroscopy (COSY), double-quantum filtered phase-sensitive COSY (DQF-COSY), relayed COSY (RELAY), and nuclear Overhauser enhancement spectroscopy (NOESY). 2-D CAMELSPIN/ROESY experiments indicated that at least the part of the molecule from Arg7 to Arg9 was in an extended or beta-strand conformation, which agreed with deuterium-exchange and temperature-dependence studies of the amide protons and analysis of the vicinal spin-spin coupling constants 3JHN alpha. The results clearly demonstrated the absence of extensive alpha-helix formation. chi 1 rotamer analysis of the 3J alpha beta demonstrated no preferred side-chain conformations.  相似文献   

3.
Meunier J  Mouledous L  Topham CM 《Peptides》2000,21(7):893-900
Nociceptin and the ORL1 receptor share high sequence similarity with opioid peptides, particularly dynorphin A, and their receptors. However, nociceptin and dynorphin A may use distinct molecular pathways to bind and activate their cognate receptors. Activation of the kappa-opioid receptor by dynorphin A is thought to require interactions of its N-terminal hydrophobic domain (Y(1)GGF) with the receptor opioid binding pocket, located within the transmembrane helix bundle, while activation of the ORL1 receptor appears to require interactions of the positively charged core (R(8)KSARK) of nociceptin with the negatively charged second extracellular receptor loop.  相似文献   

4.
Szeto HH 《Life sciences》2003,73(6):749-758
Although dynorphin has long been considered an endogenous opioid peptide with high affinity for the kappa-opioid receptor, its biological function remains uncertain. The high concentration of dynorphin peptides and kappa-opioid receptors in the hypothalamus suggest a possible role for dynorphin in neuroendocrine regulation. This review will summarize evidence that support a role for dynorphin in regulation of the developing hypothalamo-pituitary-adrenal (HPA) axis. Dynorphin can exert dual actions on adrenocorticotropin (ACTH) release: (i) via activation of hypothalamic kappa-opioid receptors leading to release of corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP), and (ii) via a non-opioid mechanism that involves N-methyl-D-aspartate (NMDA) receptors and prostaglandins, and which is not dependent on CRH or AVP. The primary site of action of dynorphin and NMDA appears to be the fetal hypothalamus or a supra-hypothalamic site. The non-opioid mechanism does not mature until a few days prior to parturition and is active for only the brief perinatal period. In contrast, the opioid mechanism behaves as a constitutive system with sustained activity from prenatal to postnatal life. It is likely that the two mechanisms may respond to different stress stimuli and play a different role during development.  相似文献   

5.
A Direct Chemical Interaction between Dynorphin and Excitatory Amino Acids   总被引:2,自引:0,他引:2  
The endogenous opioid peptide dynorphin A elicits non-opioid receptor-mediated neurotoxic effects. These effects are blocked by pretreatment with N-methyl-D-aspartate (NMDA) receptor antagonists. Herein, the mechanism for the non-opioid effects of dynorphin and related peptides was studied by matrix-assisted laser desorption ionization (MALDI) mass-spectrometry. We observed that both glutamate or aspartate bind non-covalently to dynorphin A and dynorphin 2-17. However, when dynorphin A or dynorphin 2-17 were added to an equimolar mixture of Glutamate and Aspartate, they both complexed preferentially with glutamate. These data may explain the non-opioid physiological effects of dynorphin A and related peptides and indicate that the direct chemical interaction between neurotransmitters should be monitored when studying interactions between different neurochemical systems.  相似文献   

6.
This paper provides the first direct experimental evidence for the secondary structural features of the putative second extracellular loop (ECL II) of the kappa opioid receptor through a synthetic peptide mimic in a DPC micelle environment. These studies indicate that residues V(6)-A(15) of the ECL II peptide adopt a well-defined helical structure analogous to that formed by V(201)-C(210) of the native receptor. Moreover, a beta-turn around the D(22) (D(217)) and D(23) (D(218)) residues represents another feature of the ECL II. The NMR and fluorescent data also suggest the location of the two helical turns of TM V and the approximate location of the C-terminal end of the TM IV of the kappa opioid receptor. We modeled the kappa opioid receptor including the extracellular region of the receptor. The model of the ECL II utilized the information obtained from the NMR structural analysis of the ECL II peptide in a DPC micelle solution and the molecular dynamic simulations in a biphasic membrane environment. Our discovery of this amphiphilic helical region in the ECL II peptide by NMR and molecular modeling studies provides direct evidence that the sequence of residues V(201)-C(210) is likely to be the helical region that interacts with Dynorphin (Dyn) A [Paterlini, G., Portoghese, P. S., and Ferguson, D. M. (1997) J. Med. Chem. 40, 3254-3262]. We believe that this work offers further insight into the structural characteristics of the extracellular portions of the seven-TM kappa opioid receptor.  相似文献   

7.
Salvinorin A is a naturally occurring hallucinogenic diterpenoid from the plant Salvia divinorumthat selectively and potently activates kappa-opioid receptors (KORs). Salvinorin A is unique in that it is the only known lipid-like molecule that selectively and potently activates a G-protein coupled receptor (GPCR), which has as its endogenous agonist a peptide; salvinorin A is also the only known non-nitrogenous opioid receptor agonist. In this paper, we identify key residues in KORs responsible for the high binding affinity and agonist efficacy of salvinorin A. Surprisingly, we discovered that salvinorin A was stabilized in the binding pocket by interactions with tyrosine residues in helix 7 (Tyr313 and Tyr320) and helix 2 (Tyr119). Intriguingly, activation of KORs by salvinorin A required interactions with the helix 7 tyrosines Tyr312, Tyr313, and Tyr320 and with Tyr139 in helix 3. In contrast, the prototypical nitrogenous KOR agonist U69593 and the endogenous peptidergic agonist dynorphin A (1-13) showed differential requirements for these three residues for binding and activation. We also employed a novel approach, whereby we examined the effects of cysteine-substitution mutagenesis on the binding of salvinorin A and an analogue with a free sulfhydryl group, 2-thiosalvinorin B. We discovered that residues predicted to be in close proximity, especially Tyr313, to the free thiol of 2-thiosalvinorin B when mutated to Cys showed enhanced affinity for 2-thiosalvinorin B. When these findings are taken together, they imply that the diterpenoid salvinorin A utilizes unique residues within a commonly shared binding pocket to selectively activate KORs.  相似文献   

8.
The structural properties of the endogenous opioid peptide dynorphin A(1-17) (DynA), a potential analgesic, were studied with molecular dynamics simulations in dimyristoylphosphatidylcholine bilayers. Starting with the known NMR structure of the peptide in dodecylphosphocholine micelles, the N-terminal helical segment of DynA (encompassing residues 1-10) was initially inserted in the bilayer in a perpendicular orientation with respect to the membrane plane. Parallel simulations were carried out from two starting structures, systems A and B, that differ by 4 A in the vertical positioning of the peptide helix. The complex consisted of approximately 26,400 atoms (dynorphin + 86 lipids + approximately 5300 waters). After >2 ns of simulation, which included >1 ns of equilibration, the orientation of the helical segment of DynA had undergone a transition from parallel to tilted with respect to the bilayer normal in both the A and B systems. When the helix axis achieved a approximately 50 degrees angle with the bilayer normal, it remained stable for the next 1 ns of simulation. The two simulations with different starting points converged to the same final structure, with the helix inserted in the bilayer throughout the simulations. Analysis shows that the tilted orientation adopted by the N-terminal helix is due to specific interactions of residues in the DynA sequence with phospholipid headgroups, water, and the hydrocarbon chains. Key elements are the "snorkel model"-type interactions of arginine side chains, the stabilization of the N-terminal hydrophobic sequence in the lipid environment, and the specific interactions of the first residue, Tyr. Water penetration within the bilayer is facilitated by the immersed DynA, but it is not uniform around the surface of the helix. Many water molecules surround the arginine side chains, while water penetration near the helical surface formed by hydrophobic residues is negligible. A mechanism of receptor interaction is proposed for DynA, involving the tilted orientation observed from these simulations of the peptide in the lipid bilayer.  相似文献   

9.
BackgroundDynorphin 1–17 is an endogenous peptide that is released at sites of inflammation by leukocytes, binding preferentially to κ-opioid receptors (KOP) to mediate nociception. We have previously shown that dynorphin 1–17 is rapidly biotransformed to smaller peptide fragments in inflamed tissue homogenate. This study aimed to determine the efficacy and potency of selected dynorphin fragments produced in an inflamed environment at the KOP, μ and δ-opioid receptors (MOP and DOP respectively) and in a model of inflammatory pain. Functional activity of Dynorphin 1–17 and fragments (1–6, 1–7 and 1–9) were screened over a range of concentrations against forskolin stimulated human embryonic kidney 293 (HEK) cells stably transfected with one of KOP, MOP or DOP. The analgesic activity of dynorphin 1–7 in a unilateral model of inflammatory pain was subsequently tested. Rats received unilateral intraplantar injections of Freund’s Complete Adjuvant to induce inflammation. After six days rats received either dynorphin 1–7, 1–17 or the selective KOP agonist U50488H and mechanical allodynia determined. Dynorphin 1–7 and 1–9 displayed the greatest activity across all receptor subtypes, while dynorphin 1–7, 1–9 and 1–17 displaying a potent activation of both KOP and DOP evidenced by cAMP inihibition. Administration of dynorphin 1–7 and U50488H, but not dynorphin 1–17 resulted in a significant increase in paw pressure threshold at an equimolar dose suggesting the small peptide dynorphin 1–7 mediates analgesia. These results show that dynorphin fragments produced in an inflamed tissue homogenate have changed activity at the opioid receptors and that dynorphin 1–7 mediates analgesia.  相似文献   

10.
Metorphamide is a [Met]-enkephalin-containing opioid octapeptide with a C-terminal alpha-amide group. It is derived from proenkephalin and is, so far, the only endogenous opioid peptide with a particularly high affinity for mu opioid (morphine) receptors, a somewhat lesser affinity for kappa opioid receptors, and a relatively low affinity for delta opioid receptors. The concentrations of metorphamide in the bovine caudate nucleus, the hypothalamus, the spinal cord, and the neurointermediate pituitary were determined by radioimmunoassay and chromatography separation procedures. Metorphamide concentrations were compared with the concentrations of eight other opioid peptides from proenkephalin and prodynorphin in identical extracts. The other opioid peptides were [Met]-enkephalyl-Arg6-Phe7 and [Met]-enkephalyl-Arg6-Gly7-Leu8 from proenkephalin; alpha-neoendorphin, beta-neoendorphin, dynorphin A(1-8), dynorphin A(1-17), and dynorphin B from prodynorphin; and [Leu]-enkephalin, which can be derived from either precursor. All opioid peptides were present in all four bovine neural tissues investigated. Metorphamide concentrations were lower than the concentrations of the other proenkephalin-derived opioid peptides. They were, however, similar to the concentrations of the prodynorphin-derived opioid peptides in the same tissues. Marked differences in the relative ratios of the opioids derived from prodynorphin across brain regions were observed, a finding suggesting differential posttranslational processing. Differences in the ratios of the proenkephalin-derived opioids across brain regions were less pronounced. The results from this study together with previous findings on metorphamide's mu opioid receptor binding and bioactivities suggest that the amounts of metorphamide in the bovine brain are sufficient to make this peptide a candidate for a physiologically significant endogenous mu opioid receptor ligand.  相似文献   

11.
Characterization of Opioid Receptor Subtypes in Solution   总被引:7,自引:5,他引:2  
Stable opioid receptor binding activity that retains distinct subtype specificities (mu, delta, and kappa) has been obtained in high yields in digitonin extracts of rat brain membranes that had been preincubated with Mg2+ prior to solubilization. The dependence on Mg2+ ions for receptor activity is also expressed in the soluble state, where the presence of Mg2+ leads to high-affinity and high-capacity opioid peptide binding to the delta, mu, and kappa sites (the latter subtype measured by the binding of [3H]dynorphin1-8). Binding of opiate alkaloids to soluble receptor sites is less dependent on Mg2+ than is opioid peptide binding. Soluble opioid binding activity shows the same sensitivity to Na+ ions and guanine nucleotides as the membrane-bound receptor. The ligand-receptor interactions give evidence of strong positive cooperativity, which is interpreted in terms of association-dissociation of receptor subunits on ligand binding in solution. Binding of enkephalin peptides is associated with the large macromolecules present (apparent Stokes radii greater than 60 A), whereas both those and several small species present (less than 60 A) bind opiate alkaloids and dynorphin1-8.  相似文献   

12.
NEP/CALLA or CD10 is an endopeptidase (E.C. 3.4.24.11) that inactivates numerous neuropeptides, including dynorphin. Dynorphin is an endogenous opioid polypeptide that binds to kappa-opioid receptors with greatest affinity. R1.1 mouse thymoma cells highly express kappa-opioid receptors. In this study, on R1.1 cells, NEP activity was inhibited by kappa-opioid polypeptide dynorphin (10(-8)-10(-6) M) and by thiorphan (2 x 10(-4) M), a known inhibitor of NEP (30 min treatment). NEP inhibition by dynorphin was stronger than by thiorphan. A non-opioid opioid mechanism of action was mostly involved in this inhibition.  相似文献   

13.
A peptide of 17 amino acid residues Ac-L-K-W-K-K-L-L-K-L-L-K-K-L-L-K-L-G-NH2, designed to form an amphiphilic basic alpha-helix [DeGrado, W.F., Prendergast, F. G., Wolfe, H. R., Jr., & Cox, J. A. (1985) J. Cell. Biochem. 29, 83-93], was labeled with 15N at positions 1, 7, 9, and 10. Homo- and heteronuclear NMR techniques were used to characterize the conformational changes of the peptide when it binds to calmodulin in the presence of Ca2+ ions. The spectrum of the free peptide in aqueous solution at pH 6.3 and 298 K was completely assigned by a combined application of several two-dimensional proton NMR methods. Analysis of the short- and medium-range NOE connectivities and of the secondary chemical shifts indicated that the peptide populates, to a significant extent, an alpha-helix conformational state, in agreement with circular dichroism measurements under similar physicochemical conditions. 15N-edited 1D spectra and 15N(omega 2)-half-filtered two-dimensional NMR experiments on the peptide in a 1:1 complex with calmodulin allowed assignment of half of the amide proton resonances and three C alpha H resonances of the bound peptide. The observed NOE connectivities between the peptide backbone protons are indicative of a stable helical secondary structure spanning at least the fragment L1-K11. The equilibrium and dynamic NMR parameters of the bound peptide are discussed in terms of a molecular interaction model.  相似文献   

14.
The self-assembly in aqueous solution of hybrid block copolymers consisting of amphiphilic beta-strand peptide sequences flanked by one or two PEG chains was investigated by means of circular dichroism spectroscopy, small-angle X-ray scattering, and transmission electron microscopy. In comparison with the native peptide sequence, it was found that the peptide secondary structure was stabilized against pH variation in the di- and tri-block copolymers with PEG. Small-angle X-ray scattering indicated the presence of fibrillar structures, the dimensions of which are comparable to the estimated width of a beta-strand (with terminal PEG chains in the case of the copolymers). Transmission electron microscopy on selectively stained and dried specimens shows directly the presence of fibrils. It is proposed that these fibrils result from the hierarchical self-assembly of peptide beta-strands into helical tapes, which then stack into fibrils.  相似文献   

15.
It has been demonstrated that the antinociception induced by i.t. or i.c.v. administration of endomorphins is mediated through mu-opioid receptors. Moreover, though endomorphins do not have appreciable affinity for kappa-opioid receptors, pretreatment with the kappa-opioid receptor antagonist nor-binaltorphimine markedly blocks the antinociception induced by i.c.v.- or i.t.-injected endomorphin-2, but not endomorphin-1. These evidences propose the hypothesis that endomorphin-2 may initially stimulate the mu-opioid receptors, which subsequently induces the release of dynorphins acting on kappa-opioid receptors to produce antinociception. The present study was performed to determine whether the release of dynorphins by i.c.v.-administered endomorphin-2 is mediated through mu-opioid receptors for producing antinociception. Intracerebroventricular pretreatment with an antiserum against dynorphin A, but not dynorphin B or alpha-neo-endorphin, and s.c. pretreatment with kappa-opioid receptor antagonist nor-binaltorphimine dose-dependently attenuated the antinociception induced by i.c.v.-administered endomorphin-2, but not endomorphin-1 and DAMGO. The attenuation of endomorphin-2-induced antinociception by pretreatment with antiserum against dynorphin A or nor-binaltorphimine was dose-dependently eliminated by additional s.c. pretreatment with a selective mu-opioid receptor antagonist beta-funaltrexamine or a selective mu(1)-opioid receptor antagonist naloxonazine at ultra low doses, which are inactive against mu-opioid receptor agonists in antinociception, suggesting that endomorphin-2 stimulates distinct subclass of mu(1)-opioid receptor that induces the release of dynorphin A acting on kappa-opioid receptors in the brain. It concludes that the antinociception induced by supraspinally administered endomorphin-2 is in part mediated through the release of endogenous kappa-opioid peptide dynorphin A, which is caused by the stimulation of distinct subclass of mu(1)-opioid receptor.  相似文献   

16.
In our approach to beta-endorphin modeling, we have proposed that the biological properties of the natural peptide are determined by the combination of three basic structural units: a highly specific opiate recognition sequence at the NH2 terminus (residues 1-5) connected via a hydrophilic peptide link (residues 6-12) to a potential amphiphilic helix in the COOH-terminal residues 13-31. In the alpha-helical conformation the hydrophobic domain twists around the length of the helix and covers almost one-half of its surface. The other distinctive features of the helix include its basicity and the two aromatic residues Phe18 and Tyr27. In contrast to previous models we have studied, peptide 4 is a "negative" model in the sense that it was designed and examined in order to determine how the lack of a well defined amphiphilic structure affects the biological properties of beta-endorphin. For this purpose, peptide 4 retains the three structural units previously postulated for beta-endorphin, but the amino acids of the 13-31 region are arranged in such a way that no definite continuous hydrophobic zone could be formed in an alpha- or pi-helical conformation of this region. In aqueous buffered solutions, peptide 4 showed almost the same amount of alpha-helical structure as beta-endorphin, with a slight tendency toward less helicity in 50% aqueous 2,2,2-trifluoroethanol. In rat brain homogenate, peptide 4 was degraded slightly slower than beta-endorphin, in contrast to the apparently much higher stability of previous models under the same conditions. With regard to opiate receptor binding, peptide 4 was twice as potent as beta-endorphin in mu-receptor assays but half as potent in delta-receptor assays. The opiate potency of peptide 4 on the guinea pig ileum was higher than that of beta-endorphin. In contrast, in the rat vas deferens assay, which is very specific for beta-endorphin, the potency of peptide 4 was very low and could be shown not to be mediated by the same opiate mechanism or by the same opiate receptor. A comparison of these results with those of previous model peptides provides further evidence for the importance of an amphiphilic helical structure in beta-endorphin residues 13-31, which determines the resistance to proteolysis of the natural molecule and contributes to the delta- and mu-opiate receptor interaction. The amphiphilicity of this helical structure must also be essential for high opiate activity on the rat vas deferens (epsilon-receptors), whereas no such structural requirement appears to be necessary for interaction with the opiate receptors on the guinea pig ileum.  相似文献   

17.
Human parathyroid hormone (hPTH) and several deletion analogues were examined for the presence of secondary structure using circular dichroism spectroscopy. The spectra of hPTH and the deletion analogues 8-84, 34-53, 53-84, 1-34, 13-34, 1-19, and 20-34, in neutral, aqueous buffer, gave no evidence for extensive secondary structure. An alpha-helical-like spectral contribution was found to arise from a region within peptide 13-34. This spectral contribution was speculated to arise from partial stability of a helix consisting of residues 17-29. Molecular dynamics simulations of peptide 1-34 suggested that this peptide tends to fold with a bend defined by residues 10-14, with the amino-terminal and carboxyl-terminal residues tending to be in more extended forms and the other residues in helical-like conformations. The addition of trifluoroethanol promoted the formation of alpha-helix, mainly in the 1-34 region. The putative helix comprised of residues 17-29 was stabilized by the addition of 10-20% TFE, while a second putative helix proximal to the amino terminus, and comprised of residues 3-11, was stabilized by slightly higher concentrations of TFE. An amphiphilic sequence was identified within the 20-34 fragment. The development of alpha-helix on binding this fragment, and other analogues containing this sequence, to palmitoyloleoylphosphatidylserine vesicles provided experimental evidence for the potential role of this amphiphilic sequence in binding to membranes or to a membrane receptor. The relationships between these alpha-helical regions in 1-34, either potentiated by trifluoroethanol or lipid vesicles, are discussed in terms of different receptor-binding regions within hPTH.  相似文献   

18.
Previously we reported that ultralow concentrations of dynorphins (10(-16) to 10(-12) M) inhibited lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and proinflammatory cytokines in mouse glia without the participation of kappa-opioid receptors. In the current study using mouse cortical neuron-glia cocultures, we examined the possibility that inhibition of glia inflammatory response by dynorphins might be neuroprotective for neurons. LPS, in a concentration-dependent manner, markedly increased the release of lactate dehydrogenase (LDH), an indicator of cellular injury. Ultralow concentrations (10(-14) to 10(-12) M) of dynorphin (dyn) A-(1-8) significantly prevented the LPS-induced release of LDH, loss of neurons, and changes in cell morphology, in addition to inhibition of LPS-induced nitrite production. Meanwhile, ultralow concentrations (10(-15) to 10(-13) M) of des-[Tyr(1)]-dyn A-(2-17), a nonopioid peptide which does not bind to kappa-opioid receptors, exhibited the same inhibitory effect as dyn A-(1-17). These results suggest that dynorphins at ultralow concentrations are capable of reducing LPS-induced neuronal injury and these neuroprotective effects of dynorphins are not mediated by classical opioid receptors.  相似文献   

19.
The biotransformation of the opioid peptide dynorphin A(1-17) was investigated in striatum of freely moving Fischer rats, by direct infusion of this peptide, followed by recovery of the resulting biotransformation products via microdialysis and identification using matrix-assisted laser desorption/ionization mass spectrometry. The observed peptides are consistent with enzymatic cleavage at the Arg7-Ile8 position of dynorphin A(1-17), followed by terminal degradation of the resulting dynorphin A(1-7) and dynorphin A(8-17) peptides. Unexpectedly, novel post-translational modifications were found on C-terminal fragments of dynorphin A(1-17). Using tandem mass spectrometry, a covalent modification of mass 172 Da, the nature of which is not understood, was found on the tryptophan residue of C-terminal fragments (Trp14). Additional modifications, of mass 42 and 113 Da, were also found on the N-terminus (Ile8 or Pro10) of these same C-terminal fragments. The role of these modifications of C-terminal fragments has not yet been characterized.  相似文献   

20.
The diversity of peptide ligands for a particular receptor may provide a greater dynamic range of functional responses, while maintaining selectivity in receptor activation. Dynorphin A (Dyn A), and dynorphin B (Dyn B) are endogenous opioid peptides that activate the kappa-opioid receptor (KOR). Here, we characterized interactions of big dynorphin (Big Dyn), a 32-amino acid prodynorphin-derived peptide consisting of Dyn A and Dyn B, with human KOR, mu- (hMOR) and delta- (hDOR) opioid receptors and opioid receptor-like receptor 1 (hORL1) expressed in cells transfected with respective cDNA. Big Dyn and Dyn A demonstrated roughly similar affinity for binding to hKOR that was higher than that of Dyn B. Dyn A was more selective for hKOR over hMOR, hDOR and hORL1 than Big Dyn, while Dyn B demonstrated low selectivity. In contrast, Big Dyn activated G proteins through KOR with much greater potency, efficacy and selectivity than other dynorphins. There was no correlation between the rank order of the potency for the KOR-mediated activation of G proteins and the binding affinity of dynorphins for KOR. The rank of the selectivity for the activation of G proteins through hKOR and of the binding to this receptor also differed. Immunoreactive Big Dyn was detected using the combination of radioimmunoassay (RIA) and HPLC in the human nucleus accumbens, caudate nucleus, hippocampus and cerebrospinal fluid (CSF) with the ratio of Big Dyn and Dyn B being approximately 1:3. The presence in the brain implies that Big Dyn, along with other dynorphins, is processed from prodynorphin and secreted from neurons. Collectively, the high potency and efficacy and the relative abundance suggest that Big Dyn may play a role in the KOR-mediated activation of G proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号