首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The attachment of primary rat hepatocytes and fibroblasts to collagen type I is mediated by non-RGD-dependent β1 integrin matrix receptors. In this report we describe a novel 96-well microtiter plate assay for the quantification of fibroblast-mediated contraction of floating collagen type I gels. Fetal calf serum and platelet-derived growth factor (PDGF), but not transforming growth factor-β1, stimulated primary rat heart fibroblasts and normal human diploid fibroblasts (AG 1518) to contract collagen gels to less than 10% of the initial gel volume within a 24-h incubation period. Rabbit polyclonal antibodies directed to the rat hepatocyte integrin β1-chain inhibited the PDGF-stimulated collagen gel contraction. The inhibitory activity on contraction of the anti-β1 integrin IgG could be overcome by adding higher doses of PDGF. The contraction process was not blocked by anti-fibronectin IgG nor by synthetic peptides containing the tripeptide Arg-Gly-Asp (RGD), in concentrations that readily blocked fibroblast attachment to fibronectin-coated planar substrates. Autologous fibronectin or control peptides containing the tripeptide Arg-Gly-Glu were without effect. Immunofluorescence microscopy on fibroblasts grown within collagen gels revealed a punctate distribution of the β1 integrin and a lack of detectable levels of endogenously produced fibronectin. Collectively these data suggest a role for integrin collagen receptors with affinity for collagen fibers, distinct from the previously described RGD-dependent fibronectin receptors, in the fibronectin-independent PDGF-stimulated collagen gel contraction process.  相似文献   

3.
Beta 1 integrin-mediated collagen gel contraction is stimulated by PDGF   总被引:12,自引:0,他引:12  
The attachment of primary rat hepatocytes and fibroblasts to collagen type I is mediated by non-RGD-dependent beta 1 integrin matrix receptors. In this report we describe a novel 96-well microtiter plate assay for the quantification of fibroblast-mediated contraction of floating collagen type I gels. Fetal calf serum and platelet-derived growth factor (PDGF), but not transforming growth factor-beta 1, stimulated primary rat heart fibroblasts and normal human diploid fibroblasts (AG 1518) to contract collagen gels to less than 10% of the initial gel volume within a 24-h incubation period. Rabbit polyclonal antibodies directed to the rat hepatocyte integrin beta 1-chain inhibited the PDGF-stimulated collagen gel contraction. The inhibitory activity on contraction of the anti-beta 1 integrin IgG could be overcome by adding higher doses of PDGF. The contraction process was not blocked by anti-fibronectin IgG nor by synthetic peptides containing the tripeptide Arg-Gly-Asp (RGD), in concentrations that readily blocked fibroblast attachment to fibronectin-coated planar substrates. Autologous fibronectin or control peptides containing the tripeptide Arg-Gly-Glu were without effect. Immunofluorescence microscopy on fibroblasts grown within collagen gels revealed a punctate distribution of the beta 1 integrin and a lack of detectable levels of endogenously produced fibronectin. Collectively these data suggest a role for integrin collagen receptors with affinity for collagen fibers, distinct from the previously described RGD-dependent fibronectin receptors, in the fibronectin-independent PDGF-stimulated collagen gel contraction process.  相似文献   

4.
Recently, we have reported that (-)-epigallocatechin-3-O-gallate (EGCG) acts as an inhibitor of degranulation. However, the inhibitory mechanism for degranulation is still poorly understood. Here we show that suppression of exocytosis-related myosin II regulatory light chain phosphorylation and alteration of actin remodeling are involved in the inhibitory effect of EGCG on the calcium ionophore-induced degranulation from human basophilic KU812 cells. Surface plasmon resonance assay also revealed that EGCG binds to the cell surface, and the disruption of lipid rafts resulted in reduction of EGCG's ability. We have previously identified the raft-associated 67kDa laminin receptor (67LR) as an EGCG receptor on the cell surface. Treatment of the cells with anti-67LR antibody or RNA interference-mediated downregulation of 67LR expression abolished the effects of EGCG. These findings suggest that EGCG-induced inhibition of the degranulation includes the primary binding of EGCG to the cell surface 67LR and subsequent modulation of cytoskeleton.  相似文献   

5.
Ahn HY  Xu Y  Davidge ST 《Life sciences》2008,82(17-18):964-968
Monocyte chemotactic protein-1 (MCP-1) plays a pivotal role in the recruitment of monocytes and thus in the development of inflammatory cardiovascular diseases. Epigallocatechin-3-O-gallate (EGCG), the major catechin derived from green tea, has multiple beneficial effects to reduce cardiovascular disease but the effects of EGCG on vascular endothelial MCP-1 production is not known. In this study, we investigated the mechanisms by which EGCG may inhibit tumor necrosis factor-alpha (TNFalpha)-induced MCP-1 production in bovine coronary artery endothelial cells. TNFalpha increased MCP-1 production in both a concentration and time-dependent manner. Inhibitors of phosphatidylinositol-3-OH kinase (PI-3 kinase), LY294002 and wortmannin, decreased TNFalpha-induced MCP-1 production. EGCG prevented TNFalpha-mediated MCP-1 production and reduced phosphorylation of Akt (Ser473). In addition, EGCG attenuated TNFalpha mediated down-regulation of TNFalpha receptor 1 (TNFR1), but not TNFR2. In conclusion, EGCG inhibited TNFalpha-induced MCP-1 production. Moreover, EGCG inhibited Akt phosphorylation as well as TNF activation of TNFR1, which subsequently resulted in reduced MCP-1 production. These data provide a novel mechanism where the green tea flavonoid, EGCG, could provide direct vascular benefits in inflammatory cardiovascular diseases.  相似文献   

6.
We report that integrin-mediated signaling induces a rapid and transient tyrosine phosphorylation of platelet-derived growth factor (PDGF) beta-receptors in human diploid foreskin AG 1518 fibroblasts. A transient tyrosine phosphorylation of PDGF beta-receptors was evident one and two hours after cells had been plated on collagen type I and fibronectin, as well as on immobilized anti-integrin subunit IgG, but not on poly-L-lysine. In contrast EGF or PDGF alpha-receptors were not phosphorylated on tyrosine residues under these conditions. Tyrosine phosphorylation of PDGF beta-receptors induced by plating on collagen type I was inhibited by cytochalasin D and herbimycin A, unaffected by cycloheximide and enhanced by orthovanadate. Furthermore, a transient phosphorylation of PDGF beta-receptors occurred when AG 518 fibroblasts were cultured in three-dimensional collagen lattices or exposed to external strain exerted through centrifugation. The latter effect was evident already after two minutes. Clustering of cell surface beta1 integrins led to PDGF beta-receptor phosphorylation both in suspended and firmly attached AG 1518 fibroblasts. Plating of cells on collagen type I, fibronectin, and anti-beta1-integrin IgG resulted in the formation of PDGF beta-receptor aggregates as detected by immunofluorescence. Suramin or anti-PDGF-BB IgG had no effect on the plating-induced tyrosine phosphorylation of PDGF beta-receptors. PDGF-B chain mRNA, or protein, were not detected in AG 1518 fibroblasts. Our data suggest that a ligand-independent PDGF beta-receptor activation during cell adhesion and early phases of cell spreading is involved in integrin-mediated signaling in fibroblasts, and constitutes parts of a mechanism for cells to respond during the dynamic phases of externally applied tension as well as fibroblast-mediated tension during cell adhesion and collagen gel contraction.  相似文献   

7.
Abnormal mesangial extracellular matrix remodeling by mesangial cells (MCs) is the hallmark of progressive glomerulonephritis (GN). We recently showed, using a type I collagen gel contraction assay, that α1β1 integrin-dependent MC adhesion and migration are necessary cell behaviors for collagen matrix remodeling. To further determine the mechanism of α1β1 integrin-mediated collagen remodeling, we studied the signaling pathways of MCs that participate in the regulation of collagen gel contraction. Immunoprecipitation and phosphotyrosine detection revealed that gel contraction is associated with the enhanced activity and phosphorylation of ERK1/2 by MCs. The tyrosine kinase inhibitors herbimycin and genistein inhibited collagen gel contraction dose dependently. Furthermore, targeting ERK1/2 activity with a MEK inhibitor, PD98059, and antisense ERK1/2 hindered gel contraction in a dose-dependent manner. Similar inhibitory effects on gel contraction and ERK1/2 phosphorylation were observed when MC-mediated gel contraction was performed in the presence of function-blocking anti-α1 or anti-β1 integrin antibodies. However, cell adhesion and migration assays indicated that PD98059 and antisense ERK1/2 blocked α1β1 integrin-dependent MC migration, but did not interfere with collagen adhesion, although there was a marked decrease in ERK1/2 phosphorylation and ERK1/2 protein expression in cell adhesion on type I collagen. None of the above could affect membrane expression of α1β1 integrin. These results suggested that ERK1/2 activation is critical for the α1β1 integrin-dependent MC migration necessary for collagen matrix reorganization. We therefore conclude that ERK1/2 may serve as a possible target for pharmacological inhibition of pathological collagen matrix formation in GN.  相似文献   

8.
Collagen fibers expose distinct domains allowing for specific interactions with other extracellular matrix proteins and cells. To investigate putative collagen domains that govern integrin αVβ3-mediated cellular interactions with native collagen fibers we took advantage of the streptococcal protein CNE that bound native fibrillar collagens. CNE specifically inhibited αVβ3-dependent cell-mediated collagen gel contraction, PDGF BB-induced and αVβ3-mediated adhesion of cells, and binding of fibronectin to native collagen. Using a Toolkit composed of overlapping, 27-residue triple helical segments of collagen type II, two CNE-binding sites present in peptides II-1 and II-44 were identified. These peptides lack the major binding site for collagen-binding β1 integrins, defined by the peptide GFOGER. Peptide II-44 corresponds to a region of collagen known to bind collagenases, discoidin domain receptor 2, SPARC (osteonectin), and fibronectin. In addition to binding fibronectin, peptide II-44 but not II-1 inhibited αVβ3-mediated collagen gel contraction and, when immobilized on plastic, supported adhesion of cells. Reduction of fibronectin expression by siRNA reduced PDGF BB-induced αVβ3-mediated contraction. Reconstitution of collagen types I and II gels in the presence of CNE reduced collagen fibril diameters and fibril melting temperatures. Our data indicate that contraction proceeded through an indirect mechanism involving binding of cell-produced fibronectin to the collagen fibers. Furthermore, our data show that cell-mediated collagen gel contraction does not directly depend on the process of fibril formation.  相似文献   

9.
Previously we reported that 67-kDa laminin receptor (67LR) mediates epigallocatechin-3-O-gallate (EGCG)-induced cell growth inhibition and reduction of myosin regulatory light chain (MRLC) phosphorylation at Thr-18/Ser-19, which is important for cytokinesis. Here, we found that human colon adenocarcinoma Caco-2 cells exhibited higher expression level of 67LR and EGCG at a physiologically achievable concentration (1 microM) significantly accumulated the cells in G(2)/M phase without affecting expression of Wnt-signaling components. We also found that myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation at Thr-696, which inhibits myosin phosphatase and promotes MRLC phosphorylation, was reduced in response to 1 microM EGCG. 67LR knockdown by RNA interference abolished the inhibitory effects of 1 microM EGCG on cell cycle progression and the phosphorylation of MRLC and MYPT1. These results suggest that through 67LR, EGCG at a physiological concentration can activate myosin phosphatase by reducing MYPT1 phosphorylation and that may be involved in EGCG-induced cell growth inhibition.  相似文献   

10.
Fibroblast three-dimensional collagen matrix culture provides a tissue-like model that can be used to analyze cell form and function. The physiological agonists platelet-derived growth factor (PDGF) and lysophosphatidic acid (LPA) both stimulate human fibroblasts to contract floating collagen matrices. In this study, we show that the PDGF and LPA signaling pathways required for matrix contraction converge on p21-activated kinase 1 (PAK1) and its downstream effector cofilin1 and that contraction depends on cellular ruffling activity, rather than on the protrusion and retraction of cellular dendritic extensions. We also show that, depending on the agonist, different Rho effectors cooperate with PAK1 to regulate matrix contraction, Rho kinase in the case of PDGF and mDia1 in the case of LPA. These findings establish a unified framework for understanding the cell signaling pathways involved in fibroblast contraction of floating collagen matrices.  相似文献   

11.
Abnormal mesangial extracellular matrix remodeling by mesangial cells (MCs) is the hallmark of progressive glomerulonephritis (GN). We recently showed, using a type I collagen gel contraction assay, that alpha 1 beta 1 integrin-dependent MC adhesion and migration are necessary cell behaviors for collagen matrix remodeling. To further determine the mechanism of alpha 1 beta 1 integrin-mediated collagen remodeling, we studied the signaling pathways of MCs that participate in the regulation of collagen gel contraction. Immunoprecipitation and phosphotyrosine detection revealed that gel contraction is associated with the enhanced activity and phosphorylation of ERK1/2 by MCs. The tyrosine kinase inhibitors herbimycin and genistein inhibited collagen gel contraction dose dependently. Furthermore, targeting ERK1/2 activity with a MEK inhibitor, PD98059, and antisense ERK1/2 hindered gel contraction in a dose-dependent manner. Similar inhibitory effects on gel contraction and ERK1/2 phosphorylation were observed when MC-mediated gel contraction was performed in the presence of function-blocking anti-alpha1 or anti-beta1 integrin antibodies. However, cell adhesion and migration assays indicated that PD98059 and antisense ERK1/2 blocked alpha 1 beta 1 integrin-dependent MC migration, but did not interfere with collagen adhesion, although there was a marked decrease in ERK1/2 phosphorylation and ERK1/2 protein expression in cell adhesion on type I collagen. None of the above could affect membrane expression of alpha 1 beta 1 integrin. These results suggested that ERK1/2 activation is critical for the alpha 1 beta 1 integrin-dependent MC migration necessary for collagen matrix reorganization. We therefore conclude that ERK1/2 may serve as a possible target for pharmacological inhibition of pathological collagen matrix formation in GN.  相似文献   

12.
It is increasingly evident that the stromal cells are involved in key metastatic processes of melanoma and some malignant solid tumors. (-)-Epigallocatechin-3-gallate (EGCG), a polyphenolic compound from green tea, has been shown to have anti-tumor activity, inhibiting adhesion, migration, and proliferation of tumor cells. However, little attention has been paid on its effects on stromal cells. In the present study, we determined the effects of EGCG on stromal fibroblasts. We showed that fibroblast adhesion to collagen, fibronectin, and fibrinogen were inhibited by EGCG. One of the possible mechanisms is binding of EGCG to fibronectin and fibrinogen but not to collagen. We then focused how EGCG affected fibroblast adhesion to collagen. EGCG treatment attenuated the antibody binding to fibroblast's integrin alpha2beta1, indicating EGCG may affect the expression and affinity of integrin alpha2beta1. Moreover, intracellular H2O2 level was decreased by EGCG treatment, suggesting that the tonic maintenance of intracellular H2O2 may be required for cell adhesion to collagen. In parallel, collagen-induced FAK phosphorylation, actin cytoskeleton reorganization in fibroblasts, migration and matrix metalloproteinase(s) (MMPs) activity were also affected by EGCG. Tubular networks formed by melanoma cells grown on three-dimensional Matrigel were also disrupted when fibroblasts were treated with EGCG in a non-contact coculture system. Taken together, we provided here the first evidence that EGCG is an effective inhibitor on behaviors of the stromal fibroblasts, affecting their adhesion and migration. The inhibitory activity of EGCG may contribute to its anti-tumor activity. The findings and concepts disclosed here may provide important basis for a further experiment towards understanding tumor-stroma interaction.  相似文献   

13.
Fibroblast-mediated collagen gel contraction has been used as an in vitro model of tissue remodeling. Thrombin is one of the mediators present in the milieu of airway inflammation and may be involved in airway tissue remodeling. We have previously reported that thrombin stimulates fibroblast-mediated collagen gel contraction partially through the PAR1/PKCε signaling pathway [Q. Fang, X. Liu, S. Abe, T. Kobayashi, X.Q. Wang, T. Kohyama, M. Hashimoto, T. Wyatt, S.I. Rennard, Thrombin induces collagen gel contraction partially through PAR1 activation and PKC-ε, Eur. Respir. J. 24 (2004) 918-924]. Here, we further report that the delta-isoform of PKC (PKCδ) is also activated by thrombin and involved in the thrombin-mediated augmentation of collagen gel contraction. Thrombin (10 nM) significantly increased PKCδ activity (over 5-fold increase after 15-30 min stimulation) and stimulated phosphorylation of PKCδ. Rottlerin, a PKCδ inhibitor, completely inhibited activation of PKCδ and partially blocked collagen gel contraction stimulated by thrombin. Similarly, PKCδ-specific siRNA significantly inhibited PKCδ activation without affecting PKCε expression and activation. Furthermore, suppression of PKCδ by siRNA resulted in partial blockade of thrombin-augmented collagen gel contraction. These results suggest that thrombin contributes to the tissue remodeling in inflammatory airways and lung diseases at least partially through both PKCδ and PKCε signaling.  相似文献   

14.
The tea polyphenol epigallocatechin-3-O-gallate (EGCG) displays some antidiabetic effects; however the mechanisms are incompletely understood. In the present study, the investigation of the effects of EGCG on insulin resistance was performed in rat L6 cells treated with dexamethasone. We found that dexamethasone increased Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1) and reduced phosphorylation of AMPK and Akt. Furthermore, glucose uptake and glucose transporter (GLUT4) translocation were inhibited by dexamethasone. However, the treatment of EGCG improved insulin-stimulated glucose uptake by increasing GLUT4 translocation to plasma membrane. Furthermore, we also demonstrated these EGCG effects essentially depended on the AMPK and Akt activation. Together, our data suggested that EGCG inhibited dexamethasone-induced insulin resistance through AMPK and PI3K/Akt pathway.  相似文献   

15.
Epigallocatechin-3-O-gallate (EGCG), a major polyphenol of green tea, has been shown to inhibit the growth of various cancer cell lines. We show here that EGCG induced the disruption of stress fibers and decreased the phosphorylation of the myosin II regulatory light chain (MRLC) at Thr18/Ser19, which is necessary for both contractile ring formation and cell division. Indirect immunofluorescence analysis revealed that EGCG inhibited the concentration of both F-actin and the phosphorylated MRLC in the cleavage furrow at the equator of dividing cells. In addition, EGCG increased the percentages of cells in the G(2)/M phase and inhibited cell growth. Recently, we have demonstrated that the anticancer activity of EGCG is mediated by the metastasis-associated 67kDa laminin receptor (67LR). To explore whether the effect of EGCG is mediated by the 67LR, we transfected cells with short hairpin RNA (shRNA) expression vector to downregulate 67LR expression. When the 67LR was silenced, the suppressive effect of EGCG on the MRLC phosphorylation was significantly attenuated. These results suggest that EGCG inhibits the cell growth by reducing the MRLC phosphorylation and this effect is mediated by the 67LR.  相似文献   

16.
The abnormal growth of vascular smooth muscle cells (VSMCs) plays an important role in vascular diseases, including atherosclerosis and restenosis after angioplasty. Although (-)-epigallocatechin-3-O-gallate (EGCG) has antiproliferative effects on various cells, relatively a little is known about precise mechanisms of the inhibitory effects of EGCG on SMCs. In this study, the inhibitory effects of EGCG on attachment, proliferation, migration, and cell cycle of rat aortic SMCs (RASMCs) with serum stimulation were investigated. Also, the involvement of nuclear factor-kappaB (NF-kappaB) during these inhibitions by EGCG was examined. EGCG treatment resulted in significant (p<0.05) inhibition in attachment and proliferation of RASMCs induced by serum. While non-treated RASMCs migrated into denuded area in response to serum and showed essentially complete closure after 36 h, EGCG-treated cells covered only 31% of the area even after 48 h of incubation. Furthermore, EGCG treatment resulted in an appreciable cell cycle arrest at both G0/G1- and G2/M-phases. The immunoblot analysis revealed that the constitutive expression of NF-kappaB/p65 nuclear protein in RASMCs was lowered by EGCG in both the cytosol and the nucleus in a dose-dependent manner. These results suggest that the EGCG-caused inhibitory effects on RASMCs may be mediated through NF-kappaB down-modulation.  相似文献   

17.
We found that the peptide Gly-Arg-Gly-Glu-Ser-Pro (GRGESP) inhibited spreading of human fibroblasts inside collagen gels and markedly decreased gel contraction, but this peptide had no effect on cell spreading on collagen-coated surfaces. On the other hand, the peptide Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP), which inhibited cell spreading on collagen-coated surfaces, did not inhibit cell spreading within collagen gels and was a less effective inhibitor of collagen gel contraction than GRGESP. Based on these findings, we conclude that human fibroblasts can interact with different collagen cell recognition sequences depending upon topographical organization of the collagen.  相似文献   

18.
Fibroblasts cultured in mechanically stressed collagen matrices proliferate, whereas cells in floating collagen matrices become quiescent. Previous research indicated that one factor contributing to cell quiescence in floating matrices was reduced receptor autophosphorylation in response to PDGF stimulation (i.e., PDGF receptor desensitization). To learn more about the mechanism of PDGF receptor desensitization, we analyzed changes in PDGF receptor autophosphorylation and receptor kinase activity after stressed collagen matrices were switched to floating conditions, which results in rapid cell contraction and dissipation of mechanical stress. PDGF receptor desensitization occurred during contraction stimulated by serum but not in the absence of serum, and desensitization was prevented by inhibitors of contraction but not by inhibitors of the contraction-activated cyclic AMP signaling pathway. Receptor desensitization resulted from decreased receptor kinase activity rather than from elevated protein tyrosine phosphatase activity, and only receptors unoccupied at the time of contraction were affected. After contraction, radiolabeled PDGF binding to the cells was decreased, which suggested that receptor desensitization resulted from a contraction-dependent change in receptor availability or affinity.  相似文献   

19.
(-)-Epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, was shown to have cancer chemopreventive activity. In this study, we examined the antimetastatic effects of EGCG or the combination of EGCG and dacarbazine on B16-F3m melanoma cells in vitro and in vivo. First, the antimetastatic potentials of five green tea catechins were examined by soft agar colony formation assay, and the results show that EGCG was more effective than the other catechins in inhibiting soft agar colony formation. Second, EGCG dose-dependently inhibited B16-F3m cell migration and invasion by in vitro Transwell assay. Third, EGCG significantly inhibited the spread of B16-F3m cells on fibronectin, laminin, collagen, and Matrigel in a dose-dependent manner. In addition, EGCG significantly inhibited the tyrosine phosphorylation of focal adhesion kinase (FAK) and the activity of matrix metalloproteinase-9 (MMP-9). In animal experiments, EGCG alone reduced lung metastases in mice bearing B16-F3m melanomas. However, a combination of EGCG and dacarbazine was more effective than EGCG alone in reducing the number of pulmonary metastases and primary tumor growths, and increased the survival rate of melanoma-bearing mice. These results demonstrate that combination treatment with EGCG and dacarbazine strongly inhibits melanoma growth and metastasis, and the action mechanisms of EGCG are associated with the inhibition of cell spreading, cell-extracellular matrix and cell-cell interactions, MMP-9 and FAK activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号