首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary The haemocytes of larvae and young pupae of Calliphora erythrocephala are studied by phase contrast and electron microscopy and three cell lineages are distinguished: plasmatocytes, thrombocytoids and oenocytoids. The plasmatocytes show important modifications during larval development and at the time of histolysis, which are described and discussed in relation to the function of these cells in the physiology of Calliphora. The thrombocytoids, haemocytes which had not been recorded so far, are characterized by a strong tendency to fragmentation, this process leading to the formation of the anucleated cytoplasmic fragments and the naked nuclei referred to by earlier authors. The ability of the cell fragments, which retain normal cytological characteristics, to agglutinate and form intricate networks, is discussed in relation to haemostasis in Calliphora.The ultrastructural study of the haemocyte accumulations in the vicinity of the posterior part of the dorsal vessel reveals the basic organization of haemocytopoetic tissue, as described recently in orthopteran insects. The functional importance of this tissue in the production of haemocytes is demonstrated by X-irradiation and ligation experiments in larvae of Calliphora.
Résumé L'étude en microscopie en contraste de phase et au microscope électronique permet de distinguer dans le sang circulant de larves et de jeunes pupes de Calliphora erythrocephala trois lignées cellulaires: les plasmatocytes, les thrombocytoïdes et les oenocytoïdes. Les plasmatocytes, numériquement les plus importants, présentent au cours du développement larvaire et chez les pupes des modifications considérables, qui sont décrites et discutées en rapport avec la fonction évidente de ces hémocytes chez Calliphora. Les thrombocytoïdes, inconnus dans la littérature, se caractérisent par une forte tendance à la fragmentation, qui aboutit à la formation des «fragments cytoplasmiques anucléés» et des «noyaux nus» signalés par divers auteurs. Les phénomènes d'agglutination des «fragments cytoplasmiques anucléés», dont les caractères cytologiques restent normaux, sont discutés en rapport avec le problème de l'hémostase chez cet insecte.L'étude ultrastructurale des accumulations hémocytaires autour du vaisseau dorsal dans la partie postérieure de l'abdomen montre une organisation de base comparable à celle décrite dans les organes hématopoïétiques des Insectes Orthoptères. L'importance fonctionelle de ce tissu hématopoïétique de Calliphora dans la production des hémocytes au cours de la vie larvaire est démontrée par des irradiations de ce tissu et par des ligatures de la partie postérieure de l'abdomen.
  相似文献   

3.
The salivary gland of adult Calliphora erythrocephala is a tubular structure composed of secretory, reabsorptive, and duct regions. Development of these structures has been followed during the six days of larval and ten days of pupal growth. Two small groups of imaginal cells located at the junction between larval gland and duct give rise to the adult gland. These presumptive adult cells divide during all larval stages and appear to be functional components of the larval gland. Shortly after pupation, the larval gland breaks down and the imaginal cells proliferate rapidly, forming sequentially the duct, reabsorptive and secretory regions. Proliferating regions of the developing gland are frequently encrusted with haemocytes. As it elongates the gland establishes intimate contacts first with the basement membrane of the degenerating larval gland, later with an epithelial layer surrounding the main dorsal tracheal trunks, and then with the gut. Cell division continues until about five days after pupation, bu t the gland is unable to secrete fluid in response to 5-hydroxytryptamine stimulation until two hours after the adult fly emerges. The Golgi complex appears to be involved in forming the highly folded membranes of the canaliculi in the secretory region. Presumptive adult salivary gland cells appear to increase in number logarithmically from the time of hatching of the larva until five days after pupation. This contrasts with the development of classical imaginal discs, in which cell division ceases prior to pupation.  相似文献   

4.
5.
Mitotic waves during superficial cleavage and early gastrulation were analyzed quantitatively in Calliphora. Three consecutive patterns are present: (1) a monotonic anterioposterior mitotic gradient during early superficial cleavage; (2) a double mitotic gradient from the anterior and posterior poles during superficial cleavage, especially toward the end of the period; and (3) more complicated patterns with intermediate mitotic centers during the last superficial cleavage division and during early gastrulation. Mitotic gradients are absent in many eggs during early superficial cleavage, but they then become ubiquitous. The gradients are longitudinal; no transverse component was detected before gastrulation. Anterior and posterior gradient patterns are not mirror images of each other; mitotic activity always starts earlier anteriorly. The gradients are accompanied by a pronounced increase in interphase length. The mitotic gradients are compared with the morphogenetic gradients predicted in a current model for pattern specification in insect eggs.  相似文献   

6.
During metamorphosis of the blowfly Calliphora erythrocephala extracellular ribosomes, in the form of monosomes, appear in the body fluid. The total number of ribosomes, i.e. intracellular and extracellular, remains approximately constant during this period, whereas the proportion of extracellular ribosomes first rises, plateaus, and then declines in a manner suggesting that their appearance is a result of larval tissue breakdown.  相似文献   

7.
Acid mucopolysaccharides have been isolated from different developmental stages of Calliphora. Hyaluronic acid and a ‘larval AMPS’ were identified during all developmental stages. During the later part of the development chondroitin and a poorly-sulphated keratin sulphate-like compound were also present. Chondroitin sulphate and heparan sulphate could be detected at all development stages and during the latter part possibly keratin sulphate. The variation of acid mucopolysaccharides during development is discussed.  相似文献   

8.
9.
10.
Summary The blowfly Calliphora has a mobile head and various, presumably proprioceptive, sense organs in the neck region. The prosternal organs are a pair of mechanosensory hair fields, each comprising ca. 110 sensilla. We studied their structure (Figs. 2–4), kinematics (Figs. 5, 6) and, after surgery, their influence on head posture (Figs. 7–11) in order to reveal their specific function.The hair sensilla are structurally polarized, all in roughly the same direction, and are stimulated by dorsoventral bending of the hairs (Figs. 3, 4). This occurs indirectly by flap-movements of two contact sclerites (Figs. 3, 6); they move in the same direction during pitch turns of the head, in opposite directions during roll turns, and barely at all during yaw turns of the head (Fig. 5).Bending and arresting all hairs of one field elicits a head roll bias to the non-operated side (Fig. 7) during tethered flight in visually featureless surroundings. In contrast, shaving all hairs of one field elicits a head roll to the operated side (Figs. 8–10). The surgically induced bias of head posture is not compensated within three days (Fig. 10). Our results show that the prosternal organs of Calliphora sense pitch and roll turns of the fly's head, and control at least its roll position.Abbreviations HP° TP° angular positions of the sagittal planes of the fly's head and thorax, respectively, relative to an external reference - HR° = HP — TP head roll angle of the fly's head relative to its thorax, HR>0° for clockwise head roll, looking in flight direction - N number of flies - n number of measurements - PO prosternal organ - SD standard deviation - SEM standard error of the mean  相似文献   

11.
Smith DS 《Tissue & cell》1969,1(3):443-484
The dipteran haltere incorporates large numbers of regularly disposed mechanoreceptors providing the sensory input enabling the vibrating haltere to function as a gyroscopic organ of equilibrium. Campaniform sensilla of the basal and scapal regions have been investigated by light and transmission electron microscopy, and these observations are augmented by scanning electron studies of the cuticle overlying the groups of sensilla. Each sensillum possesses a specialized fan-shaped terminal containing a complex and ordered association of microtubules and filaments. The transmission of stress to this region via the cuticle, and its possible role in transduction is considered. The fine structure of apical and basal sections of the distal sensory process and associated sheath cells is described; the functional significance of the distribution of mitochondria and other components is discussed. The organization of haltere chordotonal sensilla is described briefly, and compared with other mechanoreceptors with particular reference to microtubules and scolopale structures.  相似文献   

12.
13.
14.
Summary Calliphora erythrocephala commonly known as the Bluebottle belongs to the Diptera. The larvae of this insect feed on food which is heavily infected with bacteria. Unlike most other terrestrial insects which excrete uric acid, the larvae of C. erythrocephala excrete ammonia, the most toxic end product of nitrogen metabolism. In this direct excretion of ammonia the larvae therefore behave like many aquatic animals. Under natural conditions the larvae grow very rapidly After a growth period of six or seven days they become mature, stop feeding, migrate to a dry place and then pupate.Although the larvae of C. erythrocephala usually live in an environment heavily contaminated with bacteria, it is possible to rear the larvae from the egg under aseptic conditions. When reared on adequate diets the aseptic larvae grow as well as those under natural conditions and metamorphose into normal adult flies.As in its mode of feeding and living the larvae of the Bluebottle are extreme specialists, it was to be expected that these specialisations may influence its dietetic requirements and intermediary metabolism. In how far these expectations came true was studied in a series of experiments in which the larvae were reared under aseptic conditions so that the intestinal bacteria could not interfere with the results of the feeding experiments and those of the study of the intermediary metabolism.  相似文献   

15.
Third-instar larvae of the blowfly Calliphora erythrocephala were injected with [2-3H]adenosine, and its flow into the salivary gland ATP pool and each of several electrophoretically resolved salivary gland RNA species were quantitated. From these data, the individual in vivo rates of synthesis, accumulation, and processing of salivary gland ribosomal RNA (rRNA), 4 S RNA, and 5 S RNA have been measured at several different developmental stages. These results indicate that the synthesis of 5 S RNA and rRNA are coordinate, developmentally regulated, and independent of the synthesis of 4 S RNA. A nonribosomal, heterodisperse RNA component (hdRNA) was also identified. This species contributes to both the rapidly turning over pulse-labeled RNA and the accumulating pulse-labeled RNA populations. Indirect measurements suggest that the developmental pattern of regulation of this RNA species is also independent of 5 S RNA and rRNA synthesis. The rate of synthesis and accumulation of each of these RNA species either remained constant or declined during the first three-fourths of the instar, despite a six- to sevenfold increase in the content of cellular DNA.  相似文献   

16.
Summary The distribution of putative cholinergic neurons in the lamina of the blowfly Calliphora erythrocephala was studied by immunocytochemical and histochemical methods. Three different antibodies directed against the AChsynthesizing enzyme, choline acetyltransferase (ChAT), revealed a cholinergic population of fibres running parallel to the laminar cartridges, which have branch-like structures at the distal lamina border. Cell bodies in the chiasma next to the lamina border were also labelled by the anti-ChAT antibodies. Monopolar cell bodies in the nuclear layer were faintly labelled. The distribution of the acetylcholine hydrolyzing enzyme, acetylcholine esterase (AChE), was revealed by histochemical staining and was similar to the ChAT immunocytochemistry. The arrangement of ChAT positive fibres in transverse and longitudinal sections and the distribution of AChE stained fibres indicate that the amacrine cells of the lamina are cholinergic cells.We dedicate this work to Prof. F. Zettler who passed away in fall 1988: K.-H. Datum, I. Rambold  相似文献   

17.
18.
In the blowfly, the formation of 3-dehydroecdysone from the insect molting hormone ecdysone is catalyzed by an enzyme which carries hydrogen from ecdysone and ecdysterone to oxygen. The enzyme is therefore called "ecdysone oxidase". Two methods are described for the detection of ecdysone oxidase activity, one using a radiolabelled substrate which is separated from the product by thin-layer chromatography after the reaction, and the other using dichloroindophenol, which is discoloured by the redox reaction. The ecdysone oxidase is purified by a factor of 2200 from prepupae of Calliphora erythrocephala using salt precipitation and ion exchange chromatography. The ecdysone oxidase has a Km value for ecdysone of 42muM. The pH optimum is 6.5. The temperature optimum lies at 45 degrees C. The ecdysone oxidase has a molecular weight of 240000.  相似文献   

19.
The deposition of the resilin tendon in the blowfly Calliphora erythrocephala was investigated in normal and in various experimental conditions. The results showed that the weight of the protein resilin that is deposited is controlled by diet as well as by the hormone secreted by the medial neurosecretory cells.Endocrinologically abnormal Calliphora adults deposited a tendon with normal ultrastructure but showed signs of premature ageing while Calliphora fed on a sugar diet deposited a tendon with abnormal ultrastructure.  相似文献   

20.
Summary The postembryonic development of serotonin-immunoreactive (5-HTi) neurons was studied in the optic lobe of the blowfly. In the adult fly there are 24 5-HTi neurons invading each optic lobe. The perikarya of two of these neurons are situated in the dorso-caudal part of the protocerebrum (LBO-5HT neurons; large bilateral optic lobe 5-HTi neurons). The cell bodies of the remaining 22 neurons are located anteriorly at the medial base of the medulla (2 innervating the lobula, LO-5HT neurons; and 20 neurons innervating the medulla, ME-5HT neurons). The two central neurons (LBO-5HT neurons) are derived from metamorphosing larval neurons, while the ME- and LO-5HT neurons are imaginai optic lobe neurons differentiating during pupal development.The 5-HTi neurons of the optic lobe seem to have different ancestors. The LBO-5HT neurons are probably derived from segmental protocerebral neuroblasts, whereas the ME-and LO-5HT neurons are most likely derived from the inner optic anlage. The first 5-HTi fibers to reach the imaginal optic lobes are seen in the late third instar larva and are derived from the LBO-5HT neurons. The first ME- and LO-5HT neurons become immunoreactive at 24 h (10%) pupal development. At about 96 h (40%) of pupal development all the 5-HTi neurons of the optic lobes have differentiated and attained their basic adult morphology. The further development mainly entails increase in volume of arborizations and number of finer processes. The differentiation and outgrowth of 5-HTi processes follows that of, e.g., columnar neurons in the optic lobe neuropils. Hence, 5-HTi processes invade neuropil relatively late in the differentiation of the optic lobe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号