首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three strains of Agaricus bisporus (B430, 116, and 155.8), which share the ability to form hyphal aggregates on solid media under axenic conditions, were investigated with respect to carbohydrate levels and activities of enzymes involved in their carbon metabolism. The size and macroscopic appearance of the aggregates, when grown on diluted medium, suggest that substrate limitation plays a role in the process of fruiting body development in A. bisporus. The enzymes trehalose phosphorylase (TP), mannitol dehydrogenase (MD), and glucose-6-phosphate dehydrogenase (G6PD) seem to be developmentally regulated, in contrast to hexokinase (HK). Activities of TP (measured in the direction of trehalose degradation), MD, and G6PD were higher in the hyphal aggregates compared with the mycelium, whereas HK activity varied little. In the period preceding the axenic formation of hyphal aggregates, synthesis of trehalose by TP approximately doubled in the mycelium. The carbohydrate levels, which were measured by HPLC, varied in a way similar to their corresponding enzymes. The results indicate synthesis of trehalose in the mycelium of A. bisporus before the hyphal aggregates arise. Subsequently, translocation of the trehalose takes place from the mycelium to the emerging aggregates. In these small aggregates the trehalose is rapidly broken down to yield glucose and glucose-1-phosphate, serving as carbon and energy sources for further growth of the aggregates and for the synthesis of the osmolyte mannitol. Received: 4 March 1999 / Accepted: 4 June 1999  相似文献   

2.
Histochemical studies have been conducted by applying hexokinase (HK), aldolase (AD), glyceraldehyde-3-phosphate dehydrogenase (G3), succinate dehydrogenase (SDH), glucose-6-phosphate dehydrogenase (G6PD), and thiamine pyrophosphatase (TPPase) methods, as well as Nissl staining and Gomori's chrome-alum-hematoxylin-phloxine (CHP) methods to intercalated neurons of the supraoptic nucleus (SO) on Wistar strain rats. Intercalated neurons reacted weakly to the AD, G3, G6PD, and SDH tests, indicating that they belong to the category of ordinary neurons with low carbohydrate metabolism. Many fibrous astrocytes showing strong HK reactions surround neurosecretory neurons. However, they do not surround intercalated neurons with mild HK activity. These results indicate that the latter receive a poor supply of energy from glucose in the circulating blood in contrast to the former. Intercalated neurons are very rich in Nissl substance but lack CHP-positive material. They may have a high potential for synthesizing protein. The principal morphological features of the TPPase-positive Golgi material are peculiar and heterogeneous shape and poor development. These findings together with mild G6PD activity suggest that intercalated neurons are very likely to have poor synthesizing activity.  相似文献   

3.
In this experimental study, the effect of fish n-3 fatty acids was studied on the some important enzymes of carbohydrate metabolism, hexokinase (HK), glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), lactate dehydrogenase (LDH), and malate dehydrogenase (MDH) in rat liver. Wistar albino rats of experimental group (n= 9) were supplemented fish omega-3 fatty acids (n-3 PUFA) as 0.4 g/kg bw. by gavage for 30 days in addition to their normal diet. Isotonic solution was given to the control group (n= 8) by the same way. At 30th day, the rats were killed by decapitation under ether anesthesia, autopsied and liver was removed. Spectrophotometric methods were used to determine the activities of above-mentioned enzymes in the liver. The n-3 PUFA caused increases in the activities of HK, G6PD, LDH, and MDH in comparison with control. These increases were statistically significant (P < 0.01) except 6PGD activity. As a result, n-3 PUFA may regulate the metabolic function of liver effectively by increasing HK, G6PD, 6PGD, LDH, and MDH enzyme activities of rat liver when added in enough amounts to the regular diet.  相似文献   

4.
A metabolic pathway, known as the mannitol cycle in fungi, has been identified as a new entity in the eulittoral mangrove red algaCaloglossa leprieurii (Montagne) J. Agardh. Three specific enzymes, mannitol-1-phosphate dehydrogenase (Mt1PDH; EC 1.1.1.17), mannitol-1-phosphatase (MtlPase; EC 3.1.3.22), mannitol dehydrogenase (MtDH; EC 1.1.1.67) and one nonspecific hexokinase (HK; EC 2.7.1.1) were determined and biochemically characterized in cell-free extracts. Mannitol-1-phosphate dehydrogenase showed activity maxima at pH 7.0 [fructose-6-phosphate (F6P) reduction] and pH 8.5 [oxidation of mannitol-1-phosphate (Mt1P)], and a very high specificity for both carbohydrate substrates. TheK m values were 1.4 mM for F6P, 0.09 mM for MOP, 0.020 mM for NADH and 0.023 mM for NAD+. For the dephosphorylation of MOP, MtlPase exhibited a pH optimum at 7.2, aK m value of 1.2 mM and a high requirement of Mg2+ for activation. Mannitol dehydrogenase had activity maxima at pH 7.0 (fructose reduction) and pH 9.8 (mannitol oxidation), and was less substrate-specific than Mt1PDH and MtlPase, i.e. it also catalyzed reactions in the oxidative direction with arabitol (64.9%), sorbitol (31%) and xylitol (24.8%). This enzyme showedK m values of 39 mM for fructose, 7.9 mM for mannitol, 0.14 mM for NADH and 0.075 mM for NAD+. For the non-specific HK, only theK m values for fructose (0.19 mM) and glucose (7.5 mM) were determined. The activities of the anabolic enzymes Mt1PDH and MtlPase were always at least two orders of magnitude higher than those of the degradative enzymes, indicating a net carbon flow towards a high intracellular mannitol pool. The function of mannitol metabolism inC. leprieurii as a biochemical adaptation to the environmental extremes in the mangrove habitat is discussed.Abbreviations F6P fructose-6-phosphate - HK hexokinase - Mt1P mannitol-1-phosphate - Mt1PDH mannitol-1-phosphate dehydrogenase - Mt1Pase mannitol-1-phosphatase - MtDH mannitol dehydrogenase  相似文献   

5.
Immunological studies on glucose 6-phosphate dehydrogenase of rat liver   总被引:1,自引:0,他引:1  
Glucose 6-phosphate dehydrogenase (G6PD) was purified from the supernatant fraction of rat liver to a homogeneous preparation by a specific elution with substrate. A specific antibody against the purified enzyme was prepared in rabbits and was shown to completely inhibit the enzyme activity and precipitate the enzyme protein of liver supernatant. With this antiserum, liver supernatants with varying specific G6PD activities obtained under several experimental conditions and supernatants from other tissues examined all formed single precipitin lines, which fused with each other in the Ouchterlony double-diffusion system. Three interconvertible microheterogeneous forms of G6PD in liver, supernatant were immunologically indistinguishable from each other. The G6PDs in participate fractions of liver were, however, distinct from the supernatant enzyme both in inhibition of the enzyme activity and in formation of precipitation by the specific antiserum. Liver supernatant G6PD, which was inactivated with various reagents or by heating, showed a simultaneous loss of ability to form precipitin line. Aggregation and disaggregation of the dehydrogenase to the tetramer and monomer, respectively, also resulted in loss of immunological reactivity. The increase in G6PD activity in the cytoplasm of carbon tetrachloride-treated or glucose casein-refed rat liver was accompanied by a proportional increase in the quantity of immunologically reactive G6PD protein.  相似文献   

6.
The skin cells chiefly depend on carbohydrate metabolism for their energy requirement during cutaneous wound healing. Since the glucose metabolism is greatly hampered in diabetes and this might affect wound repair process. This prompted us to investigate the intermediate steps of energy metabolism by measuring enzyme activities in the wound tissues of normal and streptozotocin-induced diabetic rats following excision-type of cutaneous injury. The activities of key regulatory enzymes namely hexokinase (HK), phosphofructokinase (PFK), lactate dehydrogenase (LDH), citrate synthase (CS) and glucose-6 phosphate dehydrogenase (G6PD) have been monitored in the granulation tissues of normal and diabetic rats at different time points (2, 7, 14 and 21 days) of postwounding. Interestingly, a significant alteration in all these enzyme activities was observed in diabetic rats. The activity of PFK was increased but HK, LDH and CS showed a decreased activity in the wound tissue of diabetics as compared to normal rats. However G6PD exhibited an elevated activity only at early stage of healing in diabetic rats. Thus, the results suggest that significant alterations in the activities of energy metabolizing enzymes in the wound tissue of diabetic rats may affect the energy availability for cellular activity needed for repair process and this may perhaps be one of the factor responsible for impaired healing in these subjects. (Mol Cell Biochem 270: 71–77, 2005)  相似文献   

7.
Prolonged intake of low levels of aluminum from the drinking water has been found to increase the aluminum content in rat brain homogenates and to reduce the activity of hexokinase and glucose-6-phosphate dehydrogenase (G6PD). To determine the interaction of G6PD with aluminum in the brain, we have recently purified two isozymes of G6PD (isozymes I and II) from human and pig brain. Unlike isozyme I, isozyme II also had 6-phosphogluconate dehydrogenase (6-PGD) activity. We report here that G6PD isozymes I and II from human and pig brain purified to apparent homogeneity are inactivated by aluminum. Aluminum did not affect the 6-PGD activity of isozyme II. The aluminum-inactivated enzyme contained 1 mol of aluminum/mol of enzyme subunit. The protein-bound metal ion was not dissociated by exhaustive dialysis at 4 degrees C against 10 mM Tris-HCl (pH 7.0) containing 0.2 mM EDTA. Preincubation of aluminum with citrate, NADP+, EDTA, NaF, ATP, and apotransferrin protected the G6PD isozymes against aluminum inactivation. However, when the G6PD isozymes were completely inactivated by aluminum, only citrate, NaF, and apotransferrin restored the enzyme activity. The dissociation constants for the enzyme-aluminum complex of the isozymes varied from 2 to 4 microM, as measured by using NaF, a known chelator for aluminum. Inhibition of G6PD by low levels of aluminum further strengthens the suggested role of aluminum toxicity in the energy metabolism of the brain.  相似文献   

8.
Glucose-6-phosphate dehydrogenase was purified from human placenta using DEAE-Sepharose fast flow, 2',5'-ADP Sepharose 4B column chromatography, and chromatofocusing on PBE 94 with PB 74. The enzyme was purified with 62% yield and had a specific activity of 87 units per milligram protein. The pH optimum was determined to be 7.8, using zero buffer extrapolation method. The purified placental glucose-6-phosphate dehydrogenase gave two activity bands on native PAGE: one band, constituting about 3--5% of total activity, moved slower than the remaining 95%. Among the activity bands only the faster moving band gave a band on protein staining. The slower moving band, which probably corresponded to the higher polymeric form of the G6PD with high specific activity, was not seen on native PAGE due to insufficient protein for Coomassie brilliant blue staining. The observation of one band on SDS--PAGE with an M(r) of 54 kDa and a specific activity lower than expected, suggests the presence of both forms of the G6PD, the high polymeric form at low concentration and the inactive form at high concentration, in our preparation. Measuring the activities of placental glucose-6-phosphate dehydrogenase between 20 and 50 degrees C, the activation energy, activation enthalpy, and Q(10) were calculated to be 8.16 kcal/mol, 7.55 kcal/mol, and 1.57, respectively. It was found that human placental G6PD obeys Michaelis-Menten kinetics. K(m) values were determined using the concentration ranges of 20--300 microM for G6P and 10--200 microM for NADP(+). The K(m) value for G6P was 40 microM; the K(m) value NADP(+) was found to be 20 microM. Double-reciprocal plots of 1/Vm vs 1/G6P (at constant [NADP(+)]) and of 1/Vm vs 1/NADP(+) (at constant [G6P]) intersected at the same point on the 1/V(m) axis to give V(m) = 87 U/mg protein.  相似文献   

9.
Biosynthesis of steroid hormones in the cortex of the adrenal gland takes place in smooth endoplasmic reticulum and mitochondria and requires NADPH. Four enzymes produce NADPH: glucose-6-phosphate dehydrogenase (G6PD), the key regulatory enzyme of the pentose phosphate pathway, phosphogluconate dehydrogenase (PGD), the third enzyme of that pathway, malate dehydrogenase (MDH), and isocitrate dehydrogenase (ICDH). However, the contribution of each enzyme to NADPH production in the cortex of adrenal gland has not been established. Therefore, activity of G6PD, PGD, MDH, and ICDH was localized and quantified in rat adrenocortical tissue using metabolic mapping, image analysis, and electron microscopy. The four enzymes have similar localization patterns in adrenal gland with highest activities in the zona fasciculata of the cortex. G6PD activity was strongest, PGD, MDH, and ICDH activity was approximately 60%, 15%, and 7% of G6PD activity, respectively. The K(m) value of G6PD for glucose-6-phosphate was two times higher than the K(m) value of PGD for phosphogluconate. As a consequence, virtual flux rates through G6PD and PGD are largely similar. It is concluded that G6PD and PGD provide the major part of NADPH in adrenocortical cells. Their activity is localized in the cytoplasm associated with free ribosomes and membranes of the smooth endoplasmic reticulum, indicating that NADPH-demanding processes related to biosynthesis of steroid hormones take place at these sites. Complete inhibition of G6PD by androsterones suggests that there is feedback regulation of steroid hormone biosynthesis via G6PD.  相似文献   

10.
The erythrocyte glucose 6-phosphate dehydrogenase activity characteristic of each of 16 inbred mouse strains falls into one of three distinct classes. Strains C57L/J and C57BR/cdJ represent the low activity class: strains A/J and A/HeJ represent the high activity class; other strains have intermediate activities. There is no evidence that structural variation is responsible for the variation in G6PD activity, since partially purified enzyme from each class has the same thermal stability, pH-activity profile, Michaelis constants for G6P and NADP, electrophoretic mobility, and activity using 2-deoxy d-glucose 6-phosphate as substrate. The activities of 6-phosphogluconate dehydrogenase and glucose phosphate isomerase do not differ in erythrocytes of the three G6PD activity classes. Young red cells have higher G6PD activities than old red cells and there is evidence that the intracellular stability of the enzyme is reduced in red cells of strain C57L/J. G6PD activities in kidney and skeletal and cardiac muscle from animals with low red cell G6PD are slightly lower than the activities in kidney and muscle from animals with high red cell G6PD activity. The quantitative differences in red cell G6PD activity are not regulated by X-linked genes, but by alleles at two or more autosomal loci. A simple genetic model is proposed in which alleles at two unlinked, autosomal loci, called Gdr-1 and Gdr-2 regulate G6PD activity in the mouse erythrocyte.  相似文献   

11.
Glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49) is the key regulatory enzyme of the pentose phosphate pathway and produces NADPH and riboses. In this study, the kinetic properties of G6PD activity were determined in situ in chemically induced hepatocellular carcinomas, and extralesional and control parenchyma in rat livers and were directly compared with those of the second NADPH-producing enzyme of the pentose phosphate pathway, phosphogluconate dehydrogenase (PGD). Distribution patterns of G6PD activity, protein, and mRNA levels were also compared to establish the regulation mechanisms of G6PD activity. In (pre)neoplastic lesions, the V(max) of G6PD was 150-fold higher and the K(m) for G6P was 10-fold higher than in control liver parenchyma, whereas in extralesional parenchyma, the V(max) was similar to that in normal parenchyma but the K(m) was fivefold lower. This means that virtual fluxes at physiological substrate concentrations are 20-fold higher in lesions and twofold higher in extralesional parenchyma than in normal parenchyma. The V(max) of PGD was fivefold higher in lesions than in normal and extralesional liver parenchyma, whereas the K(m) was not affected. Amounts of G6PD protein and mRNA were similar in lesions and in extralesional liver parenchyma. These results demonstrate that G6PD is strongly activated post-translationally in (pre)neoplastic lesions to produce NADPH.  相似文献   

12.
Cutaneous cells primarily depend upon carbohydrate metabolism for their energy requirement during healing process. But, it may be greatly hampered during various pathological and altered physiological conditions. The present study was therefore undertaken to investigate the intermediate steps of energy metabolism by measuring enzyme activities in the granulation tissues of immunocompromised and aged rats following excision-type of cutaneous injury. The activities of key regulatory enzymes hexokinase (HK), phosphofructokinase (PFK), lactate dehydrogenase (LDH), citrate synthase (CS) and glucose-6 phosphate dehydrogenase (G6PD) have been monitored in the wound tissues of immunocompromised and aged rats at different time intervals (2, 7, 14 and 21 days) of postwounding. The activities of HK and CS were found significantly decreased both in immunocompromised and aged rats as compared to control subjects. However G6PD exhibited an elevated activity at early stage followed by a decreased activity at later phase of healing both in immunocompromised and aged rats. The PFK and LDH demonstrated an upward trend in immunocompromised rats but a decreasing trend in aged rats. Thus, the results suggest that significant alterations in the activities of energy metabolizing enzymes in the granulation tissues in both immunocompromised as well as in aged rats may overall affect the energy availability for cellular activity needed for repair process. Hence, this may perhaps be one of the factor responsible for impaired healing in these subjects.  相似文献   

13.
In this study, we investigated the effect of astaxanthin (Ast) and aluminum (Al) on the erythrocyte glucose‐6‐phosphate dehydrogenase (G6PD) and 6‐phosphogluconate dehydrogenase (6PGD) enzymes activities in vivo and on G6PD enzyme in vitro in rats. For in vitro studies, G6PD enzyme was purified from rat erythrocyte by using 2′,5′‐ADP‐Sepharose 4B affinity gel. The effects of Ast and Al3+ ion were investigated on the purified enzyme. It was determined that Ast increased the enzyme activity, whereas Al3+ inhibited the enzyme activity noncompetitively (IC50 values; 0.679 mM, Ki values 1.32 mM). For in vivo studies, the rats were divided into the groups: control (Cont.), Al, Ast, and Al + Ast. The last three groups were compared with the control group. In Al group, a significant degree of inhibition was observed in the activity of G6PD and 6PGD enzymes when compared with the control group (P < 0.05), whereas there was an increase in the activities of G6PD and 6PGD enzymes in Ast and Al + Ast groups (P < 0.05).  相似文献   

14.
G6PD (glucose-6-phosphate dehydrogenase) is the rate-limiting enzyme in the oxidative pentose phosphate pathway that can generate cytosolic NADPH for biosynthesis and oxidative defense. Since cytosolic NADPH can be compensatively produced by other sources, the enzymatic activity deficiency alleles of G6PD are well tolerated in somatic cells but the effect of null mutations is unclear. Herein, we show that G6PD KO sensitizes cells to the stresses induced by hydrogen peroxide, superoxide, hypoxia, and the inhibition of the electron transport chain. This effect can be completely reversed by the expressions of natural mutants associated with G6PD deficiency, even without dehydrogenase activity, exactly like the WT G6PD. Furthermore, we demonstrate that G6PD can physically interact with AMPK (AMPK-activated protein kinase) to facilitate its activity and directly bind to NAMPT (nicotinamide phosphoribosyltransferase) to promote its activity and maintain the NAD(P)H/NAD(P)+ homeostasis. These functions are necessary to the antistress ability of cells but independent of the dehydrogenase activity of G6PD. In addition, the WT G6PD and naturally inactive mutant also can similarly regulate the metabolism of glucose, glutamine, fatty acid synthesis, and GSH and interact with the involved enzymes. Therefore, our findings reveal the previously unidentified functions of G6PD that can act as the important physiological neutralizer of stresses independently of its enzymatic activity.  相似文献   

15.
Summary Enzyme histochemical profiles of spinal motoneurons in the zebrafish were determined. Five enzymes of glucose metabolism were chosen: glucose-6-phosphate dehydrogenase (G6PDH), hexokinase (HK), phosphofructokinase (PFK), succinate dehydrogenase (SDH) and NADH tetrazolium reductase (NADH-TR). Motoneurons were traced with Fluorogold and classified as those that innervate white muscle fibres (W-MNs) and those that innervate red and intermediate muscle fibres (R/ I-MNs). The average enzyme activities per volume of tissue in the somata of both populations differed at most by 25%. Both the average soma volume and the average number of muscle fibres innervated are three times larger for the W-MNs than for the a/I-MNs. This suggests that the total amount of enzyme activity within a neuron soma matches target size.In the R/I-MNs, the activities of SDH and NADH-TR were closely correlated (correlation coefficient, r=0.99;p<0.05) and HK activity correlated well with G6PDH activity (r=0.94;p<0.05), butnot with PFK (r=0.64;p>0.05). In the W-MNs, there was no correlation between SDH and NADH-TR (r=–0.59;p>0.05) or between HK and G6PDH (r=0.50;p>0.05) and the correlation coefficient between HK and PFK activity was close to zero (r=0.04;p>0.05).It was concluded that in the R/I-MNs gwhich are continuously ctive, firing activity is fuelled by oxidative metabolsm. We suggest that in the W-MNs glucose is stored in the form of glycogen and that, despite high levels of NADH-TR present, the energy for intermittent firing activity is provided by glycolysis.  相似文献   

16.

Background

Clinical association studies have yielded varied results regarding the impact of glucose-6-phosphate dehydrogenase (G6PD) deficiency upon susceptibility to malaria. Analyses have been complicated by varied methods used to diagnose G6PD deficiency.

Methodology/Prinicipal Findings

We compared the association between uncomplicated malaria incidence and G6PD deficiency in a cohort of 601 Ugandan children using two different diagnostic methods, enzyme activity and G6PD genotype (G202A, the predominant East African allele). Although roughly the same percentage of males were identified as deficient using enzyme activity (12%) and genotype (14%), nearly 30% of males who were enzymatically deficient were wild-type at G202A. The number of deficient females was three-fold higher with assessment by genotype (21%) compared to enzyme activity (7%). Heterozygous females accounted for the majority (46/54) of children with a mutant genotype but normal enzyme activity. G6PD deficiency, as determined by G6PD enzyme activity, conferred a 52% (relative risk [RR] 0.48, 95% CI 0.31–0.75) reduced risk of uncomplicated malaria in females. In contrast, when G6PD deficiency was defined based on genotype, the protective association for females was no longer seen (RR = 0.99, 95% CI 0.70–1.39). Notably, restricting the analysis to those females who were both genotypically and enzymatically deficient, the association of deficiency and protection from uncomplicated malaria was again demonstrated in females, but not in males (RR = 0.57, 95% CI 0.37–0.88 for females).

Conclusions/Significance

This study underscores the impact that the method of identifying G6PD deficient individuals has upon association studies of G6PD deficiency and uncomplicated malaria. We found that G6PD-deficient females were significantly protected against uncomplicated malaria, but this protection was only seen when G6PD deficiency is described using enzyme activity. These observations may help to explain the discrepancy in some published association studies involving G6PD deficiency and uncomplicated malaria.  相似文献   

17.
18.
A growth trial was conducted on juvenile mirror carp (Cyprinus carpio L.) for 8 weeks to compare the efficacy of three chromium (Cr) compounds (Cr chloride, Cr picolinate, and Cr yeast) at a level 0.5 mg/kg as a potential growth enhancer. In addition, a high level of Cr (2.0 mg/kg) as Cr chloride has also been added in parallel for comparison. All Cr fortified diets at a level 0.5 mg/kg produced superior growth for carp compared to the control group and the group fed the high level of Cr chloride (2.0 mg/kg). Metabolic indicators measured included two of the key liver enzymes (hexokinase, HK) and (glucose-6-phosphate dehydrogenase, G6PD) activity. The results validated the positive effect of Cr at a level 0.5 mg/kg on enzyme activity and carbohydrate utilization producing significantly better growth performance for mirror carp. The study also included measurement of DNA strand breaks in the erythrocytes using the comet assay which revealed significantly (P < 0.05) increased DNA damage in fish fed on high level of Cr chloride (2.0 mg/kg) but the other treatments were not significantly different (P > 0.05) from the control groups. The concentration of Cr in the liver, gut, and whole fish tissues increased with increasing dietary Cr supplementation. Overall, Cr supplementation at a level 0.5 mg/kg from different sources may affect growth performance in carp by activation of some key liver enzymes (HK and G6PD).  相似文献   

19.
Guo L  Zhang Z  Green K  Stanton RC 《Biochemistry》2002,41(50):14726-14733
In rat pancreatic islets and insulin-producing cell lines, IL-1beta induces expression of inducible nitric oxide synthase and NO production leading to impairment of glucose-stimulated insulin release and decreased cell survival. NADPH is an obligatory cosubstrate for iNOS synthesis of NO. We hypothesized that IL-1beta stimulates an increase in activity of NADPH-producing enzyme(s) prior to NO production and that this increase is necessary for NO production. Using rat insulin-secreting RINm5F cells, we found that (1) IL-1beta caused a biphasic change in the NADPH level (increased by 6 h and decreased after prolonged incubation in the presence of 2 ng/mL IL-1beta); (2) IL-1beta stimulated increased activity of glucose-6-phosphate dehydrogenase (G6PD) in a time- and dose-dependent manner, and G6PD expression was increased by about 80% after exposure to 2 ng/mL IL-1beta for 18 h: (3) IL-1beta-stimulated NO production was positively correlated with increased G6PD activity; (4) IL-1beta did not cause any significant change in enzyme activity of another NADPH-producing enzyme, malic enzyme; (5) IL-1beta-induced NO production was significantly reduced either by inhibiting G6PD activity using an inhibitor of G6PD (dehydroepiandrosterone) or by inhibiting G6PD expression using an antisense oligonucleotide to G6PD mRNA; and (6) IL-1beta stimulated a decrease in the cAMP level. 8-Bromo-cAMP caused decreased G6PD activity, and the protein kinase A inhibitor H89 led to a increase in G6PD activity in RINm5F cells. In conclusion, our data show that IL-1beta stimulated G6PD activity and expression level, providing NADPH that is required by iNOS for NO production in RINm5F cells. Also, inhibition of the cAMP-dependent PKA signal pathway is involved in an IL-1beta-stimulated increase in G6PD activity.  相似文献   

20.
A variant of glucose 6-phosphate dehydrogenase (G6PD) in Drosophila melanogaster shows different electrophoretic migration in males and females. In heterozygotes, the variant influences the migration of G6PD produced by both chromosomes. Mixing of homogenates of males and females changes migration of the female-produced enzyme, suggesting that a protein produced in males is capable of altering the variant G6PD molecule. The hypothetical protein is also present in pseudomales and intersexes produced by sex transformation genes.This research was supported by NIH grants # 5-T1-GM 216-06 and GM 12768-01 and NSF grants GB 4587 and GB 4824.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号