首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cadaverine was found to exist as a component of cell wall peptidoglycan of Selenomonas ruminantium, a strictly anaerobic bacterium. [14C]cadaverine added to the growth medium was incorporated into the cells, and about 70% of the total radioactivity incorporated was found in the peptidoglycan fraction. When the [14C]cadaverine-labeled peptidoglycan preparation was acid hydrolyzed, all of the 14C counts were recovered as cadaverine. The [14C]cadaverine-labeled peptidoglycan preparation was digested with lysozyme into three small fragments which were radioactive and were positive in ninhydrin reaction. One major spot, a compound of the fragments, was composed of alanine, glutamic acid, diaminopimelic acid, cadaverine, muramic acid, and glucosamine. One of the two amino groups of cadaverine was covalently linked to the peptidoglycan, and the other was free. The chemical composition of the peptidoglycan preparation of this strain was determined to be as follows: L-alanine-D-alanine-D-glutamic acid-meso-diaminopimelic acid-cadaverine-muramic acid-glucosamine (1.0:1.0:1.0:1.0:1.1:0.9:1.0).  相似文献   

2.
Spermidine and cadaverine were found to be constituents of the cell wall peptidoglycan of Anaerovibrio lipolytica, a strictly anaerobic bacterium. The peptidoglycan was degraded with the N-acetylmuramyl-L-alanine amidase and endopeptidase into two peptide fragments, peptide I and peptide II, at a molar ratio of 4:1. Peptides I and II were identified as L-alanine-D-glutamic acid(alphacadaverine)gammameso-diaminopimelic acid (DAP)-D-alanine and L-alanine-D-glutamic acid(alphaspermidine)gammameso-DAP-D-alanine, respectively. The N(1)-amino group of spermidine was linked to the alpha-carboxyl group of the D-glutamic acid residue of peptide II.  相似文献   

3.
Cadaverine links covalently to the D-glutamic acid residue of the peptidoglycan in Selenomonas ruminantium, a strictly anaerobic Gram-negative bacterium (Kamio, Y., Itoh, Y., and Terawaki, Y. (1981) J. Bacteriol. 146, 49-53). This report clarifies a physiological function of cadaverine in this organism by using DL-alpha-difluoromethyllysine, which had previously been shown to be a selective irreversible inhibitor of lysine decarboxylase of Mycoplasma dispar (P?s?, H., MaCann, P.P., Tanskanen, R., Bey, P., and Sjoerdsma, A. (1984) Biochem. Biophys. Res. Commun. 125, 205-210). DL-alpha-Difluoromethyllysine is now shown to be a potent and irreversible inhibitor of lysine decarboxylase of S. ruminantium in vitro; however, it did not inhibit the transfer of cadaverine to the alpha-carboxyl group of the D-glutamic acid residue of the peptidoglycan. DL-alpha-Difluoromethyllysine at 5 mM markedly inhibited the growth of the bacterium and caused rapid cell lysis. Immediately before the cell lysis, almost all cells became swollen, and such cells showed a loosened envelope structure when studied by electron microscopy. The peptidoglycan prepared from the DL-alpha-difluoromethyllysine-treated cells did not have covalently linked cadaverine. The growth inhibition by DL-alpha-difluoromethyllysine was completely reversed by adding cadaverine (1 mM) to the medium. Furthermore, the exogenous cadaverine was exclusively incorporated into the peptidoglycan in the presence of DL-alpha-difluoromethyllysine (5 mM), and a normal peptidoglycan was synthesized. The cell lysis and the formation of an abnormal cell structure were completely prevented by cadaverine added to the medium. We conclude that cadaverine covalently linked to the peptidoglycan in S. ruminantium is an essential constituent of the peptidoglycan and is required for cell surface integrity and the normal growth of S. ruminantium.  相似文献   

4.
Analysis of the peptidoglycan of Rickettsia prowazekii.   总被引:1,自引:0,他引:1       下载免费PDF全文
In the present study, peptidoglycan from Rickettsia prowazekii, an obligate intracellular bacterium, was purified. The rickettsial peptidoglycan is like that of gram-negative bacteria; that is, it is sodium dodecyl sulfate insoluble, lysozyme sensitive, and composed of glutamic acid, alanine, and diaminopimelic acid in a molar ratio of 1.0:2.3:1.0. The small amount of lysine found in the peptidoglycan preparation suggests that a peptidoglycan-linked lipoprotein(s) may be present in the rickettsiae. D-Cycloserine, a D-alanine analog which inhibits the biosynthesis of bacterial cell walls, prevented rickettsial growth in mouse L929 cells at a high concentration and altered the morphology of the rickettsiae at a low concentration. These effects were prevented by the addition of D-alanine. This suggests that R. prowazekii contains D-alanine in the peptidoglycan and has D-Ala-D-Ala ligase and alanine racemase activities.  相似文献   

5.
A peptidoglycan fraction free of non-peptidoglycan components was isolated from the unicellular cyanobacterium Synechocystis sp. strain PCC 6714. Hydrofluoric acid treatment (48%, 0 degrees C, 48 h) cleaved off from the peptidoglycan non-peptidoglycan glucosamine, mannosamine, and mannose. The purified peptidoglycan consists of N-acetyl muramic acid, N-acetyl glucosamine, L-alanine, D-alanine, D-glutamic acid, and meso-diaminopimelic acid in approximately equimolar amounts. At least partial amidation of carboxy groups in the peptide subunits is indicated. Peptide analyses and 2,4-dinitrophenyl studies of partial acid hydrolysates revealed the structure of the Synechocystis sp. strain PCC 6714 peptidoglycan to belong to the A1 gamma type (direct cross-linkage) of peptidoglycan classification. The degree of cross-linkage is about 56% and thus is in the range of that found in gram-positive bacteria. Some of the peptide units are present as tripeptides lacking the carboxy-terminal D-alanine.  相似文献   

6.
Structure of Bordetella pertussis peptidoglycan.   总被引:4,自引:0,他引:4       下载免费PDF全文
Bordetella pertussis Tohama phases I and III were grown to the late-exponential phase in liquid medium containing [3H]diaminopimelic acid and treated by a hot (96 degrees C) sodium dodecyl sulfate extraction procedure. Washed sodium dodecyl sulfate-insoluble residue from phases I and III consisted of complexes containing protein (ca. 40%) and peptidoglycan (60%). Subsequent treatment with proteinase K yielded purified peptidoglycan which contained N-acetylglucosamine, N-acetylmuramic acid, alanine, glutamic acid, and diaminopimelic acid in molar ratios of 1:1:2:1:1 and less than 2% protein. Radiochemical analyses indicated that 3H added in diaminopimelic acid was present in peptidoglycan-protein complexes and purified peptidoglycan as diaminopimelic acid exclusively and that pertussis peptidoglycan was not O acetylated, consistent with it being degraded completely by hen egg white lysozyme. Muramidase-derived disaccharide peptide monomers and peptide-cross-linked dimers and higher oligomers were isolated by molecular-sieve chromatography; from the distribution of these peptidoglycan fragments, the extent of peptide cross-linking of both phase I and III peptidoglycan was calculated to be ca. 48%. Unambiguous determination of the structure of muramidase-derived peptidoglycan fragments by fast atom bombardment-mass spectrometry and tandem mass spectrometry indicated that the pertussis peptidoglycan monomer fraction was surprisingly homogeneous, consisting of greater than 95% N-acetylglucosaminyl-N-acetylmuramyl-alanyl-glutamyl-diaminopimelyl++ +-alanine.  相似文献   

7.
Veillonella alcalescens ATCC 17745, a strictly anaerobic, gram-negative small coccus, requires putrescine or cadaverine for growth (M. B. Ritchey, and E. A. Delwiche, J. Bacteriol. 124:1213-1219, 1975). Both putrescine and cadaverine were demonstrated to be incorporated exclusively into the peptidoglycan layer of V. alcalescens ATCC 17745. V. parvula GAI 0574 also proved to contain putrescine as a component of peptidoglycan. The primary chemical structure of the peptidoglycan common to the two Veillonella species is N-acetylglucosamine-N-acetylmuramic acid-L-alanine-D-glutamic acid gamma-meso-diaminopimelic acid-D-alanine. Putrescine or cadaverine links covalently to the alpha-carboxyl group of the D-glutamic acid residue of the peptidoglycan is necessary for normal cell growth. In V. alcalescens ATCC 17745, above 40% saturation at cadaverine linked to the alpha-carboxyl group of the D-glutamic acid residue of the peptidoglycan is necessary for normal growth.  相似文献   

8.
The genome of Bacillus subtilis encodes 16 penicillin-binding proteins (PBPs) involved in the synthesis and/or remodelling of the peptidoglycan during the complex life cycle of this sporulating Gram-positive rod-shaped bacterium. PBP4a (encoded by the dacC gene) is a low-molecular mass PBP clearly exhibiting in vitro DD-carboxypeptidase activity. We have solved the crystal structure of this protein alone and in complex with a peptide (D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine) that mimics the C-terminal end of the Bacillus peptidoglycan stem peptide. PBP4a is composed of three domains: the penicillin-binding domain with a fold similar to the class A beta-lactamase structure and two domains inserted between the conserved motifs 1 and 2 characteristic of the penicillin-recognizing enzymes. The soaking of PBP4a in a solution of D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine resulted in an adduct between PBP4a and a D-alpha-aminopimelyl-epsilon-D-alanine dipeptide and an unbound D-alanine, i.e. the products of acylation of PBP4a by D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine with the release of a D-alanine. The adduct also reveals a binding pocket specific to the diaminopimelic acid, the third residue of the peptidoglycan stem pentapeptide of B. subtilis. This pocket is specific for this class of PBPs.  相似文献   

9.
Cytoplasmic steps of peptidoglycan synthesis in Escherichia coli.   总被引:29,自引:26,他引:3       下载免费PDF全文
The cellular pool levels of most of the cytoplasmic precursors of peptidoglycan synthesis were determined for normally growing cells of Escherichia coli K-12. In particular, a convenient method for analyzing the uridine nucleotide precursor contents was developed by associating gel filtration and reverse-phase high-pressure liquid chromatography techniques. The enzymatic parameters of the four synthetases which catalyze the stepwise addition of L-alanine, D-glutamic acid, meso-diaminopimelic acid, and D-alanyl-D-alanine to uridine diphosphate-N-acetylmuramic acid were determined. It was noteworthy that the pool levels of L-alanine, D-glutamic acid, meso-diaminopimelic acid, and D-alanyl-D-alanine were much higher than the Km values determined for these substrates, whereas the molar concentrations of the uridine nucleotide precursors were lower than or about the same order of magnitude as the corresponding Km values. Taking into consideration the data obtained, an attempt was made to compare the in vitro activities of the D-glutamic acid, meso-diaminopimelic acid, and D-alanyl-D-alanine adding enzymes with their in vivo functioning, expressed by the amounts of peptidoglycan synthesized. The results also suggested that these adding activities were not in excess in the cell under normal growth conditions, but their amounts appeared adjusted to the requirements of peptidoglycan synthesis. Under the different in vitro conditions considered, only low levels of L-alanine adding activity were observed.  相似文献   

10.
Composition of the peptidoglycan of alkalophilic Bacillus spp.   总被引:2,自引:0,他引:2       下载免费PDF全文
Peptidoglycans of 10 alkalophilic Bacillus strains were isolated as trichloroacetic acid-insoluble materials from cell walls prepared by treatment with sodium dodecyl sulfate, disruption with a sonic oscillator, and trypsin digestion. Major constituents detected commonly in hydrolysates of the peptidoglycans were glucosamine, muramic acid, D- and L-alanine, D-glutamic acid, meso-diaminopimelic acid, and acetic acid. Ammonia derived from amide was found in a portion of the hydrolysates. The composition of peptidoglycan was not changed whether the strain was cultured at pH 7 or 10. All the peptidoglycan examined was of the A1 gamma type of peptidoglycan found in most strains of the genus Bacillus.  相似文献   

11.
The peptidoglycan of all four colonial types of a number of strains of Neisseria gonorrhoeae constituted 1 to 2% of the dry weight of the cell. The chemical composition of cell types examined was similar with molar ratios of 1:1:2:1:1 for muramic acid, glucosamine, alanine, glutamic acid, and diaminopimelic acid, respectively. Ninety-six percent of the mass of the peptidoglycan was composed of these compounds. A lipoprotein analogous to that observed in Escherichia coli was not detected. The chain length of the glycan varied from 80 to 110 disaccharide units. The peptide contained equimolar amounts of D- and L-alanine. The rate of turnover of peptidoglycan in strain RD5 was 50% per generation. Turnover proceeded without a lag and followed first-order kinetics.  相似文献   

12.
A peptidoglycan-polysaccharide complex composed of N-acetylglucosamine, N-acetylmuramic acid, muramic acid 6-phosphate, L-alanine, D-alanine, D-glutamic acid, meso-diaminopimelic acid, N-acetylmannosamine, mannose, galactose, glucose, and phosphate was isolated from cell walls of the filamentous prochlorophyte Prochlorothrix hollandica; this complex was similar in chemical composition and structure to that found in cyanobacteria. Peptide patterns of partial acid hydrolysates of the isolated peptidoglycan revealed an A1 gamma structure with direct cross-linkage (m-diaminopimelic acid-D-alanine) of the peptide side chains. The degree of cross-linkage (63%) was found to be in the range of values obtained for gram-positive bacteria and cyanobacteria.  相似文献   

13.
Peptidoglycan of a gram-negative stalked bacterium, Caulobacter crescentus CB13, contained alanine, diaminopimelic acid, and glutamic acid, in molar ratios of 2 : 1 : 1. The amino acid compositions of peptidoglycans isolated from cultures enriched in swarmer and stalked cells, and from a stalk-less mutant were similar. This finding conflicts with a previous observation that swarmer peptidoglycan does not contain diaminopimelic acid (Goodwin and Shedlarski (1975) Arch. Biochem. Biophys. 170, 23-36). It appears that, despite the morphological differences, the Caulobacter cells all contain a similar peptidoglycan in the cell wall.  相似文献   

14.
Autolysis of Neisseria gonorrhoeae.   总被引:22,自引:11,他引:22       下载免费PDF全文
Physiological conditions that would provide maximal rates of autolysis of Neisseria gonorrhoeae were examined. Autolysis was found to occur over a broad pH range with the optimum at pH 9.0 IN 0.05 M tris(hydroxymethyl)amino-methane-maleate buffer. The temperature optimum was found to be 40 C. Potassium ions greatly stimulated autolysis at a concentration of 0.01 M. Exposure of growing N. gonorrhoeae cells to penicillin, vancomycin, or D-cycloserine influenced the susceptibility to the autolysis, whereas chloramphenicol afforded some protection against autolysis. The primary structure of the peptidoglycan is composed of muramic acid/glutamic acid/alanine/diaminopimelic acid/glucosamine in approximate molar ratios of 1:1:2:1:1, respectively. Exogenous radioactive diaminopimelic acid, D-glucosamine, and D-alanine were incorporated into peptidoglycan. During autolysis these radioactive fragments were released from cells.  相似文献   

15.
The biochemical composition of the cell envelope of Renibacterium salmoninarum was investigated in a total of 13 strains isolated from different salmonid fish species at various geographical locations of the United States, Canada, and Europe. A marked similarity with the type strain R. salmoninarum ATCC 33209 was found both in the peptidoglycan and the cell wall polysaccharide. The primary structure of the peptidoglycan was found to be consistent with lysine in the third position of the peptide subunit, a glycyl-alanine interpeptide bridge between lysine and D-alanine of adjacent peptide subunits, and a D-alanine amide substituent at the alpha-carboxyl group of D-glutamic acid in position 2 of the peptide subunit. The cell wall polysaccharide contained galactose as the major sugar component which was accompanied by rhamnose, N-acetylglucosamine, and N-acetylfucosamine. The polysaccharide amounted to more than 60% of the dry weight of the cell walls. It was found to be covalently linked to the peptidoglycan and was released by hot formamide treatment. On gel filtration chromatography the extracted polysaccharide behaved like a homogeneous polymeric compound. The purified cell wall polysaccharide showed antigenic activity with antiserum obtained by immunization of rabbits with heat-inactivated trypsinized cells of R. salmoninarum. Immunoblotting experiments with nontrypsinized cell walls and antisera raised against R. salmoninarum cells revealed that antigenic proteins were attached to the cell walls.  相似文献   

16.
I Kawamoto  T Oka    T Nara 《Journal of bacteriology》1981,146(2):527-534
Cell walls of 19 Micromonospora species were analyzed for their components. All the cell walls had xylose and arabinose, but the presence of glucose, galactose, mannose, or rhamnose depended on the strain. Amino acids present in the walls consisted of glycine, glutamic acid, diaminopimelic acid, and alanine, in a molar ratio of approximately 1:1:1:0.6--0.8. 3-Hydroxydiaminopimelic acid, together with meso-diaminopimelic acid, was found in many species and was isolated from Micromonospora olivoasterospora to compare the color constant in an amino acid analyzer with that of meso-diaminopimelic acid. The cell walls of Micromonospora sagamiensis and M. olivoasterospora contained only D-alanine and not L-alanine. All species tested except Micromonospora globosa contained glycolate in an almost equimolar ratio to diaminopimelic acid in their cell walls. Among 45 strains of 12 genera examined, Actinoplanes, Ampullariella, Amorphosporangium, and Dactylosporangium species had a significant amount of glycolate in the whole cells. Based on these results, the primary structure of the peptidoglycan of Micromonospora is discussed.  相似文献   

17.
The mode of action of bacteriophage-induced lytic enzyme “LE95” was investigated. The LE95 hydrolyzed peptide portion in peptidoglycan of Ps. aeruginosa and E. coli. The exposed amino terminal amino acid was identified as glutamic acid by analysis of terminal amino acid by dinitrophenylation. This result suggested the LE95 hydrolyzed the peptide bond between L-alanine and D-glutamic acid in the peptidoglycan of Ps. aeruginosa and E. coli. The enzyme did not hydrolyze various peptides prepared from bacterial cell wall. This experimental result suggested that the glycan chain of peptidoglycan would be essential for the enzymic activity.  相似文献   

18.
Peptidoglycan was prepared from purified Bacillus subtilis spores of wild-type and several mutant strains. Digestion with muramidase resulted in cleavage of the glycosidic bonds adjacent to muramic acid replaced by peptide or alanine side chains but not the bonds adjacent to muramic lactam. Reduction of the resulting muropeptides allowed their separation by reversed-phase high-pressure liquid chromatography. The structures of 20 muropeptides were determined by amino acid and amino sugar analysis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In wild-type spores, 50% of the muramic acid had been converted to the lactam and 75% of these lactam residues were spaced regularly at every second muramic acid position in the glycan chains. Single L-alanine side chains were found on 25% of the muramic acid residues. The remaining 25% of the muramic acid had tetrapeptide or tripeptide side chains, and 11% of the diaminopimelic acid in these side chains was involved in peptide cross-links. Analysis of spore peptidoglycan produced by a number of mutants lacking proteins involved in cell wall metabolism revealed structural changes. The most significant changes were in the spores of a dacB mutant which lacks the sporulation-specific penicillin-binding protein 5*. In these spores, only 46% of the muramic acid was in the lactam form, 12% had L-alanine side chains, and 42% had peptide side chains containing diaminopimelic acid, 29% of which was involved in cross-links.  相似文献   

19.
20.
Y Araki  E G Ruby 《Biochemistry》1988,27(7):2624-2629
An enzyme activity, responsible for the attachment of diaminopimelic acid (DAP) to bdelloplast wall peptidoglycan, was studied in an in vitro, cell-free system. Most of the activity was found in the high-speed (20000g) supernatant fraction of homogenates of bdelloplasts prepared from a culture of the intracellular bacterium Bdellovibrio bacteriovorus 109J, growing synchronously within cells of Escherichia coli. Peptidoglycan preparations obtained either from E. coli ML35 or from the walls of bdelloplasts synchronously cultured for 40 or 90 min served as the acceptors in this reaction, whereas cell wall or peptidoglycan preparations obtained from Gram-positive bacteria could not function as acceptors of DAP. The attachment activity had an apparent Km value for DAP of 10 microM; for bdelloplast peptidoglycan, it was approximately 0.43 mg/mL, which is 13 microM with respect to peptidoglycan disaccharide peptide units. DAP attachment was partially inhibited by the structural analogues lanthionine, L-ornithine, beta-aminobutyric acid, and D-serine, as well as the cell wall synthesis inhibitors penicillin G, ampicillin, and cephalexin. This enzyme activity is present only during the intracellular stage of the bdellovibrio's developmental growth cycle and may serve a stage-specific function of biochemically modifying the cell in which it grows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号