首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
River and stream biofilms in mediterranean fluvial ecosystems face both extreme seasonality as well as arrhythmic fluctuations. The hydrological extremes (droughts and floods) impose direct changes in water availability but also in the quantity and quality of organic matter and nutrients that sustain the microbial growth. This review analyzes how these ecological pulses might determine unique properties of biofilms developing in mediterranean streams. The paper brings together data from heterotrophic and autotrophic community structure, and extracellular enzyme activities in biofilms in mediterranean streams. Mediterranean stream biofilms show higher use of peptides during the favorable period for epilithic algae development (spring), and preferential use of cellulose and hemicellulose in autumn as a response to allochthonous input. The drying process causes the reduction in bacterial production and chlorophyll biomass, but the rapid recovery of both autotrophs and heterotrophs with rewetting indicates their adaptability to fluctuations. Bacteria surviving the drought are mainly associated with sediment and leaf litter which serve as “humid refuges”. Some algae and cyanobacteria show resistant strategies to cope with the drought stress. The resistance to these fluctuations is strongly linked to the streambed characteristics (e.g., sediment grain size, organic matter accumulation, nutrient content).  相似文献   

2.
1. We compared microbial biomass (bacteria, fungi, algae) and the activity of extracellular enzymes used in the decomposition of organic matter (OM) among different benthic substrata (leaves, coarse and fine substrata) over one hydrological year in a Mediterranean stream.
2. Microbial heterotrophic biomass (bacteria plus fungi) was generally higher than autotrophic biomass (algae), except during short periods of high light availability in the spring and winter. During these periods, sources of OM shifted towards autochthonous sources derived mainly from algae, which was demonstrated by high algal biomass and peptidase activity in benthic communities.
3. Heterotrophic activity peaked in the autumn. Bacterial and fungal biomass increased with the decomposition of cellulose and hemicellulose compounds from leaf material. Later, lignin decomposition was stimulated in fine (sand, gravel) and coarse (rocks, boulders and cobbles) substrata by the accumulation of fine detritus.
4. The Mediterranean summer drought provoked an earlier leaf fall. The resumption of the water flow caused the weathering of riparian soils and subsequently a large increase in dissolved organic carbon and nitrate, which led to growth of bacteria and fungi.  相似文献   

3.
1. Anthropogenic activities have increased reactive nitrogen availability, and now many streams carry large nitrate loads to coastal ecosystems. Denitrification is potentially an important nitrogen sink, but few studies have investigated the influence of benthic organic carbon on denitrification in nitrate‐rich streams. 2. Using the acetylene‐block assay, we measured denitrification rates associated with benthic substrata having different proportions of organic matter in agricultural streams in two states in the mid‐west of the U.S.A., Illinois and Michigan. 3. In Illinois, benthic organic matter varied little between seasons (5.9–7.0% of stream sediment), but nitrate concentrations were high in summer (>10 mg N L−1) and low (<0.5 mg N L−1) in autumn. Across all seasons and streams, the rate of denitrification ranged from 0.01 to 4.77 μg N g−1 DM h−1 and was positively related to stream‐water nitrate concentration. Within each stream, denitrification was positively related to benthic organic matter only when nitrate concentration exceeded published half‐saturation constants. 4. In Michigan, streams had high nitrate concentrations and diverse benthic substrata which varied from 0.7 to 72.7% organic matter. Denitrification rate ranged from 0.12 to 11.06 μg N g−1 DM h−1 and was positively related to the proportion of organic matter in each substratum. 5. Taken together, these results indicate that benthic organic carbon may play an important role in stream nitrogen cycling by stimulating denitrification when nitrate concentrations are high.  相似文献   

4.
The absolute amount of microbial biomass and relative contribution of fungi and bacteria are expected to vary among types of organic matter (OM) within a stream and will vary among streams because of differences in organic matter quality and quantity. Common types of benthic detritus [leaves, small wood, and fine benthic organic matter (FBOM)] were sampled in 9 small (1st-3rd order) streams selected to represent a range of important controlling factors such as surrounding vegetation, detritus standing stocks, and water chemistry. Direct counts of bacteria and measurements of ergosterol (a fungal sterol) were used to describe variation in bacterial and fungal biomass. There were significant differences in bacterial abundance among types of organic matter with higher densities per unit mass of organic matter on fine particles relative to either leaves or wood surfaces. In contrast, ergosterol concentrations were significantly greater on leaves and wood, confirming the predominance of fungal biomass in these larger size classes. In general, bacterial abundance per unit organic matter was less variable than fungal biomass, suggesting bacteria will be a more predictable component of stream microbial communities. For 7 of the 9 streams, the standing stock of fine benthic organic matter was large enough that habitat-weighted reach-scale bacterial biomass was equal to or greater than fungal biomass. The quantities of leaves and small wood varied among streams such that the relative contribution of reach-scale fungal biomass ranged from 10% to as much as 90% of microbial biomass. Ergosterol concentrations were positively associated with substrate C:N ratio while bacterial abundance was negatively correlated with C:N. Both these relationships are confounded by particle size, i.e., leaves and wood had higher C:N than fine benthic organic matter. There was a weak positive relationship between bacterial abundance and streamwater soluble reactive phosphorus concentration, but no apparent pattern between either bacteria or fungi and streamwater dissolved inorganic nitrogen. The variation in microbial biomass per unit organic matter and the relative abundance of different types of organic matter contributed equally to driving differences in total microbial biomass at the reach scale.  相似文献   

5.
Ecological effects of perturbation by drought in flowing waters   总被引:26,自引:2,他引:24  
P. S. Lake 《Freshwater Biology》2003,48(7):1161-1172
  • 1 Knowledge of the ecology of droughts in flowing waters is scattered and fragmentary, with much of the available information being gathered opportunistically. Studies on intermittent and arid‐zone streams have provided most of the information.
  • 2 Drought in streams may be viewed as a disturbance in which water inflow, river flow and water availability fall to extremely low levels for extended periods of time. As an ecological perturbation, there is the disturbance of drought and the responses of the biota to the drought.
  • 3 Droughts can either be periodic, seasonal or supra‐seasonal events. The types of disturbance for seasonal droughts are presses and for supra‐seasonal droughts, ramps.
  • 4 In droughts, hydrological connectivity is disrupted. Such disruption range from flow reduction to complete loss of surface water and connectivity. The longitudinal patterns along streams as to where flow ceases and drying up occurs differs between streams. Three patterns are outlined: ‘downstream drying’, ‘headwater drying’ and ‘mid‐reach drying’.
  • 5 There are both direct and indirect effects of drought on stream ecosystems. Marked direct effects include loss of water, loss of habitat for aquatic organisms and loss of stream connectivity. Indirect effects include the deterioration of water quality, alteration of food resources, and changes in the strength and structure of interspecific interactions.
  • 6 Droughts have marked effects on the densities and size‐ or age‐structure of populations, on community composition and diversity, and on ecosystem processes.
  • 7 Organisms can resist the effects of drought by the use of refugia. Survival in refugia may strongly influence the capacity of the biota to recover from droughts once they break.
  • 8 Recovery by biota varies markedly between seasonal and supra‐seasonal droughts. Faunal recovery from seasonal droughts follows predictable sequences, whilst recovery from supra‐seasonal droughts varies from one case to another and may be marked by dense populations of transient species and the depletion of biota that normally occur in the streams.
  • 9 The restoration of streams must include the provision of drought refugia and the inclusion of drought in the long‐term flow regime.
  相似文献   

6.
Climatic change, such as increases in extreme drought and rainfall events and changes in rainfall intensity and pattern, has been strongly influencing soil moisture. The climatic change impact is particularly common in arid, semi-arid and Mediterranean regions, which is causing dramatic changes in the intensity and frequency of soil drying–rewetting cycles. The soil drying–rewetting cycle is a natural phenomenon that the soil experiences drying, then wetting, and then drying and rewetting again and again. When a dry soil is being rewetted, the amount of soil microbial biomass and its activity can be sharply increasing in a short time period, and then a large amount of gaseous carbon (C) and nitrogen (N) erupts from the soil. The sudden release of gaseous C and N is caused by the stimulation of the soil microbes. Such a phenomenon is called “Birch effect”. The drying–rewetting cycles have direct and indirect effects on soil microbes, and soil microbial responses to the drying and rewetting events play an important role in the feedbacks of terrestrial ecosystems. From aspects of soil microbial biomass, microbial activities and microbial structure, we review recent advances on studies regarding microbial responses to soil drying–rewetting cycles. We interpret the microbial responses using five different types of mechanisms: (1) Microbial stress mechanism: when a soil becomes dry, microorganisms must accumulate compatible solutes such as carbohydrates and aminoacids so that the soil microbes can equilibrate with their environment in order to avoid dehydrating and being killed. When the soil is rewetted, soil microbes must dispose of those osmolytes rapidly by transforming them into carbon dioxide (CO2), dissolved organic carbon (DOC) and nutrients in order to prevent water from being flowing into the cells. (2) Substrate supply mechanism: low soil moisture may result in the physical disruption of soil aggregates which leads to the exposure of new soil surfaces and of previously protected organic matter. When the soil is rewetted, its physical structure is further disrupted by swelling. The increased new soil surfaces and previously protected organic matter will improve the microorganism’s nutrient availability. (3) Soil hydrophobicity mechanism: soil hydrophobicity can cause the reduction of soil moisture and nutrient availability and inhibition of microbial decomposition of soil organic matter. Therefore, soil hydrophobicity is an important factor of explaining the activity of microorganism in drying and rewetting events. (4) Diffusive limitations mechanism: transportation of the soil microbe is limited in a dry soil. When soil moisture is increasing, soil microbial activity is enhanced along with the increased availability of substrate nutrients. (5) Predation mechanism: a moist soil is usually conducive to the increase of bacteria and fungi populations. In response, protozoa and nematodes also increase, leading to the fluctuation of the soil microbial community structure. On the basis of the literature review, we propose five important aspects to be considered in the future: (1) assessing soil microbes’ concrete adapting ways to the drying–rewetting cycles, (2) evaluating the microbial responses to the drying–rewetting cycles based on suitable indicators, (3) interpreting microbial responses to the drying–rewetting cycles by combining field investigation and laboratory controlling experiment, (4) investigating the microbial responses to the drying–rewetting cycles at different temporal and spatial scales.  相似文献   

7.
To evaluate the importance and fate of organic matter inputs in forested streams, we determined the litterfall inputs and the benthic coarse particulate organic matter (CPOM) in one headwater stream flowing through a mixed deciduous forest, during one year. Both vertical traps and the stream bottom were sampled monthly. The material collected was sorted into four main categories: leaves, fruits and flowers, twigs and debris. Litter production was 715 g m−2 y−1 and seasonal, with 73% of the annual total during October–December (autumn). Leaves comprised the largest litter component. Benthic organic matter was 1880 g m−2 y−1, and was also seasonal. Highest accumulation was attained in spring, and twigs and branches comprised the major component. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
To test the hypothesis whether afforestation with Eucalyptus globulus affects litter dynamics in streams and the structure of macroinvertebrate aquatic communities, we compared streams flowing through eucalyptus and deciduous forests, paying attention to: (i) litterfall dynamics, (ii) accumulation of organic matter, (iii) processing rates of two dominant leaf species: eucalyptus and chestnut, and (iv) macroinvertebrate community structure. The amount of allochthonous inputs was similar in both vegetation types, but the seasonality of litter inputs differed between eucalyptus and natural deciduous forests. Eucalyptus forest streams accumulated more organic matter than deciduous forest streams. Decomposition of both eucalyptus and chestnut leaf litter was higher in streams flowing through deciduous forests. The eucalyptus forest soils were highly hydrophobic resulting in strong seasonal fluctuations in discharge. In autumn the communities of benthic macroinvertebrates of the two stream types were significantly different. Deciduous forest streams contained higher numbers of invertebrates and more taxa than eucalyptus forest streams. Mixed forest streams (streams flowing through eucalyptus forests but bordered by deciduous vegetation) were intermediate between the two other vegetation types in all studied characteristics (accumulation of benthic organic matter, density and diversity of aquatic invertebrates). These results suggest that monocultures of eucalyptus affect low order stream communities. However, the impact may be attenuated if riparian corridors of original vegetation are kept in plantation forestry.  相似文献   

9.
10.
An agriculturally-impacted stream in northern Idaho was examined over a two-year period to determine seasonal and longitudinal patterns of the storage and decomposition of particulate organic matter. Biomass of benthic organic matter (BOM) was considerably less than values reported in the literature for comparable, undisturbed streams. Coarse, fine, and total benthic particulate organic matter were not correlated with parameters pertaining to stream size (e.g., stream order), but were correlated with sample site and amount of litterfall. The association of BOM with site and litterfall suggests that storage of particulate organic matter is a function of local characteristics rather than stream size. Low biomass of stored organic matter is a response to the low input of terrestrially-derived organic matter resulting from removal of climax vegetation.Leaf packs of alder, Alnus sp., were placed in the stream seasonally for 30 and 60 d. While there were significant differences for months, there was no significant difference among sites for leaf packs exposed for 30 d. Significant differences were observed among both sites and months for leaf packs exposed for 60 d; however, differences among sites accounted for only 5% of the variance. The absence of differences in decomposition of organic matter along the gradient of Lapwai Creek, despite heterogeneity of the drainage basin and availability of organic matter, may be in response to the overall low biomass of stored benthic organic matter. This study demonstrates that agricultural activity can substantially influence instream heterotrophic processes through reduced availability of organic matter and can shape community structure and ecosystem dynamics of streams flowing through agricultural drainage basins.  相似文献   

11.
Dissolved organic carbon (DOC) in Lake Fryxell, 10 streams flowing into the lake, and the moat surrounding the lake was studied to determine the influence of sources and biogeochemical processes on its distribution and chemical nature. Lake Fryxell is an amictic, permanently ice-covered lake in the McMurdo Dry Valleys which contains benthic and planktonic microbial populations, but receives essentially no input of organic material from the ahumic soils of the watershed. Biological activity in the water column does not appear to influence the DOC depth profile, which is similar to the profiles for conservative inorganic constituents. DOC values for the streams varied with biomass in the stream channel, and ranged from 0.2 to 9.7 mg C/L. Fulvic acids in the streams were a lower percentage of the total DOC than in the lake. These samples contain recent carbon and appear to be simpler mixtures of compounds than the lake samples, indicating that they have undergone less humification. The fulvic acids from just above the sediments of the lake have a high sulfur content and are highly aliphatic. The main transformations occurring as these fractions diffuse upward in the water column are 1) loss of sulfur groups through the oxycline and 2) decrease in aliphatic carbon and increase in the heterogeneity of aliphatic moieties. The fraction of modem14C content of the lake fulvic acids range from a minimum of 0.68 (approximately 3000 years old) at 15m depth to 0.997 (recent material) just under the ice. The major processes controlling the DOC in the lake appear to be: 1) The transport of organic matter by the inflow streams resulting in the addition of recent organic material to the moat and upper waters of the lake; 2) The diffusion of organic matter composed of relict organic material and organic carbon resulting from the degradation of algae and bacteria from the bottom waters or sediments of the lake into overlying glacial melt water, 3) The addition of recent organic matter to the bottom waters of the lake from the moat.  相似文献   

12.
Previous research on Corbicula fluminea (a well-established, non-native bivalve) has clearly shown that this single species impacts ecosystem processes such as nutrient and dissolved organic carbon cycling in the water column of streams. Surprisingly, little was known about how Corbicula might influence similar processes in streambed sediments. Here, we used both laboratory and field experiments to determine how filter- and pedal-feeding by Corbicula impact organic matter dynamics in the sandy streambed (Goose Creek, Virginia). Corbicula consumed significant quantities of organic material in the streambed when conditions favored pedal-feeding but increased buried organic matter stores when filter-feeding promoted deposition of organic matter (by production of feces and pseudofeces). Corbicula contributed significantly to total benthic community respiration (and thus carbon dioxide production), and used pedal-feeding on benthic organic material to grow at a faster rate than that possible by filter-feeding alone. Corbicula should be an important coupler between benthic and pelagic processes because this bivalve uses organic matter from both the water column and the stream sediments. Given the widespread occurrence of this species, we speculate that the introduction of Corbicula may have had major implications for organic matter dynamics in this and many other streams in the United States. Received: 5 October 1998 / Accepted: 6 February 1999  相似文献   

13.
Jon Molinero  Jesus Pozo 《Hydrobiologia》2004,528(1-3):143-165
Litterfall inputs, benthic storage and the transport of coarse particulate organic matter (CPOM) were studied in two headwater streams, one flowing through a mixed deciduous forest and one through a plantation of Eucalyptus globulus. Vertical and lateral traps, transported CPOM and benthic CPOM were sampled monthly to biweekly and sorted into four categories: leaves, twigs and bark, fruits and flowers and debris. The litterfall inputs were about 20% lower at the eucalyptus site but this reduction was unevenly distributed among the litter categories. The reduction of the nitrogen and phosphorus inputs was larger (50%) than that of CPOM because of the low nutrient concentration of the CPOM at the eucalyptus site. Transported CPOM was also lower at the eucalyptus site. Although total CPOM inputs to the stream were reduced in the eucalyptus plantation, benthic storage of CPOM was 50% higher due to (1) high inputs of CPOM and low discharge during summer, (2) more twig and bark inputs, (3) eucalyptus leaves being retained more efficiently in the stream than deciduous leaves (4) a lower discharge, which may in part be attributable to eucalyptus-induced changes in the hydrological cycle. Increased retention balanced lower nitrogen and phosphorus content of CPOM, so benthic storage of nitrogen and phosphorus was similar at both sites. This work demonstrates that the timing, quality and quantity of inputs and benthic storage of CPOM in streams changes substantially because of the substitution of natural deciduous forest with eucalyptus plantation. Maintenance of buffer strips of natural vegetation may be the best way to protect ecological functioning of small, forested streams.  相似文献   

14.
The evolution of dissolved organic carbon (DOC) molecular-weight fractions, DOC biodegradability (BDOC), DOC origin [fluorescence index (FI)], and enzyme activities between the stream waters (main and ephemeral channel) and ground waters (riparian and hillslope) were analyzed during the transition from drought to precipitation in a forested Mediterranean stream. After the first rains, DOC content in stream water reached its maximum value (10–18 mg L−1), being explained by the leaching of deciduous leaves accumulated on the stream bed during drought. During this period, the largest molecules (>10 kDa), were the most biodegradable, as indicated by high BDOC values measured during storm events and high enzymatic activities (especially for leucine-aminopeptidase). DOC >100 kDa was strongly immobilized (78%) at the stream–riparian interface, whereas the smallest molecules (<1 kDa) were highly mobile and accumulated in ground waters, indicating their greater recalcitrance. Differential enzymatic patterns between compartments showed a fast utilization of polysaccharides in the flowing water but a major protein utilization in the ground water. The results of the FI indicated a more terrestrial origin of the larger molecules in the flowing water, also suggesting that transformation of material occurs through the stream–riparian interface. Microbial immobilization and fast utilization of the most biodegradable fraction at the stream–riparian interface is suggested as a relevant DOC retention mechanism just after initial recharging of the ground water compartment. Large and rapid DOC inputs entering the intermittent river system during the transition from drought to precipitation provide available N and C sources for the heterotrophs. Heterotrophs efficiently utilize these resources that were in limited supply during the period of drought. Such changes in C cycling may highlight possible changes in organic matter dynamics under the prediction of extended drying periods in aquatic ecosystems.  相似文献   

15.
1. Mediterranean climate regions are characterised by long summer droughts that usually involve flow intermittency in low‐ to mid‐order streams. Flow intermittency implies flow cessation, drying and subsequent rewetting of the streambed, and affects both autotrophic and heterotrophic processes. The balance between these processes, as well as the balance in the use of carbon (C), nitrogen (N) and phosphorus (P) may change because of the ongoing increase in stream flow intermittency caused by global change in many regions. It is therefore crucial to understand better the consequences of this phenomenon. 2. Our two initial hypotheses were (i) that flow intermittency would impact more on autotrophic than on heterotrophic processes in stream biofilms owing to the higher water dependence of autotrophs, as well as differences in the water storage capacity of the stream biofilm compartments where autotrophic and heterotrophic processes mainly occur (surface cobbles versus hyporheic sediments) and (ii) that the C‐N‐P use by biofilms would change during the dry period (terrestrial phase) owing to the extreme water stress conditions. These hypotheses were tested by analysing the functional response of the main stream biofilms (epilithic, epipsammic and hyporheic) during flow cessation, desiccation and rewetting in a Mediterranean forested stream. The autotrophic response was characterised through changes in the photon yield, whereas the heterotrophic response was characterised by changes in the extracellular enzyme activities. 3. Streambed desiccation had clear effects on the functioning of stream biofilms. Autotrophic biomass decreased by 80% with streambed desiccation, but recovered rapidly after flow resumption. Heterotrophs were more resistant to water stress, especially in the epipsammic and hyporheic biofilms where bacterial cell density decreased only by 20%. 4. Extracellular enzyme activities remained relatively high, and the balance in the C‐N‐P use by biofilms changed during the dry period. The C and P breakdown capacities were maintained during dry conditions, especially in the epipsammic and hyporheic biofilms, but the degradation of N compounds sharply decreased. Elemental molar ratios (C:N and C:P) of the different biofilms also changed with streambed desiccation. C:P ratios increased from 80 to 300, while the C:N ratios increased from 10 to 16. 5. Given the contrasting responses of autotrophic and heterotrophic processes in the different biofilms, our results suggest that the current increase in flow intermittency extent is likely to increase the relative importance of heterotrophic processes in stream ecosystems, as well as the relative contribution of the hyporheic biofilm to C‐N‐P use. Our results further suggest that the longer streams remain dry, the more the biofilm stoichiometry will change.  相似文献   

16.
17.
This study assessed the results of anthropogenic sediment input on macroinvertebrate trophic structure in streams located in an area of oil and natural gas exploitation in Brazil's Amazon forest. The results indicate that macroinvertebrate communities both in streams impacted by anthropogenic sediments and in non‐impacted streams are composed mainly of taxa in the following functional feeding groups: predators, gathering‐collectors, scrapers, shredders and filtering‐collectors. The highest densities were observed for collector‐gatherers, followed by scrapers, predators, shredders and filtering‐collectors. However, both the richness and the density of all groups were reduced in impacted streams. The reductions were significantly related to suspended inorganic sediment load and to the colour of suspended sediments. The relative proportion of shredders in streams impacted by anthropogenic sediments was significantly reduced as compared with the proportion observed in non‐impacted streams. This resulted from lower availability of coarse particulate organic matter in these streams owing to burial of leaves and other plant material. These results indicate changes in the functioning and productivity of streams owing to anthropogenic siltation. This is because the benthic macroinvertebrate communities, sampled during this study, were dependent on the degradation of leaves, which are the primary energy source sustaining the benthic foodweb.  相似文献   

18.
Effects of snow cover on the benthic fauna in a glacier-fed stream   总被引:4,自引:0,他引:4  
1. Alpine streams above the tree line are covered by snow for 6–9 months a year. However, winter dynamics in these streams are poorly known. The annual patterns of macroinvertebrate assemblages were studied in a glacial stream in the Austrian Alps, providing information on conditions under the snow.
2. Snow cover influenced water temperature, the content of benthic organic matter and insect development. Taxa richness and abundance of macroinvertebrates did not show a pronounced seasonal pattern. The duration of the autumn period with stable stream beds was important in determining the abundance and composition of the winter fauna.
3. There were significant differences in species composition between summer and winter. Two potential strategies in larval survival were evident: adaptation to the extreme abiotic conditions in summer (e.g. Diamesa spp.) or avoidance of these conditions and development during winter (e.g. Ephemeroptera and Plecoptera).
4. A comparison of a stream reach with continuous snow cover and a stream reach that remained open throughout winter showed that conditions under snow are suboptimal. At the open stream site, with higher water temperatures and greater food supply (benthic organic matter content), abundance and taxa richness was higher and larval growth was faster. Several taxa were found exclusively at this site.
5. Winter conditions did not provide an entirely homogeneous environment, abiotic conditions changed rapidly, especially at the onset of snowfall and at snowmelt. Continuous monitoring is necessary to recognize spatial and temporal heterogeneity in winter environments and the fauna of alpine streams.  相似文献   

19.
典型河床底质组成中底栖动物群落及多样性   总被引:13,自引:1,他引:12  
段学花  王兆印  程东升 《生态学报》2007,27(4):1664-1672
底栖动物是河流生态系统中食物链的重要环节。通过对长江、黄河、东江和拒马河等河流野外调查和采样分析研究了河床底质组成对底栖动物群落结构的影响规律。研究结果发现,不同河床底质组成中的底栖动物结构差别很大,不同地理位置而相同底质条件和水力条件的河流底栖动物群落组成相似,说明河床底质是影响河流底栖动物群落结构的关键因素,受地理位置和大气候的影响不大;利用多项生物指标分析了不同河床底质组成中底栖动物群落的多样性,卵石河床且有水生植物生长的河流底栖动物物种组成最丰富,大河中沙质河床不稳定,未采集到底栖动物;不同底质类型河床中的优势种群亦不同。并分析了采样所得底栖动物物种数与采样面积之间的关系,符合前者随后者呈幂指数增加的规律,当实测采样面积为1~2m^2时物种数变化不大,建议一般情况下最小采样面积应为1m^2。  相似文献   

20.
1. Heterotrophic biofilms are important drivers of community respiration, nutrient cycling and decomposition of organic matter in stream ecosystems. Both organic matter quality and nutrient levels have been shown to affect biofilm biomass and activity individually, but both factors have rarely been manipulated simultaneously. 2. To experimentally manipulate the organic matter quality and phosphorus (P) levels of both the substratum and water column, we first used cellulose cloth as a low‐quality organic material and enhanced its quality and P‐content by amending the underlying agar with maltose and P, respectively (Experiment I). To manipulate water column P, artificial substrata were incubated in low‐ and high‐P sites of a whole‐stream P‐enrichment in lowland Costa Rica. 3. Results from Experiment I suggest that heterotrophic biofilm respiration on cellulose cloth is co‐limited by carbon (C) and P. Biofilm respiration responded in an additive manner to combined effects of maltose and P‐enrichment of water column and synergistically to maltose and high‐P in substrata. 4. As decomposing organic matter that supports heterotrophic biofilms varies naturally in its labile C content along with other physical and chemical properties, we conducted a second experiment (Experiment II) in which we amended leaf discs from two species (Trema integerrima, a labile C source and Zygia longifolia, a recalcitrant C source) with maltose. We incubated the substrata in low‐ and high‐P sites of the P‐enrichment stream. 5. Results from Experiment II indicate that biofilm respiration on a labile C source (Trema) was not C‐limited, while biofilm respiration on a recalcitrant C source (Zygia) was C‐limited. Phosphorus stimulated the biofilm respiration and breakdown rate on Trema, but not on Zygia, supporting the hypothesis that the stimulatory effect of P‐enrichment is dependent on the availability of labile C in decomposing leaves. 6. Our results suggest that the interactive effects of organic matter quality and nutrient loading of streams can significantly increase microbial biofilm activity, potentially altering the trophic base of stream food webs. Researchers should consider both the organic matter quality and the enrichment of both water column and substrata to better predict the effects of anthropogenic nutrient loading to stream the ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号