首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Vitamin E (α-tocopherol) is an essential fat-soluble nutrient with antioxidant properties. α-Tocopherol transfer protein (α-TTP), the product of the gene responsible for familial isolated vitamin E deficiency, plays an important role in maintaining the plasma α-tocopherol level by mediating the secretion of α-tocopherol by the liver. However, the mechanisms underlying hepatic α-tocopherol secretion are not fully understood. This study was undertaken to elucidate the mechanism of α-tocopherol re-efflux from hepatocytes, the cells that have the most important role in regulating plasma-α-tocopherol concentrations. From in vitro experiments using [3H]α-tocopheryl acetate and McARH7777 cells that stably express α-tocopherol transfer protein (α-TTP), the following results were obtained. First, addition of apolipoprotein A-I (apoA-I), a direct acceptor of the ATP-binding cassette transporter A1 (ABCA1)-secreted lipids, increased α-tocopherol secretion in a dose-dependent manner. Second, probucol, an antiatherogenic compound reported to be an inactivator of ABCA1 reduced hepatic α-tocopherol secretion. Third, ABCA1-RNAi suppressed hepatic α-tocopherol secretion. In a mouse in vivo experiment, addition of 1% probucol to the diet decreased plasma α-tocopherol concentrations. These results strongly suggest that ABCA1 is substantially involved in hepatic α-tocopherol secretion.  相似文献   

2.
Gel filtration of soluble supernatant fraction obtained from livers of rats 10 min after an injection of the haem precursor 5-amino [3h] laevulinic acid shows the presence of a major radioactive fraction which upon gel filtration is similar in elution volume to ligandin. 20 min after administration of the precursor four previously minor components also come into prominence. This pattern is a characteristic of in vivo binding since a different elution pattern is obtained if soluble supernatant fraction from rat liver is labelled in vitro by incubation either with [3H] haem-labelled mitochondria, [3H] haem-labelled microsomes or with [3H] haemin.These results are discussed with particular reference to ligandin.  相似文献   

3.
The experiment was organized in a 3×2 factorial arrangement with three dietary fat blends and a basal (20 mg kg?1 diet) or supplemented (220 mg kg?1) level of α-tocopheryl acetate. Dietary vitamin E and monounsaturated to polyunsaturated fatty acid ratio (dietary MUFA/PUFA) affected muscle α-tocopherol concentration (α-tocopherol [log μg g?1]=0.18 (±0.105)+0.0034 (±0.0003)·dietary α-tocopherol [mg kg?1 diet] (P<0.0001)+0.39 (±0.122)·dietary MUFA/PUFA (P<0.0036)). An interaction between dietary α-tocopherol and dietary MUFA/PUFA exists for microsome α-tocopherol concentration (α-tocopherol [log μg g?1]=1.14 (±0.169) (P<0.0001)+0.0056 (±0.00099)·dietary α-tocopherol [mg kg?1 diet] (P<0.0001)+0.54 (±0.206)·dietary MUFA/PUFA (P<0.0131)?0.0033 (±0.0011)·dietary α-tocopherol [mg kg?1)]×dietary MUFA/PUFA (P<0.0067)), and hexanal concentration in meat (hexanal [ng·g?1]=14807.9 (±1489.8)?28.8 (±10.6) dietary α-tocopherol [mg·kg?1] (P<0.01)?8436.6 (±1701.6)·dietary MUFA/PUFA (P<0.001)+24.0 (±11.22)·dietary α-tocopherol·dietary MUFA/PUFA (P<0.0416)). It is concluded that partial substitution of dietary PUFA with MUFA lead to an increase in the concentration of α-tocopherol in muscle and microsome extracts. An interaction between dietary α-tocopherol and fatty acids exists, in which at low level of dietary vitamin E inclusion, a low MUFA/PUFA ratio leads to a reduction in the concentration of α-tocopherol in microsome extracts and a concentration of hexanal in meat above the expected values.  相似文献   

4.
[3H]Clonidine, a α-noradrenergic agonist, and [3H]WB-4101, a benzodioxan derivative α-antagonist, bind with high affinity and selectivity to membranes of rat brain in a fashion indicating that they label postsynaptic α-noradrenergic receptors. Binding for both ligands is saturable with KD values of 5 nM and 0.6 nM respectively for clonidine and WB-4101. The relative affinities of a series of phenylethylamines for binding sites corresponds well with their relative influences at α-receptors. Binding of both [3H]-ligands is stereoselective with about a 50 fold preference for (-)-norepinephrine. Of a series of ergot alkaloids, only those with known α-receptor activity have high affinities for the binding sites. Binding does not involve pre-synaptic norepinephrine nerve endings, because after an 80% depletion of endogenous norepinephrine by treatment with 6-hydroxydopamine, no decrease can be detected in [3H]clonidine and [3H]WB-4101 binding. α-Agonists have much higher affinities for [3H]clonidine than [3H]WB-4101 sites, while the reverse holds true for α-antagonists. Mixed agonist-antagonist ergots have similar affinities for binding of the two [3H]ligands. These data suggest that [3H]clonidine and [3H]WB-4101 respectively label distinct agonist and antagonist states of the α-receptor.  相似文献   

5.
Para-amino-clonidine (PAC) is an α-adrenergic agonist with extraordinarily high potency in some peripheral tissues. We have demonstrated the labeling of α-adrenergic binding sites in central and peripheral tissues with [3H]PAC and compared properties of this binding to those of [3H]clonidine. [3H]PAC binds saturably with a dissociation constant (KD) of about 0.9 nM to rat cerebral cortex membranes. It has about 2–3 times the affinity of [3H]clonidine for α-receptor binding sites. The greater affinity is attributable mainly to a slower dissociation of [3H]PAC than [3H]clonidine from binding sites. The relative and absolute potencies of various adrenergic agonists and antagonists in competing for [3H]PAC and [3H]clonidine binding are essentially the same. [3H]PAC can also be utilized to label α-adrenergic binding sites in the kidney and spleen where the relative potencies of PAC and clonidine are the same as in the brain.  相似文献   

6.
Rats were cannulated in the major mesenteric lymph duct and given an intraduodenal bolus of unlabeled and α-[3H]tocopherol, and [14C]oleic acid in soybean oil. The appearance of α-tocopherol in lymph was negligible during the first 2 h and peaked 4–15 h after feeding, whereas no detectable amount was recovered in the portal vein. Intestinal absorption via the lymphatic pathway was 15.4 ± 8.9% (n = 10) and 45.9 ± 10.8% (n = 4) for α-tocopherol and [14C]oleic acid, respectively. About 99% of α-tocopherol in lymph was associated with the chylomicron fraction (d < 1.006 g/ml). In non-fasting rats, 51% of serum α-tocopherol was associated with chylomicrons/VLDL (very-low-density lipoprotein, d < 1.006 g/ml) and 47% with HDL (high-density lipoprotein, 1.05 < d < 1.21 g/ml). Our study revealed that the liver, skeletal muscle and adipose tissue contain approx. 92% of the total mass of α-tocopherol measured in ten different organs. Parenchymal and nonparenchymal liver cells contributed to 75% and 25% of the total mass of α-tocopherol in the liver, respectively.  相似文献   

7.
Abstract Using ligand binding techniques, we studied α-adrenergic receptors in brains obtained at autopsy from seven histologically normal controls and seven patients with histopathologically verified Alzheimer-type dementia (ATD). Binding of the α-adrenergic antagonists [3H]prazosin and [3H]yohimbine to membranes of human brains exhibited characteristics compatible with α1- and α2-adrenergic receptors, respectively. Binding of both ligands was saturable and reversible, with dissociation constants of 0.15 nM for [3H]prazosin and 5.5 nM for [3H]yohimbine. [3H]Prazosin binding was highest in the hippocampus and frontal cortex and lowest in the caudate and putamen in the control brains. [3H]Yohimbine binding was highest in the nucleus basalis of Meynert (NbM) and frontal cortex and lowest in the caudate and cerebellar hemisphere in the control brains. Compared with values for the controls, [3H]prazosin binding sites were significantly reduced in number in the hippocampus and cerebellar hemisphere, and [3H]yohimbine binding sites were significantly reduced in number in the NbM in the ATD brains. These results suggest that α1 and α2-adrenergic receptors are present in the human brain and that there are significant changes in numbers of both receptors in selected regions in patients with ATD.  相似文献   

8.
α-[3H]Bungarotoxin was prepared by catalytic reduction of iodinated α-bungarotoxin with tritium gas. Crude mitochondrial fraction from rat cerebral cortex bound 40 · 10?15 ?60 · 10?15 moles of α-[3H]bungarotoxin per mg of protein. This binding was reduced by 50% in the presence of approx. 10?6 M d-tubocurarine or nicotine, 10?5 M acetylcholine, 10?4 M carbamylcholine or decamethonium or 10?3 M atropine. Hexamethonium and eserine were the least effective of the drugs tested. Crude mitochondrial fraction was separated into myelin, nerve endings, and mitochondria. The highest binding of toxin per mg of protein was found in nerve endings, as well as the greatest nhibition of toxin binding of d-tubocurarine. Binding of α-[3H]bungarotoxin to membranes obtained by osmotic shock of the crude mitochondrial fraction indicates that the receptor for the toxin is membrane bound. 125I-Labeled α-bungarotoxin, prepared with Na 125I and chloramine T, was highly specific for the acetylcholine receptor in diaphragm, however, it was less specific and less reliable than α-[3H]bungarotoxin in brain. We conclude that a nicotinic cholinergic receptor exists in brain, and that α-[3H]bungarotoxin is a suitable probe for this receptor.  相似文献   

9.
The first and second leaf sheaths of Zea mays L. cv Golden Jubilee were extracted and the extract centrifuged at 100,000g to yield a supernatant or cytosol fraction. Binding of [3H]gibberellin A1 (GA1) to a soluble macromolecular component present in the cytosol was demonstrated at 4°C by Sephadex G-200 chromatography. The binding component was of high molecular weight (HMW) and greater than 500 kilodaltons. The HMW component was shown to be a protein and the 3H-activity bound to this protein was largely [3H]GA1 and not a metabolite. Binding was pH sensitive but only a small percentage (20%) appeared to be exchangeable on addition of unlabeled GA1. Both biologically active and inactive GAs and non-GAs were able to inhibit GA1 binding. [3H]GA1 binding to an intermediate molecular weight (IMW) fraction (40-100 kilodaltons) was also detected, provided cytosol was first desalted using Sephadex G-200 chromatography. Gel filtration studies suggest that the HMW binding component is an aggregate derived from the IMW fraction. The HMW binding fraction can be separated into two components using anion exchange chromatography.  相似文献   

10.
Abstract

In the present study, we have provided evidence that [3H] rauwolscine and [3H] idazoxan bind to different sites in rabbit urethra. The [3H] idazoxan capacity and affinity was 215 ± 14 fmol/mg protein and 1.59 ± 0.16 nM while [3H] rauwolscine binding parameters were 45.9 ± 3.4 fmol/mg protein and 2.39 ± 0.27 nM. [3H] idazoxan specific binding was inhibited only by compounds possessing an imidazoli(di)ne or a guanidinium moiety, while [3H] rauwolscine specific binding was inhibited by phenylethanolamines and classical α-antagonists. [3H] idazoxan was inhibited by KCI in a competitive and by MnCI2 in a non-competitive way, while other cations such as Na+, Li+ and Mg2+ did not inhibit [3H] idazoxan binding. Moreover, we investigated the regional distribution of [3H] idazoxan and [3H] rauwolscine along the rabbit urethra using quantitative autoradiography. Analysis of the films revealed a different distribution of these two binding sites on the urethral sections.  相似文献   

11.
The present study describes the nature and characteristics of the intranuclear binding sites of [3H]d-α-tocopherol in rat liver. When radioactively labeled d-α-tocopherol was intravenously administered to rats, approximately 55% of the nuclear radioactivity was associated with an intranuclear nucleoprotein complex. This complex, which was extractable by high concentrations of NaCl, was characterized by equilibrium density ultracentrifugation on a 30 to 60% linear sucrose gradient. About 50% of the high-salt-extracted radioactivity was coprecipitable with macromolecules by 10% ice-cold trichloroacetic acid (TCA). This TCA-precipitable radioactivity was completely ethanol soluble. Alkaline conditions favored the solubilization of the vitamin-receptor complex. Among various enzymes tested, only Pronase and trypsin were capable of dissociating the vitamin-receptor complex. Both ionic (sodium dodecyl sulfate) and nonionic (Triton X-100) detergents solubilized α-tocopherol from the nuclei and concomitantly released some of the associated macromolecules. In addition, treatment of nuclei with low concentrations of Triton X-100 showed that about 30% of the nuclear bound α-tocopherol is associated with inner core sites in the nucleoprotein complex with very high affinity for the vitamin. Dissociation of the nucleoprotein complex (chromatin) by high-salt solubilization and subsequent partial reassociation of the components by salting out procedures revealed the high affinity association of α-tocopherol with the reconstituted DNA-protein complex. Subfractionation of this complex further revealed that α-tocopherol is predominantly associated with the fraction containing phenol-soluble nonhistone proteins having a high affinity for DNA. In vitro binding studies also showed that there are specific saturable binding sites for d-α-tocopherol in rat liver nuclei.  相似文献   

12.
The binding characteristics of the α-component of (?)-[3H]norepinephrine to hamster adipocyte membranes were studied. Binding was rapid, reaching equilibrium in 20 min at 25°C. Dissociation of specific binding by 10 μM phentolamine suggested dissociation from two different sites. The time course of dissociation induced by a 50-fold dilution was unchanged by the addition of norepinephrine, suggesting the absence of cooperative binding sites. [3H]norepinephrine binding was saturable, yielding curvilinear Scatchard plots. Computer modeling of these data further supported the existence of two classes of binding sites, one with high affinity (D = 23 nM) but low binding capacity (96 fmol/mg protein) and one with low affinity (KD = 400 nM) but high binding capacity (1000 fmol/mg protein). Adrenergic ligands of competed with [3H]norepinephrine binding in the following order of potency: (?)-norepinephrine>(?)-epinephrine>>(+)-norepinephrine>(?)-isoproterenol. Displacement by the selective α-adrenergic drugs prazosin, clonidine and yohimbine yielded biphasic curves consistent with binding of [3H]norepinephrine to both α1- (14–22%) and α2- (78–86%) receptor subtypes. Although Gpp(NH)p failed to alter the binding of [3H]dihydroergocryptine, it severely reduced the binding affinity of (?)-epinephrine, (?)-norepinephrine and the selective α2-agonist, clonidine. The inhibitory effects of clonidine and of the α-component of (?)-epinephrine on the adrenocorticotropin-stimulated cyclic AMP production in the intact adipocyte were closely correlated with their effects on the binding of both [3H]norepinephrine and [3H]dihydroergocryptine. Conversely, yohimbine but not prazosin markedly antagonised the α-inhibitory effect of norepinephrine on cyclic AMP production. These data led to concluded that [3H]norepinephrine can be successfully used to study the entire α-adrenergic receptor population of hamster fat cells and that the predominant α2 -receptor subtype exists in two different affinity states for agonists, the proportions of which are modulated by guanine nucleotides.  相似文献   

13.
Membranes of isolated adrenocortical cells have binding sites for [3H] d-α-tocopherol which exhibit specificity, saturability, time and temperature dependence, and reversibility of binding. The apparent equilibrium association constants (4 × 10?5M and 7 × 10?6M) for binding suggest that these binding sites are physiologically significant. Stability data indicate that binding sites are at least partly protein in constitution.  相似文献   

14.
Abstract

This report describes the results obtained with a new photo-affinity ligand for the “peripheral-type” benzodiazepine binding site (PBS), using a digitonin solubilized preparation from rat heart or adrenals.

The specific binding activity of the solubilized adrenal preparation is higher than 50 pmo1/mg protein, with binding proper-ties and pharmacological specificity identical to the membrane bound PBS. The apparent molecular weight of the solubilized PBS, determined by gel filtration is 215 KDa.

The photoaffinity ligand (PK 14105) is a nitrophenyl derivative of PK 11195, which attaches covalently and specifically to all the PBS when cardiac membranes are irradiated with this compound under ultraviolet light. After photolabelling with [3H]PK 14105 and solubilization in SDS of heart or adrenal membranes, gel electrophoresis indicates the existence of a single protein band whose molecular weight (18 KDa) is unaltered by incubation with sulphydryl-reducing or protein cross-linking agents. This molecule seems to be a low molecular weight, acidic protein.

Diethylpyrocarbonate decreases partially (60 %) the binding of [3H]PK 11195 without affecting [3H] RO5-4864 binding, which implies a vital histidine residue in the binding domain of [3H] -PK 11195. Treatment with phospholipase A2 or mellitin, a stimulant of endogenous PLA2, led to a selective, loss of [3H]RO5-4864 binding with no change in the binding of [3H]PK 11195.

Such differences between a benzodiazepine ligand and an isoquinoline ligand suggest that these compounds may induce.  相似文献   

15.
The biosynthesis of glucagon in perfused rat pancreas   总被引:4,自引:3,他引:1  
The biosynthesis of glucagon was studied by using the recirculated, isolated perfused rat pancreas. [3H]Tryptophan was initially incorporated into acid–ethanol-extractable protein, which on gel filtration was eluted with a molecular weight of about 9000 and contained a small amount of glucagon immunoreactivity. With longer incubation [3H]tryptophan incorporation into a second peak was obtained in an identical position with that of the majority of rat glucagon immunoreactivity. This peak of labelled protein exhibited migration characteristics on polyacrylamide-gel electrophoresis identical with those of rat glucagon and was identified as newly synthesized glucagon by demonstration of specific binding and dissociation behaviour with glucagon antibodies. The incorporation of [3H]tryptophan into acid–ethanol-extractable protein was inhibited by cycloheximide. High concentrations of glucose increased [3H]tryptophan incorporation into high-molecular-weight protein but decreased incorporation into proteins smaller than cytochrome c. The pattern of [3H]leucine incorporation into protein was similar to that of [3H]tryptophan.  相似文献   

16.
The aryl imidazoline compound UK-14, 304 (5-bromo-6-[2-imidazolin-2-yl-amino]-quinoxaline) is a potent and selective α2-adrenoceptor agonist with full intrinsic activity, unlike other imidazolines. We examined the characteristics of high specific activity (84 Ci/mmol) [3H] UK-14, 304 binding to rat cerebral cortex membranes. [3H] UK-14, 304 specific binding was enhanced by Mn2+ ion, and associated and dissociated moderately rapidly at 25°C. Norepinephrine-displaceable binding was saturable and monophasic, with a KD of 1.4 nM, in agreement with rate and competition experiments, and a Bmax of 200 fmol/mg protein. Competition studies revealed that binding was α2-adrenoceptor-specific, with yohimbine being 12 times more potent than prazosin. [3H] UK-14, 304 appeared to label predominantly the R(H) state of the brain α2-adrenoceptor, as judged by the high affinity of catecholamine and imidazoline agonists (IC50, 1–13 nM), and the relatively low affinity of yohimbine and rauwolscine (IC50, 100–300 nM), at the binding site. [3H] UK-14,304 compares favorably with other α2-adrenoceptor ligands because of its high affinity and specific activity.  相似文献   

17.
Using concentrations of [3H] dihydroergokryptine between 0.1 and 5 nM, saturable binding can be demonstrated in rat cerebral cortical membranes with a dissociation constant (KD) of about 0.8 nM. α-Noradrenergic agonists and antagonists compete for the sites labeled by these low concentrations of [3H] dihydroergokryptine with relative potencies characteristics of classical α-noradrenergic receptors. The very low potency of serotonin in competing for these binding sites indicates that, in contrast to findings with higher concentrations of [3H] DHE, low concentrations do not label serotonin receptors. Moreover, the low potency of dopamine in competing for [3H] dihydroergokryptine binding in both striatal and cortical membranes indicates that no detectable portion of binding is associated with postsynaptic dopamine receptors.  相似文献   

18.
Rabbit platelet membranes, preincubated with3H-labeled platelet activating factor ([3H]PAF), were solubilized with 2% digitonin. Sedimentation of the detergent extract in a sucrose density gradient revealed a major labeled component with a sedimentation coefficient (s20,ω) of 10.5 S, which was substantially diminished when an excess of unlabeled PAF or L-652,731, (trans-2,5-bis(3,4,5-trimethoxyphenyl)tetrahydrofuran), (PAF antagonist) was present in the preincubation mixture, suggesting that the 10.5 S component is a specific receptor-bound [3H]PAF complex. Gel filtration of the [3H]PAF-receptor complex on Sephacryl S-300 revealed a single radiolabeled fraction with an apparent Stokes' radius of 4.9 nm. The apparent molecular weight and the frictional ratio of the agonist-receptor complex were computed to be 220 000 and 1.13, respectively. Dissociation of [3H]PAF from the radioligand-receptor complex was facilitated by Na+ and Li+, whereas K+ and Cs+ were ineffective. The guanine nucleotide, GTP, was also found to promote the dissociation in a manner that is additive with the effect of Na+, suggestive of the coupling of a guanine nucleotide binding protein to the solubilized PAF-receptor complex.  相似文献   

19.
Bromocolchicine, synthesized by substituting tho N-acetyl moiety of colchicine with a reactive bromoacetyl group, was found to be an affinity label for tubulin. Binding of [3H]colchicine to tubulin was competitively and irreversibly inhibited by bromocolchicine with a Ki value of 2.3 × 10?5m. The affinity label could not be displaced by precipitating the protein with trichloroacetic acid and is thus covalently bound. Autoradiographs of brain high-speed supernatant proteins after their electrophoretic separation on sodium dodecyl sulphate/polyacrylamide gels showed that [3H]bromocolchicine reacted with four proteins, of which tubulin was one.Labelling of two of these proteins could be prevented by pretreatment of the brain extracts with α-bromoacetic acid, after which 70% of the covalently bound label was specifically located in the tubulin band. Up to 1.6 mol of affinity label could be bound per mol of tubulin, while under our experimental conditions 1 mol of protein bound irreversibly only 0.2 mol of [3H]colchicine. Autoradiography of sodium dodecyl sulphate/urea-polyacrylamide gels, which separate the subunits of tubulin, showed about 30% [3H] bromocolchicine bound to the α-subunit of tubulin and 70% to tho β-subunit.The irreversible binding site of colchicine was localized to the α-subunit, as labelling of only this subunit was inhibited by colchicine at high affinity label concentrations. At lower concentrations, colchicine inhibited the labelling of both subunits.Bromoacetic acid did not inhibit the reaction of the affinity label with the tubulin subunits, but increased the inhibition of [3H]bromocolchicine binding at lower concentrations of the affinity label in brain extracts preincubated with cold colchicine. This is interpreted to show a conformational change which takes place in the two subunits of tubulin upon binding of colchicine and results in the exposure of some of the binding sites of [3H]bromocolchicine to bromoacetic acid.  相似文献   

20.
Abstract

Kinetic experiments indicate that association of [3H]- cocaine to its binding site in brain occurs rapidly (seconds). Dissociation of membrane-bound cocaine is also rapid, with a dissociation half-life in seconds; this raises the question of whether membrane-bound cocaine is released during the time required for rapid filtration of tissue-containing filters. Results from experiments with increasing numbers of filterwashes indicate that there is no significant loss of [3H]-cocaine saturably bound to brain membranes within the timescale of the rapid filtration procedure. In addition, saturation analysis of binding data obtained with the filtration procedure and with the centrifugation method give similar estimates of the affinity (dissociation constant: 0.8 μM) and the maximal binding (5 pmol/mg of protein) of cocaine. However, the nonspecific binding and the experimental error in the saturable binding are considerably greater in centrifugation assays than in filtration assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号