首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent evidence suggested an involvement of homeobox genes in tumorigenesis. Here we investigated whether one of homeobox-containing genes, Msx1, might be involved in the regulation of cell proliferation and cell cycle using Msx1 overexpressing human ovarian cancer cell line, OVCAR3. Overexpression of Msx1 in OVCAR3 cells inhibited cell proliferation by markedly increasing the length of the G1 phase of the cell cycle over control cells. Consistent with this result, dramatic suppression of cyclins D1, D3, E, cyclin-dependent kinase 4, c-Jun, and Rb was observed. Elevated expression of genes involved in the growth arrest and apoptosis (GADD153 and apoptotic cystein protease MCH4) and suppression of proliferation associated protein gene (PAG) in Msx1-overexpressing cells by cDNA expression array analysis provide further evidence for a potential repressor function of Msx1 in cell cycle progression.  相似文献   

2.
3.
In the mouse mammary gland, homeobox gene expression patterns suggest roles in development and neoplasia. In the human breast, we now identify a family of Iroquois-class (IRX) homeobox genes. One gene, IRX-2, is expressed in discrete epithelial cell lineages being found in ductal and lobular epithelium, but not in myoepithelium. Expression is absent from associated mesenchymal adipose stroma. During gland development, expression is concentrated in terminal end buds and terminal lobules and is reduced in a subset of epithelial cells during lactation. In contrast to observations for many homeobox genes in the mouse mammary gland in which homeobox gene expression is lost on neoplastic progression, IRX-2 expression is maintained in human mammary neoplasias. Data suggest IRX-2 functions in epithelial cell differentiation and demonstrate regulated expression during ductal and lobular proliferation as well as lactation.  相似文献   

4.
The growth rate of malignant F9 embryonal carcinoma cells slows considerably following all-trans-retinoic acid-induced differentiation into benign parietal endoderm. To determine the mechanism of this process, we examined the expression of cyclins D1, D2, and D3 and the activity of their associated kinases. Cyclin D1 and D3 mRNA levels decreased during complete differentiation induced by all-trans-retinoic acid and dibutyryl cAMP, while the levels of cyclin D2 and the cyclin-dependent kinase (Cdk) inhibitor p27 mRNAs increased. Ultimately, terminally differentiated cells possessed 50% of the Cdk4-associated kinase activity observed in undifferentiated cells. Since numerous genes are differentially regulated during parietal endoderm differentiation, it is difficult to determine whether retinoic acid affects cell cycle gene expression directly or if these changes are caused by differentiation. We found that the retinoid X receptor (RXR)-selective agonists LG100153 and LG100268 significantly inhibited F9 cell growth without causing overt terminal differentiation as assessed by anchorage-independent growth and differentiation-associated gene expression. As seen in cells induced to differentiate by the RAR agonist all-trans-retinoic acid, RXR activation led to an increase in the number of cells in G1 phase. RXR agonists also sharply induced the levels of the Cdk regulatory subunits, cyclin D2 and D3. However, Cdk4-dependent kinase activity was reduced by RXR-selective retinoid treatment. These observations suggest that some retinoids can directly inhibit proliferation and regulate Cdk4-dependent kinase activity without inducing terminal differentiation.  相似文献   

5.
Timing of cell fate commitment determines distinct retinal cell types, which is believed to be controlled by a tightly coordinated regulatory program of proliferation, cell cycle exit and differentiation. Although homeobox protein Msx2 could induce apoptosis of optic vesicle, it is unclear whether Msx2 regulates differentiation and cell fate commitment of retinal progenitor cells (RPCs) to retinal ganglion cells (RGCs). In this study, we show that overexpression of Msx2 transiently suppressed the expression of Cyclin D1 and blocked cell proliferation. Meanwhile, overexpression of Msx2 delayed the expression of RGC-specific differentiation markers (Math5 and Brn3b), which showed that Msx2 could affect the timing of RGCs fate commitment and differentiation by delaying the timing of cell cycle exit of retinal progenitors. These results indicate Msx2 possesses dual regulatory functions in controlling cell cycle progression of retinal RPCs and timing of RGCs differentiation.  相似文献   

6.
Mori S  Inoshima K  Shima Y  Schmidt EV  Yokota Y 《FEBS letters》2003,551(1-3):123-127
Id2 and cyclin D1 share several biological activities, including inhibition of differentiation, stimulation of the G1-S transition in the cell cycle and stimulation of tumorigenesis. Mammary glands of Id2(-/-) mice display severely impaired lobulo-alveolar development during pregnancy, similarly to those of cyclin D1 null females. We investigated the functional relationship between Id2 and cyclin D1 in the mammary gland. Id2(-/-) mammary glands expressed a normal level of cyclin D1. No direct interaction of Id2 with cyclin D1 or its binding partner cdk4 was detected in mammalian two-hybrid assays. Ectopic expression of a cyclin D1 transgene did not rescue the mammary phenotype of Id2(-/-) mice. These results suggest that Id2 acts downstream or independently of cyclin D1 in the control of mammary cell proliferation during pregnancy.  相似文献   

7.
Han J  Ito Y  Yeo JY  Sucov HM  Maas R  Chai Y 《Developmental biology》2003,261(1):183-196
Neural crest cells are multipotential progenitors that contribute to various cell and tissue types during embryogenesis. Here, we have investigated the molecular and cellular mechanism by which the fate of neural crest cell is regulated during tooth development. Using a two- component genetic system for indelibly marking the progeny of neural crest cells, we provide in vivo evidence of a deficiency of CNC-derived dental mesenchyme in Msx1 null mutant mouse embryos. The deficiency of the CNC results from an elevated CDK inhibitor p19(INK4d) activity and the disruption of cell proliferation. Interestingly, in the absence of Msx1, the CNC-derived dental mesenchyme misdifferentiates and possesses properties consistent with a neuronal fate, possibly through a default mechanism. Attenuation of p19(INK4d) in Msx1 null mutant mandibular explants restores mitotic activity in the dental mesenchyme, demonstrating the functional significance of Msx1-mediated p19(INK4d) expression in regulating CNC cell proliferation during odontogenesis. Collectively, our results demonstrate that homeobox gene Msx1 regulates the fate of CNC cells by controlling the progression of the cell cycle. Genetic mutation of Msx1 may alternatively instruct the fate of these progenitor cells during craniofacial development.  相似文献   

8.
The migration of myogenic precursors to the vertebrate limb exemplifies a common problem in development - namely, how migratory cells that are committed to a specific lineage postpone terminal differentiation until they reach their destination. Here we show that in chicken embryos, expression of the Msx1 homeobox gene overlaps with Pax3 in migrating limb muscle precursors, which are committed myoblasts that do not express myogenic differentiation genes such as MyoD. We find that ectopic expression of Msx1 in the forelimb and somites of chicken embryos inhibits MyoD expression as well as muscle differentiation. Conversely, ectopic expression of Pax3 activates MyoD expression, while co-ectopic expression of Msx1 and Pax3 neutralizes their effects on MyoD. Moreover, we find that Msx1 represses and Pax3 activates MyoD regulatory elements in cell culture, while in combination, Msx1 and Pax3 oppose each other's trancriptional actions on MyoD. Finally, we show that the Msx1 protein interacts with Pax3 in vitro, thereby inhibiting DNA binding by Pax3. Thus, we propose that Msx1 antagonizes the myogenic activity of Pax3 in migrating limb muscle precursors via direct protein-protein interaction. Our results implicate functional antagonism through competitive protein-protein interactions as a mechanism for regulating the differentiation state of migrating cells.  相似文献   

9.
10.
11.
12.
Decreased expression of the cyclin-dependent kinase (CDK) inhibitor p27(Kip1) is common in breast cancer and is associated with poor prognosis. p27 is also an important mediator of steroidal regulation of cell cycle progression. We have therefore investigated the role of p27 in mammary epithelial cell proliferation. Examination of the two major functions of p27, assembly of cyclin D1-Cdk4 complexes and inhibition of Cdk2 activity, revealed that cyclin D1-Cdk4 complex formation was not impaired in p27-/- mammary epithelial cells in primary culture. However, cyclin E-Cdk2 activity was increased approximately 3-fold, indicating that the CDK inhibitory function of p27 is important in mammary epithelial cells. Increased epithelial DNA synthesis was observed during pregnancy in p27-/- mammary gland transplants, but this was paralleled by increased apoptosis. During pregnancy and at parturition, development and differentiation of p27+/+ and p27-/- mammary tissue were indistinguishable. These results demonstrate a role for p27 in both the proliferation and survival of mammary epithelial cells. However, the absence of morphological and cellular defects in p27-/- mammary tissue during pregnancy raises the possibility that loss of p27 in breast cancer may not confer an overall growth advantage unless apoptosis is also impaired.  相似文献   

13.
14.
15.
16.
17.
18.
19.
BACKGROUND: Cellular Ras and cyclin D1 are required at similar times of the cell cycle in quiescent NIH3T3 cells that have been induced to proliferate, but not in the case of cycling NIH3T3 cells. In asynchronous cultures, Ras activity has been found to be required only during G2 phase to promote passage through the entire upcoming cell cycle, whereas cyclin D1 is required through G1 phase until DNA synthesis begins. To explain these results in molecular terms, we propose a model whereby continuous cell cycle progression in NIH3T3 cells requires cellular Ras activity to promote the synthesis of cyclin D1 during G2 phase. Cyclin D1 expression then continues through G1 phase independently of Ras activity, and drives the G1-S phase transition. RESULTS: We found high levels of cyclin D1 expression during the G2, M and G1 phases of the cell cycle in cycling NIH3T3 cells, using quantitative fluorescent antibody measurements of individual cells. By microinjecting anti-Ras antibody, we found that the induction of cyclin D1 expression beginning in G2 phase was dependent on Ras activity. Consistent with our model, cyclin D1 expression during G1 phase was particularly stable following neutralization of cellular Ras. Finally, ectopic expression of cyclin D1 largely overcame the requirement for cellular Ras activity during the continuous proliferation of cycling NIH3T3 cells. CONCLUSIONS: Ras-dependent induction of cyclin D1 expression beginning in G2 phase is critical for continuous cell cycle progression in NIH3T3 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号