首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
Protein stability can be fine‐tuned by modifying different structural features such as hydrogen‐bond networks, salt bridges, hydrophobic cores, or disulfide bridges. Among these, stabilization by salt bridges is a major challenge in protein design and engineering since their stabilizing effects show a high dependence on the structural environment in the protein, and therefore are difficult to predict and model. In this work, we explore the effects on structure and stability of an introduced salt bridge cluster in the context of three different de novo TIM barrels. The salt bridge variants exhibit similar thermostability in comparison with their parental designs but important differences in the conformational stability at 25°C can be observed such as a highly stabilizing effect for two of the proteins but a destabilizing effect to the third. Analysis of the formed geometries of the salt bridge cluster in the crystal structures show either highly ordered salt bridge clusters or only single salt bridges. Rosetta modeling of the salt bridge clusters results in a good prediction of the tendency on stability changes but not the geometries observed in the three‐dimensional structures. The results show that despite the similarities in protein fold, the salt bridge clusters differently influence the structural and stability properties of the de novo TIM barrel variants depending on the structural background where they are introduced.  相似文献   

2.
We investigate the effect of temperature and pressure on polypeptide conformational stability using a two-dimensional square lattice model in which water is represented explicitly. The model captures many aspects of water thermodynamics, including the existence of density anomalies, and we consider here the simplest representation of a protein: a hydrophobic homopolymer. We show that an explicit treatment of hydrophobic hydration is sufficient to produce cold, pressure, and thermal denaturation. We investigate the effects of the enthalpic and entropic components of the water-protein interactions on the overall folding phase diagram, and show that even a schematic model such as the one we consider yields reasonable values for the temperature and pressure ranges within which highly compact homopolymer configurations are thermodynamically stable.  相似文献   

3.
Molecular dynamics simulation method is used to assess the contribution of a disease-associated salt bridge in the early stages of the conformational rearrangement of human prion protein upon Arg208→His mutation, which causes Creutzfeldt-Jakob disease. Previous investigations have suggested that the breakage of this putative salt bridge (D144/E146 ↔ Arg208) between helix 1 and helix 3 is responsible for such a mutation-driven process. So far, no experimental data has been reported in order to distinguish the contribution of this single salt bridge in the initial steps of amyloid formation. Consequently, we decided to investigate the role of this salt bridge in early conformational rearrangements. To remove the salt bridge without perturbations in the backbone structure, the neutralized states of the involved residues were used. Three 10-ns molecular dynamics simulations on three initial structures have been performed. The results revealed that the early stages of the conformational rearrangements, against common belief, are mainly associated with the mutation-induced global changes in the backbone dynamics but not with the breaking of the salt bridge.  相似文献   

4.
The importance of water in biological systems has long been recognized in chemistry and biology communities. In this article we describe a new manner by which water affects biomolecular behaviors, called halogen–water–hydrogen bridge (XWH bridge), that is, one hydrogen bonding (H-bonding) in water-mediated H-bond bridge is replaced by halogen bonding (X-bonding). Although behaving similarly to water-mediated H-bond motif, the XWH bridge usually stands in multifurcated forms and possesses stronger directionality. Quantum mechanical analysis on several model and real systems reveals that the XWH bridges are more thermodynamically stable than other water-involved interactions, and this stability is further enhanced by the cooperation of X-bonding and H-bonding. Crystal structure survey clearly demonstrates the significance of XWH bridges in stabilization of biomolecular conformations and in mediation of protein–protein, protein–nucleic acid, and receptor–ligand recognition and binding. These findings shed light into the potential value of XWH bridges in drug design and biological engineering.  相似文献   

5.
The Ebola virus protein VP40 is a transformer protein that possesses an extraordinary ability to accomplish multiple functions by transforming into various oligomeric conformations. The disengagement of the C‐terminal domain (CTD) from the N‐terminal domain (NTD) is a crucial step in the conformational transformations of VP40 from the dimeric form to the hexameric form or octameric ring structure. Here, we use various molecular dynamics (MD) simulations to investigate the dynamics of the VP40 protein and the roles of interdomain interactions that are important for the domain–domain association and dissociation, and report on experimental results of the behavior of mutant variants of VP40. The MD studies find that various salt‐bridge interactions modulate the VP40 domain dynamics by providing conformational specificity through interdomain interactions. The MD simulations reveal a novel salt‐bridge between D45‐K326 when the CTD participates in a latch‐like interaction with the NTD. The D45‐K326 salt‐bridge interaction is proposed to help domain–domain association, whereas the E76‐K291 interaction is important for stabilizing the closed‐form structure. The effects of the removal of important VP40 salt‐bridges on plasma membrane (PM) localization, VP40 oligomerization, and virus like particle (VLP) budding assays were investigated experimentally by live cell imaging using an EGFP‐tagged VP40 system. It is found that the mutations K291E and D45K show enhanced PM localization but D45K significantly reduced VLP formation.  相似文献   

6.
Lactose permease is an integral membrane protein that uses the cell membrane's proton gradient for import of lactose. Based on extensive biochemical data and a substrate-bound crystal structure, intermediates involved in lactose/H(+) co-transport have been suggested. Yet, the transport mechanism, especially the coupling of protonation states of essential residues and protein conformational changes involved in the transport, is not understood. Here we report molecular-dynamics simulations of membrane-embedded lactose permease in different protonation states, both in the presence and in the absence of lactose. The results analyzed in terms of pore diameter, salt-bridge formation, and substrate motion, strongly implicate Glu(269) as one of the main proton translocation sites, whose protonation state controls several key steps of the transport process. A critical ion pair (Glu(269) and Arg(144)) was found to keep the cytoplasmic entrance open, but via a different mechanism than the currently accepted model. After protonation of Glu(269), the salt bridge between Glu(269) and Arg(144) was found to break, and Arg(144) to move away from Glu(269), establishing a new salt bridge with Glu(126); furthermore, neutralization of Glu(269) and the displacement of Arg(144) and consequently of water molecules from the interdomain region was seen to initiate the closing of the cytoplasmic half channel (2.6-4.0 A reduction in diameter in the cytoplasmic constriction region in 10 ns) by allowing hydrophobic surfaces of the N- and C-domains to fuse. Charged Glu(269) was found to strongly bind the lactose permeant, indicating that proton transfer from water or another residue to Glu(269) is a prerequisite for unbinding of lactose from the binding pocket.  相似文献   

7.
Because of their large conformational heterogeneity, structural characterization of intrinsically disordered proteins (IDPs) is very challenging using classical experimental methods alone. In this study, we use NMR and small-angle x-ray scattering (SAXS) data with multiple molecular dynamics (MD) simulations to describe the conformational ensemble of the fully disordered verprolin homology domain of the neural Aldrich syndrome protein involved in the regulation of actin polymerization. First, we studied several back-calculation software of SAXS scattering intensity and optimized the adjustable parameters to accurately calculate the SAXS intensity from an atomic structure. We also identified the most appropriate force fields for MD simulations of this IDP. Then, we analyzed four conformational ensembles of neural Aldrich syndrome protein verprolin homology domain, two generated with the program flexible-meccano with or without NMR-derived information as input and two others generated by MD simulations with two different force fields. These four conformational ensembles were compared to available NMR and SAXS data for validation. We found that MD simulations with the AMBER-03w force field and the TIP4P/2005s water model are able to correctly describe the conformational ensemble of this 67-residue IDP at both local and global level.  相似文献   

8.
Molecular motors move unidirectionally along polymer tracks, producing movement and force in an ATP-dependent fashion. They achieve this by amplifying small conformational changes in the nucleotide-binding region into force-generating movements of larger protein domains. We present the 2.8 A resolution crystal structure of an artificial actin-based motor. By combining the catalytic domain of myosin II with a 130 A conformational amplifier consisting of repeats 1 and 2 of alpha-actinin, we demonstrate that it is possible to genetically engineer single-polypeptide molecular motors with precisely defined lever arm lengths and specific motile properties. Furthermore, our structure shows the consequences of mutating a conserved salt bridge in the nucleotide-binding region. Disruption of this salt bridge, which is known to severely inhibit ATP hydrolysis activity, appears to interfere with formation of myosin's catalytically active 'closed' conformation. Finally, we describe the structure of alpha-actinin repeats 1 and 2 as being composed of two rigid, triple-helical bundles linked by an uninterrupted alpha-helix. This fold is very similar to the previously described structures of alpha-actinin repeats 2 and 3, and alpha-spectrin repeats 16 and 17.  相似文献   

9.
The light-driven proton pump bacteriorhodopsin (bR) is a transmembrane protein that uses large conformational changes for proton transfer from the cytoplasmic to the extracellular regions. Crystal structures, due to their solvent conditions, do not resolve the effect of lipid molecules on these protein conformational changes. To begin to understand the molecular details behind such large conformational changes, we simulated two conformations of wild-type bacteriorhodopsin, one of the dark-adapted state and the second of an intermediate (M(O)) state, each within an explicit dimyristoyl-phosphatidylcholine (DMPC) lipid bilayer. The simulations included all-hydrogen and all-atom representations of protein, lipid, and water and were performed for 20 ns. We investigate the equilibrium properties and the dynamic motions of the two conformations in the lipid setting. We note that the conformational state of the M(O) intermediate bR remains markedly different from the dark-adapted bR state in that the M(O) intermediate shows rearrangement of the cytoplasmic portions of helices C, F, and G, and nearby loops. This difference in the states remained throughout the simulations, and the results are stable on the molecular dynamics timescale and provide an illustration of the changes in both lipid and water that help to stabilize a particular state. Our analysis focuses on how the environment adjusts to these two states and on how the dynamics of the helices, loops, and water molecules can be related to the pump mechanism of bacteriorhodopsin. For example, water generally behaves in the same manner on the extracellular sides of both simulations but is decreased in the cytoplasmic region of the M(O) intermediate. We suspect that the different water behavior is closely related to the fluctuations of microcavities volume in the protein interior, which is strongly coupled to the collective motion of the protein. Our simulation result suggests that experimental observation can be useful to verify a decreased number of waters in the cytoplasmic regions of the late-intermediate stages by measuring the rate of water exchange with the interior of the protein.  相似文献   

10.
Clostridial botulinum neurotoxins (BoNTs) exert their neuroparalytic action by arresting synaptic exocytosis. Intoxication requires the disulfide-linked, di-chain protein to undergo conformational changes in response to pH and redox gradients across the endosomal membrane with consequent formation of a protein-conducting channel by the heavy chain (HC) that translocates the light chain (LC) protease into the cytosol. Here, we investigate the role of the disulfide bridge in the dynamics of protein translocation. We utilize a single channel/single molecule assay to characterize in real time the BoNT channel and chaperone activities in Neuro 2A cells under conditions that emulate those prevalent across endosomes. We show that the disulfide bridge must remain intact throughout LC translocation; premature reduction of the disulfide bridge after channel formation arrests translocation. The disulfide bridge must be on the trans compartment to achieve productive translocation of LC; disulfide disruption on the cis compartment or within the bilayer during translocation aborts it. We demonstrate that a peptide linkage between LC and HC in place of a disulfide bridge is insufficient for productive LC translocation. The disulfide linkage, therefore, dictates the outcome of translocation: productive passage of cargo or abortive channel occlusion by cargo. Based on these and previous findings we suggest a sequence of events for BoNT LC translocation to be HC insertion, coupled LC unfolding, and protein conduction through the HC channel in an N to C terminus orientation and ultimate release of the LC from the HC by reduction of the disulfide bridge concomitant with LC refolding in the cytosol.  相似文献   

11.
Proteins accomplish their physiological functions with remarkably organized dynamic transitions among a hierarchical network of conformational substates. Despite the essential contribution of water molecules in shaping functionally important protein dynamics, their exact role is still controversial. Water molecules were reported either as mediators that facilitate or as masters that slave protein dynamics. Since dynamic behaviour of a given protein is ultimately determined by the underlying energy landscape, we systematically analysed protein self energies and protein-water interaction energies obtained from extensive molecular dynamics simulation trajectories of barstar. We found that protein-water interaction energy plays the dominant role when compared with protein self energy, and these two energy terms on average have negative correlation that increases with increasingly longer time scales ranging from 10 femtoseconds to 100 nanoseconds. Water molecules effectively roughen potential energy surface of proteins in the majority part of observed conformational space and smooth in the remaining part. These findings support a scenario wherein water on average slave protein conformational dynamics but facilitate a fraction of transitions among different conformational substates, and reconcile the controversy on the facilitating and slaving roles of water molecules in protein conformational dynamics.  相似文献   

12.
Combining an azobenzene chromophore with the bis-cysteinyl active-site sequence of the protein disulfide isomerase (PDI) we constructed a simple but promising model for allosteric conformational rearrangements. Paralleling cellular signaling events, an external trigger, here absorption of a photon, leads to a structural change in one part of the molecule, namely the azobenzene-based chromophore. The change in geometry translates to the effector site, in our case the peptide sequence, where it modifies covalent and nonbonded interactions and thus leads to a conformational rearrangement. NMR spectroscopy showed that the trans-azo and cis-azo isomer of the cyclic PDI peptide exhibit different, but well-defined structures when the two cystine residues form a disulfide bridge. Without this intramolecular cross-link conformationally more variable structural ensembles are obtained that again differ for the two isomeric states. Ultrafast UV/Vis spectroscopy confirmed that the rapid isomerization of azobenzene is not significantly slowed down when incorporated into the cyclic peptides, although the amplitudes of ballistic and diffusive pathways are changed. The observation that most of the energy of an absorbed photon is dissipated to the solvent in the first few picoseconds when the actual azo-isomerization takes place is important. The conformational rearrangement is weakly driven due to the absence of appreciable excess energy and can be described as biased diffusion similar to natural processes.  相似文献   

13.
We report a protein conformational change following carbon monoxide photodetachment from fully reduced bovine cytochrome c oxidase that is hypothesized to be associated with changes in ligand mobility through a dioxygen access channel in the protein. Although not resolved by earlier photoacoustic or optical studies on this adduct, utilization of slightly lower temperatures revealed a process with a kinetic lifetime of about 70 ns at 10 degrees C. We measure an enthalpy change of about 8 kcal/mol in 0.050 M HEPES buffer that becomes less endothermic (DeltaH approximately 2 kcal/mol) at higher ionic strength. The volume contraction of about -0.7 mL/mol associated with the process almost doubles in higher ionic strength buffer systems. Measurements of samples in phosphate buffer systems are similar and appear to display the same subtle ionic strength dependence. Both the isolation of this photoacoustic signal component and the possible dependence on ionic strength of the thermodynamic parameters derived from its analysis appear analogous to and consistent with prior photoacoustic results monitoring CO photodetachment from the camphor complex of cytochrome P-450. Accordingly, we consider a similar model in which a conformational change results in movement of an exposed charged group or groups towards the interior of the protein, out of contact with solvent, as in the closing of a salt bridge.  相似文献   

14.
Kuntz and Kauzmann have argued that dehydrating a protein results in conformational changes. In contrast, Rupleyet al. have developed a hydration model which involves no significant change in conformation; the onset of enzyme activity in hen egg-white lysozyme at hydration values of about 0.2 g water/g protein they ascribe rather to a solvation effect. Using a direct difference infra-red technique we can follow specific hydration events as water is added to a dry protein. Conformational studies of lysozyme using laser Raman spectroscopy indicate changes in conformation with hydration that are complete just before measurable activity is found. Parallel nuclear magnetic resonance measurements of exchangeability of the main chain amide hydrogens, as a function of hydration from near dryness, suggest a hydration-related increase in conformational flexibility which occurs before-and is probably necessary for-the Raman-detected conformational changes. Very recent inelastic neutron scattering measurements provides direct evidence of a flexibility change induced by hydration, which is apparently necessary before the enzyme can achieve adequate flexibility for it to begin to function.  相似文献   

15.
The magnitude of protein conformational space is over-estimated by the traditional random-coil model, in which local steric restrictions arise exclusively from interactions between adjacent chain neighbors. Using a five-state model, we assessed the extent to which steric hindrance and hydrogen bond satisfaction, energetically significant factors, impose additional conformational restrictions on polypeptide chains, beyond adjacent residues. Steric hindrance is repulsive: the distance of closest approach between any two atoms cannot be less than the sum of their van der Waals radii. Hydrogen bond satisfaction is attractive: polar backbone atoms must form hydrogen bonds, either intramolecularly or to solvent water. To gauge the impact of these two factors on the magnitude of conformational space, we systematically enumerated and classified the disfavored conformations that restrict short polyalanyl backbone chains. Applying such restrictions to longer chains, we derived a scaling law to estimate conformational restriction as a function of chain length. Disfavored conformations predicted by the model were tested against experimentally determined structures in the coil library, a non-helix, non-strand subset of the PDB. These disfavored conformations are usually absent from the coil library, and exceptions can be uniformly rationalized.  相似文献   

16.
We consider whether the continuum model of hydration optimized to reproduce vacuum-to-water transfer free energies simultaneously describes the hydration free energy contributions to conformational equilibria of the same solutes in water. To this end, transfer and conformational free energies of idealized hydrophobic and amphiphilic solutes in water are calculated from explicit water simulations and compared to continuum model predictions. As benchmark hydrophobic solutes, we examine the hydration of linear alkanes from methane through hexane. Amphiphilic solutes were created by adding a charge of +/-1e to a terminal methyl group of butane. We find that phenomenological continuum parameters fit to transfer free energies are significantly different from those fit to conformational free energies of our model solutes. This difference is attributed to continuum model parameters that depend on solute conformation in water, and leads to effective values for the free energy/surface area coefficient and Born radii that best describe conformational equilibrium. In light of these results, we believe that continuum models of hydration optimized to fit transfer free energies do not accurately capture the balance between hydrophobic and electrostatic contributions that determines the solute conformational state in aqueous solution.  相似文献   

17.
The atomistic modeling of protein adsorption on surfaces is hampered by the different time scales of the simulation ( s) and experiment (up to hours), and the accordingly different ‘final’ adsorption conformations. We provide evidence that the method of accelerated molecular dynamics is an efficient tool to obtain equilibrated adsorption states. As a model system we study the adsorption of the protein BMP-2 on graphite in an explicit salt water environment. We demonstrate that due to the considerably improved sampling of conformational space, accelerated molecular dynamics allows to observe the complete unfolding and spreading of the protein on the hydrophobic graphite surface. This result is in agreement with the general finding of protein denaturation upon contact with hydrophobic surfaces.  相似文献   

18.
Protein-bound internal water molecules are essential features of the structure and function of microbial rhodopsins. Besides structural stabilization, they act as proton conductors and even proton storage sites. Currently, the most understood model system exhibiting such features is bacteriorhodopsin (bR). During the last 20 years, the importance of water molecules for proton transport has been revealed through this protein. It has been shown that water molecules are as essential as amino acids for proton transport and biological function. In this review, we present an overview of the historical development of this research on bR. We furthermore summarize the recently discovered protein-bound water features associated with proton transport. Specifically, we discuss a pentameric water/amino acid arrangement close to the protonated Schiff base as central proton-binding site, a protonated water cluster as proton storage site at the proton-release site, and a transient linear water chain at the proton uptake site. We highlight how protein conformational changes reposition or reorient internal water molecules, thereby guiding proton transport. Last, we compare the water positions in bR with those in other microbial rhodopsins to elucidate how protein-bound water molecules guide the function of microbial rhodopsins. This article is part of a Special Issue entitled: Retinal Proteins — You can teach an old dog new tricks.  相似文献   

19.
The central theme in prion diseases is the conformational transition of a cellular protein from a physiologic to a pathologic (so-called scrapie) state. Currently, two alternative models exist for the mechanism of this autocatalytic process; in the template assistance model the prion is assumed to be a monomer of the scrapie conformer, whereas in the nucleated polymerization model it is thought to be an amyloid rod. A recent variation on the latter assumes disulfide reshuffling as the mechanism of polymerization. The existence of stable dimers, let alone their mechanistic role, is not taken into account in either of these models. In this paper we review evidence supporting that the dimerization of either the normal or the scrapie state, or both, has a decisive role in prion replication. The contribution of redox changes, i.e., the temporary opening and possible rearrangement of the intramolecular disulfide bridge is also considered. We present a model including these features largely ignored so far and show that it adheres satisfactorily to the observed phenomenology of prion replication.  相似文献   

20.
Zheng W  Brooks BR 《Biophysical journal》2006,90(12):4327-4336
Recently we have developed a normal-modes-based algorithm that predicts the direction of protein conformational changes given the initial state crystal structure together with a small number of pairwise distance constraints for the end state. Here we significantly extend this method to accurately model both the direction and amplitude of protein conformational changes. The new protocol implements a multisteps search in the conformational space that is driven by iteratively minimizing the error of fitting the given distance constraints and simultaneously enforcing the restraint of low elastic energy. At each step, an incremental structural displacement is computed as a linear combination of the lowest 10 normal modes derived from an elastic network model, whose eigenvectors are reorientated to correct for the distortions caused by the structural displacements in the previous steps. We test this method on a list of 16 pairs of protein structures for which relatively large conformational changes are observed (root mean square deviation >3 angstroms), using up to 10 pairwise distance constraints selected by a fluctuation analysis of the initial state structures. This method has achieved a near-optimal performance in almost all cases, and in many cases the final structural models lie within root mean square deviation of 1 approximately 2 angstroms from the native end state structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号