首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The maize transposon Ac can move to a new location within the genome to create knockout mutants in transgenic plants. In rice, Ac transposon is very active but sometimes undergoes further transposition and leaves an empty mutated gene. Therefore, we developed a one-time transposon system by locating one end of the transposon in the intron of the Ac transposase gene, which is under the control of the inducible promoter (PR-1a). Treatment with salicylic acid induced transposition of this transposon, COYA, leading to transposase gene breakage in exons. The progeny plants inheriting the transposition events become stable knockout mutants, because no functional transposase could be yielded. The behavior of COYA was analyzed in single-copy transgenic rice plants. We determined the expression of the modified transposase gene and its ability to trigger transposition events in transgenic rice plants. The COYA element thus exhibits potential for development of an inducible transposon system suitable for gene isolation in heterologous plant species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
The maize transposable element Activator (Ac) has been shown to be active in a number of dicots, including Arabidopsis thaliana, whose small genome and short generation time have favored its wide adoption as a model organism for molecular genetic approaches to plant physiology and development. Using the Ac element and several bacterial and plant marker genes, we have devised a versatile system for identifying plants in which a transposon has excised and reinserted elsewhere in the genome. The transposons have been designed to facilitate the identification of insertions downstream of promoters and in the vicinity of enhancers by the inclusion of a β-glucuronidase (GUS) gene either lacking a promoter or having a minimal promoter sequence. The system permits the transposon and the source of transposase to be maintained either stably in separate plants or in the same plant. Plants in which transposition is occurring can be identified by the frequent somatic activation of the GUS gene. The herbicide chlorsulfuron is used as a selective agent to identify progeny plants in which the transposon has excised from its original insertion site within a chlorsulfuron-resistant acetolactate synthase gene. Additional selectable markers permit the identification of plants containing a transposed element, but lacking transposase. Here we describe our initial characterization of the system and demonstrate its reliability and efficiency in identifying plants with transposed elements.  相似文献   

3.
The Drosophila Mos1 element can be mobilized in species ranging from prokaryotes to protozoans and vertebrates, and the purified transposase can be used for in vitro transposition assays. In this report we developed a ‘mini-Mos1’ element and describe a number of useful derivatives suitable for transposon mutagenesis in vivo or in vitro. Several of these allow the creation and/or selection of tripartite protein fusions to a green fluorescent protein–phleomycin resistance (GFP-PHLEO) reporter/selectable marker. Such X-GFP-PHLEO-X fusions have the advantage of retaining 5′ and 3′ regulatory information and N- and C-terminal protein targeting domains. A Mos1 derivative suitable for use in transposon-insertion mediated linker insertion (TIMLI) mutagenesis is described, and transposons bearing selectable markers suitable for use in the protozoan parasite Leishmania were made and tested. A novel ‘negative selection’ approach was developed which permits in vitro assays of transposons lacking bacterial selectable markers. Application of this assay to several Mos1 elements developed for use in insects suggests that the large mariner pM[cn] element used previously in vivo is poorly active in vitro, while the Mos1-Act-EGFP transposon is highly active.  相似文献   

4.
An endogenous 0.6-kb rice DNA transposon, nDart1, has been identified as a causative element of a spontaneous mutable virescent allele pyl-v conferring pale-yellow leaves with dark-green sectors in the seedlings, due to somatic excision of nDart1 integrated into the OsClpP5 gene encoding the nuclear-coded chloroplast protease. As the transposition of nDart1 depends on the presence of an active autonomous aDart element in the genome, the plants exhibiting the leaf variegation carry the active aDart element. As several mutable alleles caused by nDart1 insertions have subsequently been identified, nDart1-promoted gene tagging has been proven to be an effective system. At present, the nDart/aDart system appears to be the only endogenous rice DNA transposon system whose transposition activity can be controlled under natural growth conditions without any artificial treatments, including tissue cultures. To apply the nDart/aDart tagging system in various cultivated rice varieties, we explored the presence and distribution of an active autonomous aDart element in 19 temperate japonica, 30 tropical japonica, and 51 indica varieties. Only eight temperate japonica varieties were found to bear a single copy of an active aDart element, and no aDart activity could be detected in the indica varieties examined. Six of seven japonica varieties appear to carry the active aDart element at the identical site on chromosome 6, whereas the remaining one contains aDart on chromosome 5. Leaf variegations in the plants with the mutable pyl-v allele and the excision frequencies of endogenous nDart1 elements indicated that the aDart element on chromosome 6 is more active than that on chromosome 5. The findings described here are an important step in the development of a new and efficient nDart1-promoted gene-tagging system in various rice cultivars. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
The transposon Mutator was first identified in maize, and is one of the most active mobile elements in plants. The Arabidopsis thaliana genome contains at least 200 Mutator-like elements (MULEs), which contain the Mutator-like transposase gene, and often additional genes. We have detected a novel type of MULEs in melon (CUMULE), which, besides the transposase, contains two ubiquitin-like specific protease-like sequences (ULP1). This element is not present in the observed location in some melon cultivars. Multiple copies of this element exist in the Cucumis melo genome, and it has been detected in other Cucurbitaceae species. Analysis of the A. thaliana genome revealed more than 90 CUMULE-like elements, containing one or two Ulp1-like sequences, although no evidence of mobility exists for these elements. We detected various putative transposable elements containing ULP1-like sequences in rice. The discovery of these MULEs in melon and Arabidopsis, and the existence of similar elements in rice and maize, suggest that a proteolytic function may be important for this subset of the MULE transposable elements. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. Nucleotide sequence data reported are available in the GenBank database under the accession number AY524004.  相似文献   

6.
Kato M  Takashima K  Kakutani T 《Genetics》2004,168(2):961-969
Epigenetic mutation, heritable developmental variation not based on a change in nucleotide sequence, is widely reported in plants. However, the developmental and evolutionary significance of such mutations remains enigmatic. On the basis of our studies of the endogenous Arabidopsis transposon CACTA, we propose that the inheritance of epigenetic gene silencing over generations can function as a transgenerational genome defense mechanism against deleterious movement of transposons. We previously reported that silent CACTA1 is mobilized by the DNA hypomethylation mutation ddm1 (decrease in DNA methylation). In this study, we report that CACTA activated by the ddm1 mutation remains mobile in the presence of the wild-type DDM1 gene, suggesting that de novo silencing is not efficient for the defense of the genome against CACTA movement. The defense depends on maintenance of transposon silencing over generations. In addition, we show that the activated CACTA1 element transposes throughout the genome in DDM1 plants, as reported previously for ddm1 backgrounds. Furthermore, the CACTA1 element integrated into both the ddm1-derived and the DDM1-derived chromosomal regions in the DDM1 wild-type plants, demonstrating that this class of transposons does not exhibit targeted integration into heterochromatin, despite its accumulation in the pericentromeric regions in natural populations. The possible contribution of natural selection as a mechanism for the accumulation of transposons and evolution of heterochromatin is discussed.  相似文献   

7.
The eukaryotic transposon Mos1 is a class-II transposable element that moves using a “cut-and-paste” mechanism in which the transposase is the only protein factor required. The formation of the excision complex is well documented, but the integration step has so far received less investigation. Like all mariner-like elements, Mos1 was thought to integrate into a TA dinucleotide without displaying any other target selection preferences. We set out to synthesize what is currently known about Mos1 insertion sites, and to define the characteristics of Mos1 insertion sequences in vitro and in vivo. Statistical analysis can be used to identify the TA dinucleotides that are non-randomly targeted for transposon integration. In vitro, no specific feature determining target choice other than the requirement for a TA dinucleotide has been identified. In vivo, data were obtained from two previously reported integration hotspots: the bacterial cat gene and the Caenorhabditis elegans rDNA locus. Analysis of these insertion sites revealed a preference for TA dinucleotides that are included in TATA or TA × TA motifs, or located within AT-rich regions. Analysis of the physical properties of sequences obtained in vitro and in vivo do not help to explain Mos1 integration preferences, suggesting that other characteristics must be involved in Mos1 target choice.  相似文献   

8.
Transposable elements represent important tools to perform functional studies in insects. In Drosophila melanogaster, the remobilization properties of transposable elements have been utilized for enhancer-trapping and insertional mutagenesis experiments, which have considerably helped in the functional characterization of the fruitfly genome. In Anopheles mosquitoes, the sole vectors of human malaria, as well as in other mosquito vectors of disease, the use of transposons has also been advocated to achieve the spread of anti-parasitic genes throughout field populations. Here we report on the post-integration behavior of the Minos transposon in both the germ-line and somatic tissues of Anopheles mosquitoes. Transgenic An. stephensi lines developed using the piggyBac transposon and expressing the Minos transposase were tested for their ability to remobilize an X-linked Minos element. Germ-line remobilization events were not detected, while somatic excisions and transpositions were consistently recovered. The analysis of these events showed that Minos activity in Anopheles cells is characterized by unconventional functionality of the transposon. In the two cases analyzed, re-integration of the transposon occurred onto the same X chromosome, suggesting a tendency for local hopping of Minos in the mosquito genome. This is the first report of the post-integration behavior of a transposable element in a human malaria vector. Christina Scali and Tony Nolan contributed equally to the work.  相似文献   

9.
Transposable elements of the mariner family are widespread and have been found in the genome of plants, animals and insects. However, most of these elements contain multiple inactivating mutations and so far, only three naturally occurring mariner elements are known to be functional. In a previous study, a mariner‐like element called Hvmar1 was discovered in the genome of the tobacco budworm Heliothis virescens. Further analysis of the Hvmar1 nucleotide sequence revealed the presence of 30‐bp imperfect inverted terminal repeats and an intact open reading frame, which is considered to encode a functional transposase. In the present study, we show that the Hvmar1 element is active using interplasmid transposition assays in Drosophila melanogaster embryos. When injected into Drosophila embryos, the helper plasmid produced a transposase that was able to mediate transposition of the Hvmar1 element from a donor to a target plasmid. The transposition efficiency of Hvmar1 in D. melanogaster is approximately 11‐fold lower than that of the well‐known Mos1 mariner transposon. However, this efficiency is comparable to those observed previously with Mos1 in non‐Drosophila insects. We identified 10 independent interplasmid transposition events, albeit the recovery of these events was rare. In each case the Hvmar1 element transposed in a precise manner, with the characteristic TA dinucleotides being duplicated on insertion. Furthermore, two of the target sites identified have been used previously by Mos1 for insertion. The active transposition of Hvmar1 in D. melanogaster provides a basis for examining the mobility of this element in its natural host as well as a starting point for comparative studies with Mos1 and other functional mariner transposons.  相似文献   

10.
11.
To evaluate the prospects for transposon mutagenesis in the autogamous diploid legume Lotus japonicus, the behaviour of the maize transposable element Ac was analysed in the progeny of 38 independent transgenic plants. The conditions for monitoring donor site excision using histochemical localization of -glucuronidase activity or the alternative spectinomycin resistance assay were established, and used to follow Ac mobility through two generations. Somatic excision was monitored as variegated cotyledons in the T2 generation and germinal excision events were scored in segregating T3 families as complete -glucuronidase-mediated staining of cotyledons or as a fully green spectinomycin-resistant phenotype. Using these assays an average germinal excision frequency of 12% was estimated in the T3 offspring from variegated plants. The fidelity of the excision assays was ascertained by comparing the frequency of germinal excision to the frequency of Ac reinsertion at new positions of the genome. Transposition of Ac in 42% of the plants and detection of the characteristic Ac insertion/excision footprints suggests that insertion mutagenesis with the autonomous maize Activator element is feasible in Lotus japonicus. Parameters influencing Ac behaviour, such as dosage, position effects and modification of the element itself, were also investigated comparing homozygous and hemizygous plants from the same family and by analysing different transformants.Abbreviations W white - V variegated - FG fully green - FB fully blue - aadA spectinomycin adenyltransferase  相似文献   

12.
In maize, Mutator transposable elements are either active or silenced within the genome. In response to environmental stress, silenced Mutator elements could be reactivated, leading to changes in genome structure and gene function. However, there is no direct experimental evidence linking environmental stress and Mutator transposon reactivation. Using a maize line that contains a single inactive MuDR and a lone nonautonomous Mutator element, a Mu1 insertion in the recessive reporter allele a1-mum2 in an inactive Mutator background, we directly assessed Mutator reactivation following low-energy nitrogen ion implantation. We observed that N+ implantation decreased cytosine methylation in MuDR terminal inverted repeats and increased expression of mudrA and mudrB. Both changes were associated with increased transpositional activity of MuDR through reactivation of the inactive minimal Mutator transposable element system. This study provides direct evidence linking environmental stress agents and Mutator transposon mobilization in maize. In addition, the observed changes to DNA methylation suggest a new mechanism for mutations by low-energy ion implantation.  相似文献   

13.
There is an inverse relationship between the level of cytosine methylation in genomic DNA and the activity of plant transposable elements. Increased transpositional activity is seen during early plant development when genomic methylation patterns are first erased and then reset. Prolonging the period of hypomethylation might therefore result in an increased transposition frequency, which would be useful for rapid genome saturation in transposon-tagged plant lines. We tested this hypothesis using transgenic rice plants containing Activator (Ac) from maize. R1 seeds from an Ac-tagged transgenic rice line were either directly germinated and grown to maturity, or induced to dedifferentiate in vitro, resulting in cell lines that were subsequently regenerated into multiple mature plants. Both populations were then analyzed for the presence, active reinsertion and amplification of Ac. Plants from each population showed excision-reinsertion events to both linked and unlinked sites. However, the frequency of transposition in plants regenerated from cell lines was more than nine-fold greater than that observed in plants germinated directly from seeds. Other aspects of transposon behavior were also markedly affected. For example, we observed a significantly larger proportion of transposition events to unlinked sites in cell line-derived plants. The tendency for Ac to insert into transcribed DNA was not affected by dedifferentiation. The differences in Ac activity coincided with a pronounced reduction in the level of genomic cytosine methylation in dedifferentiated cell cultures. We used the differential transposon behavior induced by dedifferentiation in the cell-line derived population for direct applications in functional genomics and validated the approach by recovering Ac insertions in a number of genes. Our results demonstrate that obtaining multiple Ac insertions is useful for functional annotation of the rice genome.These authors contributed equally to the work  相似文献   

14.
An inducible transposable element, termed INAc (inducible Activator), was constructed for development of a gene tagging system in higher plants. The advantage of such an inducible element is that, unlike the native transposon, its excision can be induced at any time during plant development and the resulting mutants are stable after removal of the inducer. A fusion of the SA inducible promoter (PR-1a) with the Ac transposase gene was inserted together with a hygromycin resistance gene between ca. 400 bp sequences from each end of the maize Ac element, yielding INAc. The INAc element was introduced into tobacco and tomato plants. A high frequency of spontaneous transposition was apparent in primary transformed tomato calli but not in tobacco calli. Treatment of tobacco plants with salicylic acid induced transposition of INAc in both somatic and germinal tissue, with germinal transposition events being revealed by characterization of the progeny of transformed plants whose flowers were exposed to SA. The INAc element thus exhibits potential for development of an inducible transposon system suitable for gene isolation in heterologous plant species.  相似文献   

15.
The identification of a spontaneous mutable Hf1 allele in Petunia hybrida provided an opportunity to isolate and characterize a novel transposable element. This 9.9 kb element has features in common with members of the Spm family, such as homologous terminal inverted repeats and a 3 bp target site direct duplication within the Hf1 gene. The element is named Petunia Spm-like (Psl). The footprints left by excising elements have been isolated from several germinal revertants and sequence analysis shows similarities to those left by other Spm family members. Southern analysis shows that the transposon is present at low copy number in the genome of different inbred lines and species of Petunia. The germinal excision frequency of Psl was 21–33% in outcross populations. The element appears to be very mobile somatically in the inbred line V26, with 38% of plants from an inbred population showing new Psl-hybridizing bands by Southern analysis. The high somatic and germinal excision frequency demonstrated by Psl suggests that this element may have utility for gene tagging in petunia.  相似文献   

16.
Brownlie JC  Whyard S 《Genetica》2005,125(2-3):243-251
We describe here two new transposable elements, CemaT4 and CemaT5, that were identified within the sequenced genome of Caenorhabditis elegans using homology based searches. Five variants of CemaT4 were found, all non-autonomous and sharing 26 bp inverted terminal repeats (ITRs) and segments (152–367 bp) of sequence with similarity to the CemaT1 transposon of C. elegans. Sixteen copies of a short, 30 bp repetitive sequence, comprised entirely of an inverted repeat of the first 15 bp of CemaT4’s ITR, were also found, each flanked by TA dinucleotide duplications, which are hallmarks of target site duplications of mariner-Tc transposon transpositions. The CemaT5 transposable element had no similarity to maT elements, except for sharing identical ITR sequences with CemaT3. We provide evidence that CemaT5 and CemaT3 are capable of excising from the C. elegans genome, despite neither transposon being capable of encoding a functional transposase enzyme. Presumably, these two transposons are cross-mobilised by an autonomous transposon that recognises their shared ITRs. The excisions of these and other non-autonomous elements may provide opportunities for abortive gap repair to create internal deletions and/or insert novel sequence within these transposons. The influence of non-autonomous element mobility and structural diversity on genome variation is discussed.  相似文献   

17.
A novel DNA-transposon Hemar1 has been identified and characterized in the genome of the flatworm Himasthla elongata. This transposon is a representative of the mariner family, which is widely spread in eukaryotes; it belongs to the capitata subfamily and is highly homologous to the mariner element of the freshwater turbellarian worm Dugesia tigrina. The Hemar1 transposon has been established as a dispersed repeat and accounts for about 0.01% of the H. elongata genome. The identified Hemar1 element is a convenient tool for the further study of the functioning of mobile elements in the H. elongata genome.  相似文献   

18.
Amplified fragment length polymorphism (AFLP) analysis of 24 in vitro regenerated rye plants was performed in order to evaluate the somaclonal variation rate in this species and to identify rye genomic regions where mutations are preferentially promoted by in vitro culture processes. Regenerated plants were obtained from cell lines derived from immature embryos and plants were regenerated by somatic embryogenesis. Twenty-three regenerants showed variation when compared against sibling plants obtained from the same cell line. A total number of 887 AFLP markers were scored, and 8.8% identified the same polymorphism in plants obtained independently from different cell lines, revealing putative mutational hot spots. Using controlled crossings and analysis of the corresponding progenies, we were able to verify the genetic stability in the next generation for only five of these polymorphisms. The nucleotide sequence of the AFLP amplicon of four of the polymorphic markers was obtained, but only the sequence of two markers was clearly identified in the databases. The sequence of marker A1-303 was identified as part of a tandemly repeated sequence, the 120-bp family, which is located at telomeric regions and is widely distributed among rye chromosomes. The marker A5-375 showed high similarity with regions of Angela retrotransposons.  相似文献   

19.
A transposable element that is active in intact plants has been identified in rice (Oryza sativa L.). The 607-bp element itself, termed nonautonomous DNA-based active rice transposon (nDart), has no coding capacity. It was found inserted in the gene encoding Mg-protoporphyrin IX methyltransferase in a chlorophyll-deficient albino mutant isolated from backcross progeny derived from a cross between wild-type japonica varieties. The nDart has 19-bp terminal inverted repeats (TIRs) and, when mobilized, generates an 8-bp target-site duplication (TSD). At least 13 nDart elements were identified in the genome sequence of the japonica cultivar Nipponbare. Database searches identified larger elements, termed DNA-based active rice transposon (Dart) that contained one ORF for a protein that contains a region with high similarity to the hAT dimerization motif. Dart shares several features with nDart, including identical TIRs, similar subterminal sequences and the generation of an 8-bp TSD. These shared features indicate that the nonautonomous element nDart is an internal deletion derivative of the autonomous element Dart. We conclude that these active transposon systems belong to the hAT superfamily of class II transposons. Because the transposons are active in intact rice plants, they should be useful tools for tagging genes in studies of functional genomics.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

20.
The Tc1/mariner family of DNA transposons is widespread across fungal, plant and animal kingdoms, and thought to contribute to the evolution of their host genomes. To date, an active Tc1 transposon has not been identified within the native genome of a vertebrate. We demonstrate that Passport, a native transposon isolated from a fish (Pleuronectes platessa), is active in a variety of vertebrate cells. In transposition assays, we found that the Passport transposon system improved stable cellular transgenesis by 40-fold, has an apparent preference for insertion into genes, and is subject to overproduction inhibition like other Tc1 elements. Passport represents the first vertebrate Tc1 element described as both natively intact and functionally active, and given its restricted phylogenetic distribution, may be contemporaneously active. The Passport transposon system thus complements the available genetic tools for the manipulation of vertebrate genomes, and may provide a unique system for studying the infiltration of vertebrate genomes by Tc1 elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号