首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A genetic analysis of neural progenitor differentiation   总被引:26,自引:0,他引:26  
Genetic mechanisms regulating CNS progenitor function and differentiation are not well understood. We have used microarrays derived from a representational difference analysis (RDA) subtraction in a heterogeneous stem cell culture system to systematically study the gene expression patterns of CNS progenitors. This analysis identified both known and novel genes enriched in progenitor cultures. In situ hybridization in a subset of clones demonstrated that many of these genes were expressed preferentially in germinal zones, some showing distinct ventricular or subventricular zone labeling. Several genes were also enriched in hematopoietic stem cells, suggesting an overlap of gene expression in neural and hematopoietic progenitors. This combination of methods demonstrates the power of using custom microarrays derived from RDA-subtracted libraries for both gene discovery and gene expression analysis in the central nervous system.  相似文献   

3.
4.
The adult glial progenitor cells were recently shown to be able to produce neurons in central nervous system (CNS) and to become multipotent in vitro. Although the fate decision of glial progenitors was studied extensively, the signals and factors which regulate the timing of neuronal differentiation still remain unknown. To elucidate the mechanisms underlying the neuronal differentiation from glial progenitors, we modified the gene expression profile in NG2+ glial progenitor cells using enhanced retroviral mutagen (ERM) technique followed by phenotype screening to identify possible gene(s) responsible for glial-neuronal cell fate determination. Among the identified molecules, we found the gene named non-metastatic cell 1 which encodes a nucleoside diphosphate kinase protein A (Nm23-M1 or NME1). So far, the Nm23 members have been shown to be involved in various molecular processes including tumor metastasis, cell proliferation, differentiation and cell fate determination. In the present study, we provide evidence suggesting the role of NME1 in glial-neuronal cell fate determination in vitro. We showed that NME1 is widely expressed in neuronal structures throughout adult mouse CNS. Our immunohistochemical results revealed that NME1 is strongly colocalized with NF200 through white matter of spinal cord and brain. Interestingly, NME1 overexpression in oligodendrocyte progenitor OLN-93 cells potently induced the acquisition of neuronal fate, while its silencing was shown to promote oligodendrocyte differentiation. Furthermore, we demonstrated that dual-functional role of NME1 is achieved through cAMP-dependent protein kinase (PKA). Our data therefore suggested that NME1 acts as a switcher or reprogramming factor which involves in oligodentrocyte versus neuron cell fate specification in vitro.  相似文献   

5.
6.
The evolutionary expansion of the neocortex, the seat of higher cognitive functions in humans, is primarily due to an increased and prolonged proliferation of neural progenitor cells during development. Basal progenitors, and in particular basal radial glial cells, are thought to have a key role in the increased generation of neurons that constitutes a foundation of neocortex expansion. Recent studies have identified primate-specific and human-specific genes and changes in gene expression that promote increased proliferative capacity of cortical progenitors. In many cases, the cell biological basis underlying this increase has been uncovered. Model systems such as mouse, ferret, nonhuman primates, and cerebral organoids have been used to establish the relevance of these genes for neocortex expansion.  相似文献   

7.
8.
9.
Many genes regulating adult neurogenesis have been identified and are known to play similar roles during early neuronal development. We recently identified apolipoprotein E (ApoE) as a gene the expression of which is essentially absent in early brain progenitors but becomes markedly upregulated in adult dentate gyrus stem/progenitor cells. Here, we demonstrate that ApoE deficiency impairs adult dentate gyrus development by affecting the neural progenitor pool over time. We utilized ApoE-deficient mice crossed to a nestin-GFP reporter to demonstrate that dentate gyrus progenitor cells proliferate more rapidly at early ages, which is subsequently accompanied by an overall decrease in neural progenitor cell number at later time points. This appears to be secondary to over-proliferation early in life and ultimate depletion of the Type 1 nestin- and GFAP-expressing neural stem cells. We also rescue the proliferation phenotype with an ApoE-expressing retrovirus, demonstrating that ApoE works directly in this regard. These data provide novel insight into late hippocampal development and suggest a possible role for ApoE in neurodegenerative diseases.  相似文献   

10.
Olfactory neuroepithelium (ONe) is unique because it contains progenitor cells capable of mitotic division that replace damaged or lost neurons throughout life. We isolated populations of ONe progenitors from adult cadavers and patients undergoing nasal sinus surgery that were heterogeneous and consisted of neuronal and glial progenitors. Progenitor lines have been obtained from these cultures that continue to divide and form nestin positive neurospheres. In the present study, we used clonal and population analyses to probe the self-renewal and multipotency of the neurosphere forming cells (NSFCs). NSFCs plated at the single cell level produced additional neurospheres; dissociation of these spheres resulted in mitotically active cells that continued to divide and produce spheres as long as they were subcultured. The mitotic activity of clonal NSFCs was assessed using bromodeoxyuridine (BrdU) incorporation. Lineage restriction of the clonal cultures was determined using a variety of antibodies that were characteristic of different levels of neuronal commitment: β-tubulin isotype III, neural cell adhesion molecule (NCAM) and microtubule associated protein (MAP2), or glial restriction: astrocytes, glial fibrillary acidic protein (GFAP); and oligodendrocytes, galactocerebroside (GalC). Furthermore, nestin expression, a marker indicative of progenitor nature, decreased in defined medium compared to serum-containing medium. Therefore, adult human ONe-derived neural progenitors retain their capacity for self-renewal, can be clonally expanded, and offer multipotent lineage restriction. Therefore, they are a unique source of progenitors for future cell replacement strategies in the treatment of neurotrauma and neurodegenerative diseases.  相似文献   

11.
Olfactory neuroepithelium (ONe) is unique because it contains progenitor cells capable of mitotic division that replace damaged or lost neurons throughout life. We isolated populations of ONe progenitors from adult cadavers and patients undergoing nasal sinus surgery that were heterogeneous and consisted of neuronal and glial progenitors. Progenitor lines have been obtained from these cultures that continue to divide and form nestin positive neurospheres. In the present study, we used clonal and population analyses to probe the self-renewal and multipotency of the neurosphere forming cells (NSFCs). NSFCs plated at the single cell level produced additional neurospheres; dissociation of these spheres resulted in mitotically active cells that continued to divide and produce spheres as long as they were subcultured. The mitotic activity of clonal NSFCs was assessed using bromodeoxyuridine (BrdU) incorporation. Lineage restriction of the clonal cultures was determined using a variety of antibodies that were characteristic of different levels of neuronal commitment: β-tubulin isotype III, neural cell adhesion molecule (NCAM) and microtubule associated protein (MAP2), or glial restriction: astrocytes, glial fibrillary acidic protein (GFAP); and oligodendrocytes, galactocerebroside (GalC). Furthermore, nestin expression, a marker indicative of progenitor nature, decreased in defined medium compared to serum-containing medium. Therefore, adult human ONe-derived neural progenitors retain their capacity for self-renewal, can be clonally expanded, and offer multipotent lineage restriction. Therefore, they are a unique source of progenitors for future cell replacement strategies in the treatment of neurotrauma and neurodegenerative diseases.  相似文献   

12.
Clonal analysis of adult human olfactory neurosphere forming cells.   总被引:3,自引:0,他引:3  
Olfactory neuroepithelium (ONe) is unique because it contains progenitor cells capable of mitotic division that replace damaged or lost neurons throughout life. We isolated populations of ONe progenitors from adult cadavers and patients undergoing nasal sinus surgery that were heterogeneous and consisted of neuronal and glial progenitors. Progenitor lines have been obtained from these cultures that continue to divide and form nestin positive neurospheres. In the present study, we used clonal and population analyses to probe the self-renewal and multipotency of the neurosphere forming cells (NSFCs). NSFCs plated at the single cell level produced additional neurospheres; dissociation of these spheres resulted in mitotically active cells that continued to divide and produce spheres as long as they were subcultured. The mitotic activity of clonal NSFCs was assessed using bromodeoxyuridine (BrdU) incorporation. Lineage restriction of the clonal cultures was determined using a variety of antibodies that were characteristic of different levels of neuronal commitment: ss-tubulin isotype III, neural cell adhesion molecule (NCAM) and microtubule associated protein (MAP2), or glial restriction: astrocytes, glial fibrillary acidic protein (GFAP); and oligodendrocytes, galactocerebroside (GalC). Furthermore, nestin expression, a marker indicative of progenitor nature, decreased in defined medium compared to serum-containing medium. Therefore, adult human ONe-derived neural progenitors retain their capacity for self-renewal, can be clonally expanded, and offer multipotent lineage restriction. Therefore, they are a unique source of progenitors for future cell replacement strategies in the treatment of neurotrauma and neurodegenerative diseases.  相似文献   

13.
Neural crest development is regulated by the transcription factor Sox9   总被引:14,自引:0,他引:14  
The neural crest is a transient migratory population of stem cells derived from the dorsal neural folds at the border between neural and non-neural ectoderm. Following induction, prospective neural crest cells are segregated within the neuroepithelium and then delaminate from the neural tube and migrate into the periphery, where they generate multiple differentiated cell types. The intrinsic determinants that direct this process are not well defined. Group E Sox genes (Sox8, Sox9 and Sox10) are expressed in the prospective neural crest and Sox9 expression precedes expression of premigratory neural crest markers. Here, we show that group E Sox genes act at two distinct steps in neural crest differentiation. Forced expression of Sox9 promotes neural-crest-like properties in neural tube progenitors at the expense of central nervous system neuronal differentiation. Subsequently, in migratory neural crest cells, SoxE gene expression biases cells towards glial cell and melanocyte fate, and away from neuronal lineages. Although SoxE genes are sufficient to initiate neural crest development they do not efficiently induce the delamination of ectopic neural crest cells from the neural tube consistent with the idea that this event is independently controlled. Together, these data identify a role for group E Sox genes in the initiation of neural crest development and later SoxE genes influence the differentiation pathway adopted by migrating neural crest cells.  相似文献   

14.
Neural crest progenitor cells are the main contributors to craniofacial cartilage and connective tissue of the vertebrate head. These progenitor cells also give rise to the pigment, neuronal and glial cell lineages. To study the molecular basis of neural crest differentiation, we have cloned the gene disrupted in the mont blanc (mob(m610)) mutation, which affects all neural crest derivatives. Using a positional candidate cloning approach we identified an A to G transition within the 3' splice site of the sixth intron of the tfap2a gene that abolishes the last exon encoding the crucial protein dimerization and DNA-binding domains. Neural crest induction and specification are not hindered in mob(m610) mutant embryos, as revealed by normal expression of early neural crest specific genes such as snail2, foxd3 and sox10. In addition, the initial stages of cranial neural crest migration appear undisturbed, while at a later phase the craniofacial primordia in pharyngeal arches two to seven fail to express their typical set of genes (sox9a, wnt5a, dlx2, hoxa2/b2). In mob(m610) mutant embryos, the cell number of neuronal and glial derivatives of neural crest is greatly reduced, suggesting that tfap2a is required for their normal development. By tracing the fate of neural crest progenitors in live mont blanc (mob(m610)) embryos, we found that at 24 hpf neural crest cells migrate normally in the first pharyngeal arch while the preotic and postotic neural crest cells begin migration but fail to descend to the pharyngeal region of the head. TUNEL assay and Acridine Orange staining revealed that in the absence of tfap2a a subset of neural crest cells are unable to undergo terminal differentiation and die by apoptosis. Furthermore, surviving neural crest cells in tfap2a/mob(m610) mutant embryos proliferate normally and later differentiate to individual derivatives. Our results indicate that tfap2a is essential to turn on the normal developmental program in arches 2-7 and in trunk neural crest. Thus, tfap2a does not appear to be involved in early specification and cell proliferation of neural crest, but it is a key regulator of an early differentiation phase and is required for cell survival in neural crest derived cell lineages.  相似文献   

15.
SOX2 functions to maintain neural progenitor identity   总被引:30,自引:0,他引:30  
Graham V  Khudyakov J  Ellis P  Pevny L 《Neuron》2003,39(5):749-765
  相似文献   

16.
A prolific neuronal progenitor cell population in the anterior portion of the neonatal rat forebrain subventricular zone, the SVZa, is specialized for the production of olfactory bulb interneurons. At all ages, SVZa-derived cells traverse a tangential migratory pathway, the rostral migratory stream (RMS), while en route to the olfactory bulb. Unlike other neuronal progenitor cells of the forebrain, migrating progeny of SVZa progenitors express neuronal-specific proteins and continue to divide into adulthood. Recent studies indicate that in the adult, migrating SVZa-derived cells are ensheathed by astrocytes, although the function of these astrocytes has not been determined. To explore the possible role(s) of astrocytes in the rat SVZa and RMS, we examined the expression of astroglial-specific genes in the postnatal SVZa and RMS using RT-PCR, in situ hybridization, and immunohistochemistry during (Postnatal Days 1-10) and after the period of peak olfactory bulb interneuron generation. We also examined the expression of neuronal-specific genes throughout the rostral-caudal extent of the postnatal subventricular zone to determine if differential cell type-specific gene expression could distinguish the neurogenic SVZa as a region distinct from the remainder of the SVZ. We found little to no astrocyte-specific gene expression in the P0-P7 SVZa, although the neuron-specific isoforms of tubulin (T alpha 1 and beta-III tubulin) were expressed abundantly in the SVZa and RMS. In contrast, astrocyte-specific genes were strongly expressed in the SVZ posterior to the SVZa. GFAP expressions begins to appear in some restricted areas of the rostral migratory stream after the first postnatal week. These data suggest that astroglia are not involved in the generation or migration of most olfactory bulb interneurons. Moreover, the scarcity of glial markers in the neonatal SVZa indicates that the forebrain subventricular zone includes a distinct neurogenic anterior region containing predominantly committed neuronal progenitor cells.  相似文献   

17.
SOX genes and neural progenitor identity   总被引:9,自引:0,他引:9  
  相似文献   

18.
19.
20.
Members of the transforming growth factor (TGF)‐β family govern a wide range of mechanisms in brain development and in the adult, in particular neuronal/glial differentiation and survival, but also cell cycle regulation and neural stem cell maintenance. This clearly created some discrepancies in the field with some studies favouring neuronal differentiation/survival of progenitors and others favouring cell cycle exit and neural stem cell quiescence/maintenance. Here, we provide a unifying hypothesis claiming that through its regulation of neural progenitor cell (NPC) proliferation, TGF‐β signalling might be responsible for (i) maintaining stem cells in a quiescent stage, and (ii) promoting survival of newly generated neurons and their functional differentiation. Therefore, we performed a detailed histological analysis of TGF‐β1 signalling in the hippocampal neural stem cell niche of a transgenic mouse that was previously generated to express TGF‐β1 under a tetracycline regulatable Ca‐Calmodulin kinase promoter. We also analysed NPC proliferation, quiescence, neuronal survival and differentiation in relation to elevated levels of TGF‐β1 in vitro and in vivo conditions. Finally, we performed a gene expression profiling to identify the targets of TGF‐β1 signalling in adult NPCs. The results demonstrate that TGF‐β1 promotes stem cell quiescence on one side, but also neuronal survival on the other side. Thus, considering the elevated levels of TGF‐β1 in ageing and neurodegenerative diseases, TGF‐β1 signalling presents a molecular target for future interventions in such conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号