首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract—
  • 1 The metabolism of three substrates, [U-14C]glucose, [U-14C]pyruvate and [U-14C]glutamate has been studied in vitro in neuronal and glial cell fractions obtained from rat cerebral cortex by a density gradient technique.
  • 2 The mixed cell suspension, after washing, metabolized glucose and glutamate in a manner essentially similar to the tissue slice. Exceptions were a reduced ability to generate lactate from glucose and alanine from glutamate, and a lowered effect of added glucose in suppressing the production of aspartate from glutamate.
  • 3 After 2 hr incubation with [U-14C]glucose, the concentration of the amino acids glutamate, glutamine, GABA, aspartate and alanine were raised in the neuronal, compared to the glial fraction to 234 per cent, 176 per cent, 202 per cent, 167 per cent and 230 per cent respectively although both were lower than in the tissue slice. Incorporation of radio-activity was absolutely lower in the neuronal fraction, however, and the specific activities of the amino acids were: glutamate 12 per cent, GABA 18 per cent, aspartate 34 per cent, and alanine 33 per cent of those in the glial fraction.
  • 4 After the incubation with [U-14C]pyruvate, the pool size of the amino acids were higher than after incubation with glucose, except for GABA, which was reduced to one-third. The concentrations of the amino acids glutamate, glutamine, GABA, aspartate, and alanine in the neuronal fraction were respectively 46 per cent, 143 per cent, 105 per cent, 97 per cent, and 57 per cent of those in the glial. Thus, with the exception of alanine, the specific activity of the neuronal amino acids compared to the glial was little increased when pyruvate replaced glucose as substrate.
  • 5 After 2 hr incubation with [U-14C]glutamate in the presence of non-radioactive glucose, the pool sizes of all the amino acids were increased in both neuronal and glial fractions, with the exception of neuronal alanine and glial glutamine. The concentrations of the amino acids glutamine, GABA, aspartate and alanine were raised in the neuronal fraction, compared to the glial, to 425 per cent, 187 per cent, 222 per cent, and 133 per cent respectively. The specific activities of all the amino acids were higher than with glucose alone with the exception of alanine, and neuronal GABA. Neuronal glutamine and aspartate had specific activities respectively 102 per cent and 84 per cent of glial.
  • 6 An unidentified amino acid, with RF comparable to that of alanine and specific activity close to that of glutamate, was also present after incubation. It was relatively concentrated in the neuronal fraction.
  • 7 The distribution of the enzymes glutamate dehydrogenase, aspartate aminotransferase, glutamate decarboxylase and glutamine synthetase between the cell fractions was studied. With the exception of glutamine synthetase, none of the enzymes was lost from the cell fractions during their preparation. Only 14 per cent of the glutamine synthetase, compared with 75 per cent of total protein, was recovered in the fractions. Of the enzymes, glutamate dehydrogenase activity was 406 per cent, and glutamate synthetase activity 177 per cent in the neuronal fraction compared to the glial in the absence of detergent. In the presence of detergent, glutamate dehydrogenase control was 261 per cent, aspartate aminotransferase activity 237 per cent is the neuronal as compared to the glial fraction.
  • 8 Incorporation of radioactivity into acid-insoluble material from either glutamate or pyruvate was twice as high into the neuronal as the glial fraction.
  • 9 The extent to which these differences may be extrapolated back to the intact tissue is considered, and certain correction factors calculated. The significance of the observations for an understanding of the compartmentation of amino acid pools and metabolism in the brain, and the possible identification of such compartments, is discussed.
  相似文献   

2.
The content of γ-amino butyric acid (GABA) and of other water soluble amino acids in bovine brain synaptic vesicles was determined by a modified automated amino acid analysis method. Following subcellular fractionation, GABA, glutamate and aspartate were distributed largely in the supernatant fractions and in the upper layer of the sucrose gradient. Only 10–20% of the total content was associated with the vesicular fraction. On the other hand, the other water soluble amino acids, such as serine, glycine and alanine, were evenly distributed between cytoplasmic and particulate fractions in a similar pattern to that observed with cytoplasmic enzyme markers. The results may indicate specific association of GABA, glutamate and aspartate with low density particles or cytoplasmic components.  相似文献   

3.
Homogenates of specific brain regions of three sensory systems (auditory, olfactory, and visual) were prepared from pigmented Long-Evans Hooded rats and assayed for amino acid concentrations and activities of glutaminase, aspartate aminotransferase (total, cytosolic, and, by difference, mitochondrial), malate dehydrogenase, lactate dehydrogenase, and choline acetyltransferase. Comparing the quantitative distributions among regions revealed significant correlations between AAT and aspartate, between glutaminase and glutamate, between glutamate and glutamine, and between AAT plus glutaminase, or glutaminase alone, and the sum of aspartate, glutamate, and GABA, suggesting a metabolic pathway involving the synthesis of a glutamate pool as precursor to aspartate and GABA. Of the inhibitory transmitter amino acids, GABA concentrations routinely exceeded those of glycine, but glycine concentrations were relatively high in brainstem auditory structures.  相似文献   

4.
The effect of the glutamate antagonist alpha-amino-4-phosphonobutyrate (APBA) on the release of endogenous amino acids from sensorimotor cortical synaptosomes of rats with a cortical cobalt focus and from non-epileptic rats was studied: (1) The release of endogenous glutamate, aspartate, and gamma-aminobutyric acid (GABA) from synaptosomal preparations of cobalt-induced epileptogenic tissues was increased compared with the release from the contralateral (sensorimotor) region or the sensorimotor cortex of normal animals. The intrasynaptosomal content of these amino acids was reduced in proportion to the amount released. The levels of other amino acids were unaffected or showed much smaller changes. (2) APBA (0.5-1 mM) decreased significantly the spontaneous release of aspartate and glutamate from the epileptic foci without affecting GABA or any other amino acid. (3) APBA produced no effect whatsoever on the release of any amino acid from synaptosomal preparations of nonepileptic focus.  相似文献   

5.
Abstract— In an effort to identify neurotransmitters in slices of guinea-pig cerebral cortex, a study was made of the release of endogenous amino acids which had become labelled via metabolism of d -[U-14C]glucose. While incorporation of 14C into endogenous glutamate, aspartate, GABA, alanine and threonine-serine-glutamine (unseparated) was large enough to permit measurement of their release, that into other amino acids was not. In parallel experiments, the release of exogeneous labelled glutamate, aspartate, GABA and α-aminoisobutyrate was examined. Electrical field stimulation evoked a transient increase in the release of all the adequately labelled endogenous amino acids and all the exogenous amino acids. The stimulated ‘increase’ in the release of each of the endogenous 14C-labelled transmitter candidates (glutamate, aspartate and GABA) was larger than that of any other amino acid (except that of exogenous GABA). When the experiments were performed without the glucose (5 mm ) usually present in the medium bathing the slices, larger amounts of each labelled amino acid were released from the slices than in the presence of glucose. Moreover, the pattern of selective release of the endogenous labelled transmitter candidates was much more pronounced in the absence of glucose. It is likely that in the absence of glucose, release from the tissue was larger because cells in the slice were relatively depolarized and uptake of amino acids into cells was impaired. Because previous evidence suggests that over 90% of glucose consumption occurs in the ‘large metabolic compartment’ which is thought to be composed of neuronal elements, neurons were probably the main site from which the larger release of endogenous 14C-labelled transmitter candidates was evoked. The exogenous amino acids were probably released from several cellular elements in the slices. It was concluded that the pattern of a selective release of the endogenous labelled transmitter candidates may have been indicative of a transmitter releasing mechanism in nerve terminals.  相似文献   

6.
Abstract— Tetrodotoxin, Ca2+-deprivation and high-Mg2+ were used in an effort to identify the portion of the evoked release of endogenous amino acids, labelled via metabolism of [14C]-glucose, and several exogenous labelled amino acids, that came from nerve terminals when slices of guinea pig cerebral cortex were superfused with glucose-free solutions and stimulated electrically. With some exceptions, spontaneous release of labelled amino acids was decreased by 2 μm -tetrodotoxin but increased in Ca2+-free medium and in solutions containing an extra 24 mm -MgCl2. Tetrodotoxin suppressed 85–90% of the stimulated release of almost all labelled amino acids, but had a smaller effect on the release of endogenous 14C-labelled threonine-serine-glutamine (unseparated). In Ca2+-free solution, the stimulated release of endogenous 14C-labelled glutamate, aspartate and GABA was suppressed by 80–90%, but that of endogenous 14C-labelled threonine-serine-glutamine was unaffected as was most of the release of the other labelled amino acids. In medium containing an extra 24mM-MgCl2, the stimulated release of endogenous 14C-labelled glutamate, aspartate and GABA was suppressed by 75-85%, that of exogenous labelled aspartate and GABA by 50–65%, but the release of the other labelled amino acids was unaffected. The control stimulated releases of endogenous 14C-labelled glutamate, aspartate and GABA were much larger than those of other labelled amino acids but were reduced by tetrodotoxin, Ca2+-deprivation and high-Mg2+ to a level similar to that of the control stimulated releases of the other labelled amino acids. These results suggest that almost all of the stimulated release of endogenous 14C-labelled glutamate, aspartate and GABA came from nerve terminals while those of the other labelled amino acids came from other tissue elements. In addition, they are in accord with a transmitter role for glutamate, aspartate and GABA in cerebral cortex.  相似文献   

7.
Release of endogenous amino acids labelled via D-[U-14C]glucose was compared with that of several exogenous labelled amino acids using slices of guinea pig cerebral cortex. Electrical field stimulation evoked a selective release of endogenous [14C]glutamate, [14C]aspartate, and gamma-amino[14C]butyrate (14C-labelled GABA). The selectivity of release correlated well with 14C incorporation into endogenous amino acids. Calculations of the fraction of the tissue radioactivity released indicated that the selectivity was not an artifact due to differential incorporation. Because glucose in mammalian brain is metabolized almost entirely by the so-called 'large compartment', it is tentatively concluded that the releasable 'transmitter pool' of glutamate, aspartate, and GABA is located in this 'large compartment'.  相似文献   

8.
The metabolic properties of synaptosomes prepared from the crude mitochondrial and crude nuclear fractions of the medulla/spinal cord were studied. They showed similar properties, glycine being enriched in the latter. The respiration and glycolysis rates were similar to the cortical synaptosomes previously studied. A major difference from cortical synaptosomes was the enrichment of glycine. Medulla/spinal cord synaptosome suspensions and beds responded metabolically to electrical pulses; respiration and lactate production increased by 50 and 25 per cent respectively. Differential release of glutamate, aspartate, GABA and glycine occurred during both electrical stimulation, and when potassium in the medium was increased. Omitting calcium and adding EGTA greatly reduced this response with both forms of stimulation. The electrically induced release of GABA was completely reversible whilst that of aspartate and glycine was only partially reversible. The electrically stimulated release of glycine and other amino acids was reduced in synaptosomes prepared from rats treated intramuscularly with tetanus toxin 15 hr before death. No action of the toxin was seen on synaptosomes incubated with tetanus toxin after preparation.  相似文献   

9.
The quantitative distributions of aspartate aminotransferase and glutaminase were mapped in subregions of olfactory bulb and cochlear nucleus of rat, and were compared with similar data for retina and with the distributions of their substrate and product amino acids aspartate, glutamate, and glutamine. The distributions of both enzymes paralleled that of aspartate in the olfactory bulb and that of glutamate in the cochlear nucleus. In retina (excluding inner segments), there were similarities between aspartate aminotransferase and both glutamate and aspartate distributions. The distribution of -aminobutyrate (GABA) was similar to those of both enzymes in olfactory bulb, to aspartate aminotransferase in cochlear nucleus, and to glutaminase in retina (excluding inner segments). The results are consistent with significant involvement of aspartate aminotransferase, especially the cytosolic isoenzyme, and glutaminase in accumulation of the neurotransmitter amino acids glutamate, aspartate, and GABA, although with preferential accumulation of different amino acids in different brain regions.  相似文献   

10.
Abstract— The metabolic properties of synaptosome beds (deposits positioned between nylon gauzes) were studied. They respired, glycolysed, produced ATP and phosphocreatine, and metabolized [U-14C]glucose to glutamate, aspartate, alanine and GABA at similar rates to synaptosome suspensions. Metabolic inhibitors caused massive loss of amino acids from the beds. Synaptosome beds also responded metabolically to electrical pulses; respiration and lactate production increasing by 40 per cent. Differential release of glutamate, aspartate and GABA occurred during electrical stimulation, maximum release being after 10–15 min of stimulation. This differential release also occurred when medium potassium was increased. Omitting and chelating calcium reduced or abolished this response with both forms of stimulation. Including amino acid analogues (β-aminobutyric acid, α, γ-diaminobutyric acid and N -acetyl glutamic acid) in the incubation medium changed the patterns of amino acids present in the medium, indicating that under normal conditions active amino acid uptake processes are occurring in synaptosomes. Tetrodotoxin and ouabain also interfered with amino acid release without greatly affecting the response to stimulation. Cerebral cortex slices incubated between gauzes also showed a glycolytic response to electrical stimulation. GABA was the only amino acid showing a significant increase in the amount released with both potassium and electrical stimulation of the slices.  相似文献   

11.
Spontaneous and electrically evoked release of exogenous labelled amino acids and endogenous amino acids labelled from D-[U-14C]glucose were compared in control and Ca2+-free medium using guinea pig cerebral cortex slices. Spontaneous release of all labelled amino acids, except that of endogenous 14C-labelled threonine-serine-glutamine (unseparated) and exogenous [14C]aspartate, was doubled in Ca2+-free medium. The major portion of the electrically evoked release of endogenous [14C]glutamate, [14C]aspartate, gamma-amino[14C]butyrate (14C-labelled GABA) and exogenous 3H-labelled GABA was Ca2+-inpendent. More than half of the evoked release of the other labelled amino acids was Ca2+-independent. As the pattern of Ca2+-dependence of the evoked release concurred with the selectivity of the evoked release for endogenous [14C]-glutamate, [14C]aspartate, and 14C-labelled GABA, it was concluded that these labelled amino acids were probably released from the amino acid 'transmitter pool'.  相似文献   

12.
In an attempt to estimate the pool size of glutamate and other amino acids in γ-aminobutyric acid (GABA)-containing neurons, we determined the content of 12 amino acids in the bilateral substantia nigra of rats, in which unilateral striatal lesions had been made with kainic acid two weeks earlier. The assay of the amino acids (including glutamate, aspartate, glutamine, asparagine, glycine, and GABA) and ethanolamine was based on HPLC and fluorimetric detection after precolumn derivatization with o-phthaldialdehyde. The levels of all measured amino acids (except those of tyrosine, threonine, and ethanolamine) were decreased in the affected striatum, but only the levels of aspartate, taurine, and GABA were lowered in the ipsilateral substantia nigra. These results indicate that the pool size of the various amino acids in the striatonigral GABAergic pathway is small compared to their nigral content, and that in addition to GABA a significant fraction of aspartate and taurine may be confined to nerve terminals in the substantia nigra.  相似文献   

13.
We have studied the levels of neuroactive amino acids in synaptosomes (P2 fraction) isolated from brain tissue of ten patients with medically intractable epilepsy who were undergoing temporal lobectomy. First, lateral temporal tissue (nonfocal) was removed followed by medial temporal tissue (focal). A synaptosomal fraction (P2) was immediately prepared from each tissue and analyzed for free amino acid concentrations. Statistically significant reductions were seen in glutamine and GABA concentrations in focal tissue compared to nonfocal tissue. The ratio of excitatory amino acids (aspartate and glutamate) to inhibitory amino acids (taurine and GABA) was significantly higher in focal tissue compared to nonfocal. The glutamine/glutamate ratio was significantly reduced. These data support the hypothesis that alterations in the balance between excitatory and inhibitory amino acids may be involved in the expression of epilepsy.  相似文献   

14.
Abstract— —The site of origin of transmitter amino acids released by depolarizing agents from nerve endings was studied. The model used was the incubated and depolarized synaptosome preparation from which the component soluble, synaptic vesicle, membrane and mitochondrial sub-fractions were obtained. Synaptosomal amino acids were radioactively labelled from D-[U-14C]glucose in vivo by intraventricular injection and in vitro during subsequent incubation. The specific radioactivities of amino acids released in response to K+ (56 mM) or veratrine (75 μM) were found to closely resemble those of the soluble cytoplasmic fraction, in most cases differing significantly from those of the other fractions. The specific radioactivity of the GABA and aspartate released by K+ stimulation and the GABA and glutamate released by veratrine were significantly different from that of the vesicles in each case. The specific radioactivities of glutamate released by both agents, and also GABA with K+ stimulation, were approximately double that of the amino acid released in control conditions. Depletion of the soluble cytoplasmic pools of glutamate, GABA and aspartate occurred following stimulation, corresponding to the induced-release of these compounds. Turnover of the amino acids in the other subfractions was too low to account for their participation in the release process in addition to the soluble cytoplasmic pool. A cytoplasmic origin of release of neurotransmitter amino acids from nerve endings is proposed.  相似文献   

15.
In most other studies the release of amino acid neurotransmitters and modulators in vitro has been studied mostly using labeled preloaded compounds. For several reasons the estimated release may not reliably reflect the release of endogenous compounds. The magnitudes of the release cannot thus be quite correctly estimated using radioactive labels. The basal and K+-evoked release of the neuroactive endogenous amino acids γ-aminobutyrate (GABA), glycine, taurine, glutamate and aspartate was now studied in slices from the striatum from 7-day-old to 3-month-old mice under control (normoxic) and ischemic conditions. The release of alanine, threonine and serine was assessed as control. GABA and glutamate release was much greater in 3-month-old than in 7-day-old mice, whereas with taurine the situation was the opposite. Ischemia markedly enhanced the release of all these three amino acids. The release of aspartate and glycine was markedly enhanced as well whereas no effects were discernible in the release of glutamine, alanine, serine and threonine. K+ stimulation (50 mM) enhanced the release of GABA, glutamate, taurine, aspartate and glycine in most cases, except with taurine in 3-month-old mice under the ischemic conditions and with aspartate in 7-day-old mice under the control conditions. K+ stimulation did not affect the release of glutamine, alanine, serine or threonine. The results on endogenous amino acids are qualitatively similar to those obtained in our earlier experiments with labeled preloaded amino acids. In conclusion, in developing mice only inhibitory taurine is released in such amounts that may counteract the harmful effects of excitatory amino acids in ischemia.  相似文献   

16.
Guinea pigs were unilaterally bulbectomised and the contents of aspartate, glutamate and GABA measured in slices of olfactory cortex taken from the lesioned and intact hemispheres. Two days after the operation there was a fall in the aspartate and glutamate levels, which persisted for over 120 days, whereas gamma-aminobutyric acid (GABA) showed a transient fall followed by a small rise. The fall in glutamate and aspartate was much greater in small, thin slices containing a high density of nerve terminals. The synthesis of 13C aminoacids from [13C]glucose during electrical stimulation was greater in the slices taken from the normal side than in those from the operated side. The GABA synthesis, however, was four times greater on the lesioned side. This time-course for the fall in acidic amino acids correlates with the fall in electrical responses, and this lends weight to the idea that aspartate and/or glutamate mediate synaptic transmission in the area.  相似文献   

17.
The extracellular levels of aspartate, glutamate and GABA were measured by microdialysis, coupled with an HPLC method, in rat prefrontal cortex (mPFC) and ventral hippocampus (VH) before and during the performance of a step-down inhibitory task. The basal levels of glutamate were about 50% higher than those of aspartate, and GABA levels were about 20-folds smaller than those of the excitatory amino acids. There were no significant differences in the basal levels of any of the three amino acids between the two brain regions. The extracellular levels of aspartate increased during acquisition and recall trials in both VH and mPFC, whereas those of glutamate increased in the VH during acquisition only. A significant increase in GABA levels was also detected during acquisition but only in the mPFC. The neuronal origin of the increased extracellular levels of aspartate, glutamate and GABA was demonstrated by administering tetrodotoxin directly into the mPFC or VH by reverse dialysis. These findings, together with previous evidence from our and other laboratories, indicate a differential release of aspartate and glutamate from excitatory neurons during the performance of behavioral responses, and therefore, distinct roles for the two excitatory amino acids should be envisaged.  相似文献   

18.
—(1) Synaptosomes incubated in high sodium, low potassium media showed high linear respiration in the presence of glucose which was converted into lactate, aspartate, glutamate, glutamine, alanine and GABA during 1 hr incubation periods. (2) Total conversion of glucose into most of these substrates over the incubation period was similar in synaptosomes and cortex slices. Half the lactate and only a small fraction of the glutamine made by slices was formed by synaptosomes. (3) Pool sizes of amino acids in cortex slices after incubation with glucose were, in general, higher than in synaptosomes, glutamate and glutamine being four-fold higher in slices. (4) Most of the amino acids made from glucose by synaptosomes were contained within their structure and not lost to the medium. (5) Glutamate was actively metabolized by synaptosomes to aspartate, glutamine, alanine and GABA. The specific radioactivities of the amino acids (except glutamine) after 1 hr incubation, approached that of the glutamate. (6) Pyridoxal phosphate added to the incubation medium increased GABA production from glutamate but not from glucose.  相似文献   

19.
Abstract— The distribution of the neuroactive amino acids taurine, GABA, glycine, glutamate and aspartate, together with glutamine, have been studied in the rat retina. Peak levels of taurine were found in photoreceptor cells and of GABA and glycine in a retinal fraction enriched in amacrine cells and, synaptic terminals. In vitro , GABA formation from [3H]glutamine and [14C]glucose was also most prominent in this fraction; at 500 μ m [3H]glutamine was the better precursor.
Observations on metabolism in the photoreceptor cell layer of the tissue suggest an active turnover of glutamate, aspartate and GABA, and show that glutamine may serve as an alternative substrate to glucose here, perhaps via the GABA bypath.  相似文献   

20.
(1) The metabolism of glucose and amino acids in vitro was compared in the rat cerebral cortex and the optic and vertical lobes of the octopus brain. (2) Specific activities and pool sizes of the five amino acids, glutamate, aspartate, glutamine, alanine and γ-aminobutyric acid (GABA), were determined in octopus and rat brain slices after 2 hr incubation with 10 mm -[U-14C]glucose, 10 mm -L-[U-14C]glutamate, and 10mm -L-[U-14C]glutamate with added 10 mM-glucose. Amino acid pool sizes were similar in rat and octopus brain, with the exception of alanine, which was higher in the octopus. Generally specific activities were from four- to 20-fold higher in rat brain. With [U-14C]glucose as substrate, specific activities of GABA and glutamate were highest in rat; those of alanine and glutamine highest in octopus brain. With L-[U-14C]glutamate the specific activities of GABA and aspartate were highest in rat, that of aspartate highest and GABA lowest in octopus. The addition of glucose to L-[U-14C]glutamate as substrate had little effect on the specific activities of any of the amino acids. (3) The uptake of some amino acids was determined by incubation with [U-14C]amino acids for 2 hr, and 14CO2 formation was also measured. The amount of label taken up by octopus was uniformly 20-25 per cent of that found for rat brain. The amount of 14CO2, however, differed according to the amino acid. Four times as much 14CO2 was generated from alanine by octopus optic lobe and twice as much by the vertical lobe than rat cortex, but from glutamate, only 24 per cent in the optic and 15 per cent in the vertical lobe. No 14CO2 was generated from [U-14C]GABA in the octopus, by contrast with the rat. (4) Activity of some of the enzymes involved in amino acid metabolism was determined in homogenates of rat cortex and octopus optic and vertical lobes, with and without activation by Triton X-100. Enzymic activities in the octopus, with the exception of alanine aminotransferase, were lower than in the rat, and glutamate decarboxylase could not be detected in octopus brain, in the absence of detergent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号