首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solute transport in Saccharomyces cerevisiae can be regulated through mechanisms such as trans-inhibition and/or catabolite inactivation by nitrogen or carbon sources. Studies in hybrid membranes of S. cerevisiae suggested that the maltose transport system Mal61p is fully reversible and capable of catalyzing both influx and efflux transport. This conclusion has now been confirmed by studies in a S. cerevisiae strain lacking the maltase enzyme. Whole cells of this strain, wherein the orientation of the maltose transporter is fully preserved, catalyze fully reversible maltose transport. Catabolite inactivation of the maltose transporter Mal61p was studied in the presence and absence of maltose metabolism and by the use of different glucose analogues. Catabolite inactivation of Mal61p could be triggered by maltose, provided the sugar was metabolized, and the rate of inactivation correlated with the rate of maltose influx. We also show that 2-deoxyglucose, unlike 6-deoxyglucose, can trigger catabolite inactivation of the maltose transporter. This suggests a role for early glycolytic intermediates in catabolite inactivation of the Mal61 protein. However, there was no correlation between intracellular glucose-6-phosphate or ATP levels and the rate of catabolite inactivation of Mal61p. On the basis of their identification in cell extracts, we speculate that (dideoxy)-trehalose and/or (deoxy)-trehalose-6-phosphate trigger catabolite inactivation of the maltose transporter.  相似文献   

2.
We have investigated the transport of maltose in a genetically defined maltose-fermenting strain of Saccharomyces cerevisiae carrying the MAL1 locus. Two kinetically different systems were identified: a high-affinity transporter with a Km of 4 mM and a low-affinity transporter with a Km of 70 to 80 mM. The high-affinity maltose transporter is maltose inducible and is encoded by the MAL11 (and/or MAL61) gene of the MAL1 (and/or MAL6) locus. The low-affinity maltose transporter is expressed constitutively and is not related to MAL11 and/or MAL61. Both maltose transporters are subject to glucose-induced inactivation.  相似文献   

3.
Molecular genetic analysis is used to characterize the AGT1 gene encoding an α-glucoside transporter. AGT1 is found in many Saccharomyces cerevisiae laboratory strains and maps to a naturally occurring, partially functional allele of the MAL1 locus. Agt1p is a highly hydrophobic, postulated integral membrane protein. It is 57% identical to Mal61p, the maltose permease encoded at MAL6 , and is also a member of the 12 transmembrane domain superfamily of sugar transporters. Like Mal61p, Agt1p is a high-affinity, maltose/proton symporter, but Mal61p is capable of transporting only maltose and turanose, while Agt1p transports these two α-glucosides as well as several others including isomaltose, α-methylglucoside, maltotriose, palatinose, trehalose and melezitose. AGT1 expression is maltose inducible and induction is mediated by the Mal-activator. The sequence of the upstream region of AGT1 is identical to that of the maltose-inducible MAL61 gene over a 469 bp region containing the UASMAL but the 315 bp sequence immediately upstream of AGT1 shows no significant homology to the sequence immediately upstream of MAL61 . The evolutionary origin of the MAL1 allele to which AGT1 maps and the relationship of AGT1 to other α-glucoside fermentation genes is discussed.  相似文献   

4.
5.
Lactobacillus sanfrancisco LTH 2581 can use only glucose and maltose as sources of metabolic energy. In maltose-metabolizing cells of L. sanfrancisco, approximately half of the internally generated glucose appears in the medium. The mechanisms of maltose (and glucose) uptake and glucose excretion have been investigated in cells and in membrane vesicles of L. sanfrancisco in which beef heart cytochrome c oxidase had been incorporated as a proton-motive-force-generating system. In the presence of ascorbate, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), and cytochrome c, the hybrid membranes facilitated maltose uptake against a concentration gradient, but accumulation of glucose could not be detected. Similarly, in intact cells of L. sanfrancisco, the nonmetabolizable glucose analog alpha-methylglucoside was taken up only to the equilibration level. Selective dissipation of the components of the proton and sodium motive force in the hybrid membranes indicated that maltose is transported by a proton symport mechanism. Internal [14C]maltose could be chased with external unlabeled maltose (homologous exchange), but heterologous maltose/glucose exchange could not be detected. Membrane vesicles of L. sanfrancisco also catalyzed glucose efflux and homologous glucose exchange. These activities could not be detected in membrane vesicles of glucose-grown cells. The results indicate that maltose-grown cells of L. sanfrancisco express a maltose-H+ symport and glucose uniport system. When maltose is the substrate, the formation of intracellular glucose can be more rapid than the subsequent metabolism, which leads to excretion of glucose via the uniport system.  相似文献   

6.
Saccharomyces yeasts ferment several alpha-glucosides including maltose, maltotriose, turanose, alpha-methylglucoside, and melezitose. In the utilization of these sugars transport is the rate-limiting step. Several groups of investigators have described the characteristics of the maltose permease (D. E. Kroon and V. V. Koningsberger, Biochim. Biophys. Acta 204:590-609, 1970; R. Serrano, Eur. J. Biochem. 80:97-102, 1977). However, Saccharomyces contains multiple alpha-glucoside transport systems, and these studies have never been performed on a genetically defined strain shown to have only a single permease gene. In this study we isolated maltose-negative mutants in a MAL6 strain and, using a high-resolution mapping technique, we showed that one class of these mutants, the group A mutants, mapped to the MAL61 gene (a member of the MAL6 gene complex). An insertion into the N-terminal-coding region of MAL61 resulted in the constitutive production of MAL61 mRNA and rendered the maltose permease similarly constitutive. Transformation by high-copy-number plasmids containing the MAL61 gene also led to an increase in the maltose permease. A deletion-disruption of MAL61 completely abolished maltose transport activity. Taken together, these results prove that this strain has only a single maltose permease and that this permease is the product of the MAL61 gene. This permease is able to transport maltose and turanose but cannot transport maltotriose, alpha-methylglucoside, or melezitose. The construction of strains with only a single permease will allow us to identify other maltose-inducible transport systems by simple genetic tests and should lead to the identification and characterization of the multiple genes and gene products involved in alpha-glucoside transport in Saccharomyces yeasts.  相似文献   

7.
Reaction centers of the phototrophic bacterium Rhodopseudomonas palustris were introduced as proton motive force-generating systems in membrane vesicles of two anaerobic bacteria. Liposomes containing reaction center-light-harvesting complex I pigment protein complexes were fused with membrane vesicles of Streptococcus cremoris or Clostridium acetobutylicum by freeze-thawing and sonication. Illumination of these fused membranes resulted in the generation of a proton motive force of approximately -110 mV. The magnitude of the proton motive force in these membranes could be varied by changing the light intensity. As a result of this proton motive force, amino acid transport into the fused membranes could be observed. The initial rate of leucine transport by membrane vesicles of S. cremoris increased exponentially with the proton motive force. An H+/leucine stoichiometry of 0.8 was determined from the steady-state level of leucine accumulation and the proton motive force, and this stoichiometry was found to be independent of the magnitude of the proton motive force. These results indicate that the introduction of bacterial reaction centers in membrane vesicles by the fusion procedure yields very attractive model systems for the study of proton motive force-consuming processes in membrane vesicles of (strict) anaerobic bacteria.  相似文献   

8.
9.
Maltotriose utilization by Saccharomyces cerevisiae and closely related yeasts is important to industrial processes based on starch hydrolysates, where the trisaccharide is present in significant concentrations and often is not completely consumed. We undertook an integrated study to better understand maltotriose metabolism in a mixture with glucose and maltose. Physiological data obtained for a particularly fast-growing distiller's strain (PYCC 5297) showed that, in contrast to what has been previously reported for other strains, maltotriose is essentially fermented. The respiratory quotient was, however, considerably higher for maltotriose (0.36) than for maltose (0.16) or glucose (0.11). To assess the role of transport in the sequential utilization of maltose and maltotriose, we investigated the presence of genes involved in maltotriose uptake in the type strain of Saccharomyces carlsbergensis (PYCC 4457). To this end, a previously constructed genomic library was used to identify maltotriose transporter genes by functional complementation of a strain devoid of known maltose transporters. One gene, clearly belonging to the MAL transporter family, was repeatedly isolated from the library. Sequence comparison showed that the novel gene (designated MTY1) shares 90% and 54% identity with MAL31 and AGT1, respectively. However, expression of Mty1p restores growth of the S. cerevisiae receptor strain on both maltose and maltotriose, whereas the closely related Mal31p supports growth on maltose only and Agt1p supports growth on a wider range of substrates, including maltose and maltotriose. Interestingly, Mty1p displays higher affinity for maltotriose than for maltose, a new feature among all the alpha-glucoside transporters described so far.  相似文献   

10.
Beef heart mitochondrial cytochrome c oxidase has been incorporated into membrane vesicles derived from the homofermentative lactic acid bacterium Streptococcus cremoris. Proteoliposomes containing cytochrome c oxidase were fused with the bacterial membrane vesicles by means of a freeze/thaw sonication technique. Evidence that membrane fusion has taken place is presented by the demonstration that nonexchangeable fluorescent phospholipid probes, originally present only in the bacterial membrane or only in the liposomal membrane, are diluted in the membrane after fusion and, by sucrose gradient centrifugation, indicating a buoyant density of the membranes after fusion in between those of the starting membrane preparations. The fused membranes are endowed with a relatively low ion permeability which makes it possible to generate a high proton motive force (100 mV, inside negative and alkaline) by cytochrome-c-oxidase-mediated oxidation of the electron donor system ascorbate/N,N,N',N'-tetramethyl-p-phenylenediamine/cytochrome c. In the fused membranes this proton motive force can drive the uptake of several amino acids via secondary transport systems. The incorporation procedure described for primary proton pumps in biological membranes opens attractive possibilities for studies of proton-motive-force-dependent processes in isolated membrane vesicles from bacterial or eukaryotic origin which lack a suitable proton-motive-force-generating system.  相似文献   

11.
Q. Cheng  C. A. Michels 《Genetics》1989,123(3):477-484
The MAL61 gene of Saccharomyces cerevisiae encodes maltose permease, a protein required for the transport of maltose across the plasma membrane. Here we report the nucleotide sequence of the cloned MAL61 gene. A single 1842 bp open reading frame is present within this region encoding the 614 residue putative MAL61 protein. Hydropathy analysis suggests that the secondary structure consists of two blocks of six transmembrane domains separated by an approximately 71 residue intracellular region. The N-terminal and C-terminal domains of 100 and 67 residues in length, respectively, also appear to be intracellular. Significant sequence and structural homology is seen between the MAL61 protein and the Saccharomyces high-affinity glucose transporter encoded by the SNF3 gene, the Kluyveromyces lactis lactose permease encoded by the LAC12 gene, the human HepG2 glucose transporter and the Escherichia coli xylose and arabinose transporters encoded by the xylE and araE genes, indicating that all are members of a family of sugar transporters and are related either functionally or evolutionarily. A mechanism for glucose-induced inactivation of maltose transport activity is discussed.  相似文献   

12.
13.
The MAL1 locus of Saccharomyces cerevisiae comprises three genes necessary for maltose utilization. They include regulatory, maltose transport and maltase genes designated MAL1R, MAL1T and MAL1S respectively. Using a MAL1 strain transformed with an episomal, multicopy plasmid carrying the MAL2 locus, five recessive and one dominant mutant unable to grow on maltose, but still retaining a functional MAL1 locus were isolated. All the mutants could use glycerol, ethanol, raffinose and sucrose as a sole carbon source; expression of the maltase and maltose permease genes was severely and coordinately reduced. Only the dominant mutant failed to accumulate the MAL1R mRNA.  相似文献   

14.
The effect of cholesterol on the activity of the branched-chain amino acid transport system of Streptococcus cremoris was studied in membrane vesicles of S. cremoris fused with liposomes made of egg yolk phosphatidylcholine, soybean phosphatidylethanolamine, and various amounts of cholesterol. Cholesterol reduced both counterflow and proton motive force-driven leucine transport. Kinetic analysis of proton motive force-driven leucine uptake revealed that the Vmax decreased with an increasing cholesterol/phospholipid ratio while the Kt remained unchanged. The leucine transport activity decreased with the membrane fluidity, as determined by steady-state fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene incorporated into the fused membranes, suggesting that the membrane fluidity controls the activity of the branched-chain amino acid carrier.  相似文献   

15.
The transport and regulation of maltose utilization by Torulaspora delbrueckii, one of the most abundant non-Saccharomyces species present in home-made corn and rye bread dough, has been investigated. A DNA fragment containing the MAL11 gene from T. delbrueckii (TdMAL11) was isolated by complementation cloning in Saccharomyces cerevisiae. DNA sequence analysis revealed the presence of an open reading frame (ORF) of 1884 bp, encoding a 627-amino acid membrane protein, which displays high homology to other yeast maltose transporters. Upstream of TdMAL11, the DNA insert contained a partial ORF (TdMAL12) on the opposite strand, which showed high similarity to the S. cerevisiae MAL12 gene. Sequence analysis, Northern blot and transport measurements indicated that TdMAL11 expression is regulated by the carbon source. Attempts to disrupt TdMAL11 revealed the presence of two functional MAL loci. Disruption of a single copy decreased the V(max) of maltose transport, but not the K(m), whereas the double disruption abolished the uptake of this sugar in T. delbrueckii.  相似文献   

16.
1. The transduction of energy from the oxidation of substrates by the electron transport chain or from the hydrolysis of ATP by the Mg2+-ATPase was measured in everted membrane vesicles of Escherichia coli using the energy-dependent quenching of quinacrine fluorescence and the active transport of calcium. 2. Treatment of everted membranes derived from a wild-type strain with the chaotropic agents guanidine-HC1 and urea caused a loss of energy-linked functions and an increase in the permeability of the membrane to protons, as measured by the loss of respiratory-linked proton uptake. 3. The coupling of energy to the quenching of quinacrine fluorescence and calcium transport could be restored by treatment of the membranes with N,N'-dicyclohyexylcarbodiimide. 4. Chaotrope-treated membranes were found to lack Mg2+-ATPase activity. Binding of crude soluble Mg2+-ATPase to treated membranes restored energy-linked functions. 5. Membranes prepared from a wild-type strain grown under anaerobic conditions in the presence of nitrate retained respiration-linked quenching of quinacrine fluorescence and active transport of calcium after treatment with chaotropic agents. 6. Everted membrane vesicles prepared from an Mg2+-ATPase deficient strain lacked respiratory-driven functions when the cells were grown aerobically but were not distinguishable from membranes of the wild-type when both were grown under anaerobic conditions in the presence of nitrate. 7. It is concluded (a) that chaotropic agents solubilize a portion of the Mg2+-ATPase, causing an increase in the permeability of the membrane to protons and (b) that growth under anaerobic conditions in the presence of nitrate prevents the increase in proton permeability caused by genetic or chemical removal of the catalytic portion of the Mg2+-ATPase.  相似文献   

17.
Membrane vesicles of Leuconostoc mesenteroides subsp. dextranicum fused with proteoliposomes prepared from Escherichia coli phospholipids containing beef heart cytochrome c oxidase were used to study the transport of branched-chain amino acids in a strain isolated from a raw milk cheese. At a medium pH of 6.0, oxidation of an electron donor system comprising ascorbate, N,N,N',N'-tetramethyl-p-phenylenediamine, and horse heart cytochrome c resulted in a membrane potential (Deltapsi) of -60 mV, a pH gradient of -36 mV, and an l-leucine accumulation of 76-fold (Deltamu(Leu)/F = 108 mV). Leucine uptake in hybrid membranes in which a Deltapsi, DeltapH, sodium ion gradient, or a combination of these was imposed artificially revealed that both components of the proton motive force (Deltap) could drive leucine uptake but that a chemical sodium gradient could not. Kinetic analysis of leucine (valine) transport indicated three secondary transport systems with K(t) values of 1.7 (0.8) mM, 4.3 (5.9) muM, and 65 (29) nM, respectively. l-Leucine transport via the high-affinity leucine transport system (K(t) = 4.3 muM) was competitively inhibited by l-valine and l-isoleucine (K(i) and K(t) values were similar), demonstrating that the transport system translocates branched-chain amino acids. Similar studies with these hybrid membranes indicated the presence of high-affinity secondary transport systems for 10 other amino acids.  相似文献   

18.
Alanyl-alpha-glutamate transport has been studied in Lactococcus lactis ML3 cells and in membrane vesicles fused with liposomes containing beefheart cytochrome c oxidase as a proton-motive-force-generating system. The uptake of Ala-Glu observed in de-energized cells can be stimulated 26-fold upon addition of lactose. No intracellular dipeptide pool could be detected in intact cells. In fused membranes, a 40-fold accumulation of Ala-Glu was observed in response to a proton motive force. Addition of ionophores and uncouplers resulted in a rapid efflux of the accumulated dipeptide, indicating that Ala-Glu accumulation is directly coupled to the proton motive force as a driving force. Ala-Glu uptake is an electrogenic process and the dipeptide is transported in symport with two protons. In both fused membranes and intact cells the same affinity constant (0.70 mM) for Ala-Glu uptake was found. Accumulated Ala-Glu is exchangeable with externally added alanyl-glutamate, glutamyl-glutamate, and leucyl-leucine, while no exchange occurred upon addition of the amino acid glutamate or alanine. These results indicate that the Ala-Glu transport system has a broad substrate specificity.  相似文献   

19.
J. Wang  R. Needleman 《Genetics》1996,142(1):51-63
Maltose fermenting strains of Saccharomyces cerevisiae have one or more complex loci called MAL. Each locus comprises at least three genes: MALx1 encodes maltose permease, MALx2 encodes maltase, and MALx3 encodes an activator of MALx1 and MALx2 (x denotes one of five MAL loci, with x = 1, 2, 3, 4, or 6). The MAL43(c) allele is constitutive and relatively insensitive to glucose repression. To understand better this unique phenotype of MAL43(c), we have isolated several MAL63(c) constitutive mutants from a MAL6 strain. All constitutive mutants remain glucose repressible, and all have multiple amino acid substitutions in the C-terminal region, now making this region of Mal63(c)p similar to that of Mal43(c)p. These changes have been generated by gene conversion, which transfers DNA from the telomeres of chromosome II and chromosome III or XVI to chromosome VIII (MAL6). The removal of a Mig1p binding site from the MAL63(c) promoter leads to a loss of glucose repression, imitating the phenotype of MAL43(c). Conversely, addition of a Mig1p binding site to the promoter of MAL43(c) converts it to glucose sensitivity. Mig1p modulation of Mal63p and Mal43p expression therefore plays a substantial role in glucose repression of the MAL genes.  相似文献   

20.
Calcium transport in membrane vesicles of Streptococcus cremoris   总被引:2,自引:0,他引:2  
Rightside-out membrane vesicles of Streptococcus cremoris were fused with proteoliposomes containing the light-driven proton pump bacteriorhodopsin by a low-pH fusion procedure reported earlier [Driessen, A.J.M., Hellingwerf, K.J. & Konings, W.N. (1985) Biochim. Biophys. Acta 808, 1-12]. In these fused membranes a proton motive force, interior positive and acid, can be generated in the light and this proton motive force can drive the uptake of Ca2+. Collapsing delta psi with a concomitant increase in delta pH stimulates Ca2+ uptake while dissipation of the delta pH results in a reduced rate of Ca2+ uptake. Also an artificially generated delta pH, interior acid, can drive Ca2+ uptake in S. cremoris membrane vesicles. Ca2+ uptake depends strongly on the presence of external phosphate while Ca2+-efflux-induced proton flux is independent of the presence of external phosphate. Ca2+ accumulation is abolished by the divalent cation ionophore A23187. Calcium extrusion from intact cells is accelerated by lactose. Collapse of the proton motive force by the uncoupler carbonylcyanide p-trifluoromethoxyphenylhydrazone or inhibition of the membrane-bound ATPase by N,N'-dicyclohexylcarbodiimide strongly inhibits Ca2+ release. Further studies on Ca2+ efflux at different external pH values in the presence of either valinomycin or nigericin suggested that Ca2+ exit from intact cells is an electrogenic process. It is concluded that Ca2+ efflux in S. cremoris is mediated by a secondary transport system catalyzing exchange of calcium ions and protons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号