首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Interleukin-1 is a potent stimulator of arachidonic acid (AA) metabolism and this activity could be attributed to the activation of the prostaglandin-forming enzyme cyclooxygenase or of the arachidonic-releasing enzyme phospholipase A2 or both. Prostaglandin E2 (PGE2), a cyclooxygenase product, and LTB4 (5-(S),12-(R)-dihydroxy-6,14-cis-8,10-trans-eicosatetraenoic acid), a lipoxygenase product, are potent mediators of inflammation. Recently a new cytokine produced by macrophages and named interleukin-1 receptor antagonist (IL-1ra) (MW 22,000 Da) which specifically binds and blocks IL-1 receptors, has proven to be a potent inflammatory inhibitor. In our studies we found that monocyte suspensions, pretreated with hrIL-1ra at increasing concentrations (0.25-250 ng/ml) for 10 min and then treated with LPS in an overnight incubation inhibits, in a dose-dependent manner, the generation of LTB4 as measured by the highly sensitive radioimmunoassay method. In monocytes pretreated with hrIL-1ra (250 ng/ml) for 10 min and treated with arachidonic acid (10(-5)-10(-9) M) and LPS overnight, the release of LTB4 was partially inhibited when compared to hrIL-1ra-untreated cells. Moreover, hrIL-1ra (250 ng/ml) caused a partial inhibition of monocyte LTB4 production when the cells were activated with AA (10(-7) M) and then treated with IL-1 beta (5 ng/ml) overnight or 24 hr incubation. In addition, human monocytes pretreated for 10 min with increasing doses of hrIL-1ra (0.25-250 ng/ml) and then treated with hrIL-1 alpha (5 ng/ml) or beta (5 ng/ml) for 18 hr, also resulted in the inhibition of PGE2 generation as measured by RIA when compared with hrIL-1ra-untreated cells. When the cells were treated with hrIL-1ra (250 ng/ml) and activated for 18 and 48 hr with increasing doses of hrIL-1 beta a strong inhibitory effect was found on PGE2 production. HrIL-1ra used at 15 ng/ml gave a partial inhibition of LTB4 generation, after LPS (1-100 ng/ml) treatment, while NDGA totally blocked the production of LTB4. Moreover, PGE2 released by macrophages activated with LPS (100 ng/ml) or hrIL-1 beta (5 ng/ml) at 18 hr incubation time was strongly inhibited when hrIL-1ra (250 ng/ml) was used. These data suggest that the inhibition of LTB4 and PGE2 by this new macrophage-derived monokine IL-1ra occurs through the block of the IL-1 receptor, rather than phospholipase A2, and thus IL-1ra may offer a potential therapeutic approach to inflammatory states.  相似文献   

2.
The effects of prostaglandin E2 (PGE2) were examined in a murine macrophage cell line (BAC1.2F5) that was completely dependent on colony-stimulating factor-1 (CSF-1) for both growth and survival. The addition of PGE2 to cultures of BAC1.2F5 cells resulted in the inhibition of CSF-1-induced [3H]thymidine incorporation and cell proliferation. The inhibitory effects of PGE2 were mimicked by the addition of dibutyryl-cyclic AMP, and the effectiveness of PGE2 was markedly potentiated by 1-methyl-3-isobutylxanthine, a potent inhibitor of cyclic nucleotide phosphodiesterase activity. PGE2 caused a 10-fold elevation of the intracellular cyclic AMP concentration, whereas CSF-1 neither increased cyclic AMP levels nor attenuated the rise in cyclic AMP promoted by PGE2. However, CSF-1 may indirectly regulate cyclic AMP levels since in the absence of CSF-1, BAC1.2F5 cells actively synthesized PGE2, whereas PGE2 production was abruptly terminated by the addition of CSF-1. In BAC1.2F5 cells, PGE2 increases the intracellular cyclic AMP concentration, thereby blocking cell proliferation, but does not down-regulate the CSF-1 receptor or abrogate the functions of CSF-1 necessary for cell survival.  相似文献   

3.
Interleukin-1beta (IL-1beta) and prostaglandin E(2) (PGE(2)), frequently co-participants in inflammatory states, are two well recognized inhibitors of glucose-induced insulin secretion. Previous reports have concluded that the inhibitory effects of these two autacoids on pancreatic beta cell function are not related because indomethacin, a potent prostaglandin synthesis inhibitor, does not prevent IL-1beta effects. However, indomethacin is not a specific cyclooxygenase inhibitor, and its other pharmacologic effects are likely to inhibit insulin secretion independently. Since we recently observed that IL-1beta induces cyclooxygenase-2 (COX-2) gene expression and PGE(2) synthesis in islet beta cells, we have reassessed the possibility that PGE(2) mediates IL-1beta effects on beta function. By using two cell lines (HIT-T15 and betaHC13) as well as Wistar rat isolated pancreatic islets, we examined the ability of two COX-2-specific antagonists, NS-398 and SC-236, to prevent IL-1beta inhibition of insulin secretion. Both drugs prevented IL-1beta from inducing PGE(2) synthesis and inhibiting insulin secretion; adding back exogenous PGE(2) re-established inhibition of insulin secretion in the presence of IL-1beta. We also found that EP3, the PGE(2) receptor subtype whose post-receptor effect is to decrease adenylyl cyclase activity and, thereby, insulin secretion, is the dominant mRNA subtype expressed. We conclude that endogenous PGE(2) mediates the inhibitory effects of exogenous IL-1beta on beta cell function.  相似文献   

4.
C3b or lipopolysaccharide treatment of human peripheral blood monocytes in culture stimulates an early release of thromboxane B2 and a delayed release of prostaglandin E into culture supernatants. Immunoreactive thromboxane B2 release is maximal from 2–8 h, whereas prostaglandin E release is maximal from 16–24 h after stimulation of monocytes in culture. We further examined this process by comparing the time course of labelled prostaglandin E2, prostaglandin E1 and thromboxane B2 release from human monocytes which were pulse or continuously labelled with [3H]arachidonic acid and [14C]eicosatrienoic acid. The release of labelled eicosanoids was compared with the release of immunoreactive prostaglandin E and thromboxane B2. The time course of prostaglandin E2 release was virtually identical to the release of prostaglandin E1 in all culture supernatants regardless of labelling conditions. However, release of immunoreactive prostaglandin E paralleled the release of labelled prostaglandin E1 and E2 only for continuously labelled cultures. The release of labelled prostaglandin E1 and E2 from pulse labelled cultures paralleled the release of thromboxane B2 and not immunoreactive prostaglandin. In contrast, labelled and immunoreactive thromboxane B2, quantitated in the same culture supernatants, demonstrated similar release patterns regardless of labelling conditions. These findings indicate that the differential pattern of prostaglandin E and thromboxane B2 release from human monocytes is not related to a time-dependent shift in the release of prostaglandin E1 relative to prostaglandin E2. Because thromboxane B2 and prostaglandin E2 are produced through cyclooxygenase mediated conversion of arachidonic acid, these results further suggest that prostaglandin E2 and thromboxane B2 are independently metabolized in human monocyte populations.  相似文献   

5.
Prostaglandin E(2) (PGE(2)) is a bioactive prostanoid implicated in the inflammatory processes of acute lung injury/acute respiratory distress syndrome. This study investigated whether PGE(2) can induce production of interleukin (IL)-8, the major chemokine for neutrophil activation, from human pulmonary microvascular endothelial cells (HPMVECs). PGE(2) significantly enhanced IL-8 protein production with increases in IL-8 mRNA expression and intracellular cAMP levels. HPMVECs expressed only EP4 receptor mRNA. The PGE(2) effects were mimicked by a selective EP4 receptor agonist, ONO-AE1-329, and inhibited by a selective EP4 receptor antagonist, ONO-AE3-208, or a protein kinase A inhibitor, Rp-adenosine 3',5'-cyclic monophosphorothioate triethylamine salt. The specific agonist for EP1, EP2, or EP3 receptor did not induce IL-8 production. PGE(2)-induced IL-8 production was accompanied by p38 phosphorylation and was significantly inhibited by a p38 inhibitor, SB-203580, but not by an ERK1/2 inhibitor, U-0126, or a JNK inhibitor, SP-600125. Additionally, PGE(2) increased cyclooxygenase-2 expression with no change in constitutive cyclooxygenase-1 expression, suggesting possible involvement of an autocrine or paracrine manner. In conclusion, PGE(2) enhances IL-8 production via EP4 receptor coupled to G(s) protein in HPMVECs. Activation of the cAMP/protein kinase A pathway, followed by p38 activation, is essential for these mechanisms. Because neutrophils play a critical role in the inflammation of acute lung injury/acute respiratory distress syndrome, IL-8 released from the pulmonary microvasculature in response to PGE(2) may contribute to pathophysiology of this disease.  相似文献   

6.
Molecular dynamics simulations of leukotriene C4 (LTC4), leukotriene D4 (LTD4), and leukotriene E4 (LTE4) were carried out, and the data were visualized in an animated video format. Three-dimensional ghost images show the positions of the heavy atoms of all three molecules throughout the simulations. The ghost images can be superimposed to give a single three-dimensional image in which the shapes of the most populated conformers of each molecule are apparent and can be compared. Leukotriene D4 was found to occupy mostly T-shaped conformations, while LTC4 occupied mostly cup-shaped conformations, and LTE4 occupied a wide range of conformations spanning the LTD4 and LTC4 types. Digital filtering and graphing of the internal geometries of the molecules as a function of time revealed differences in dynamic behavior. The results are discussed in light of current knowledge about leukotriene receptors.  相似文献   

7.
To minimize complicating interactions inherent in heterogeneous cell populations, we used a panel of cloned murine autoreactive (E8.A1) and antigen-specific (HEL.C10, HEL.B14) T cell hybridomas to examine the effect of prostaglandin E2 (PGE2) on T cell activation. These T cells secrete interleukin 2 (IL 2) when co-cultured with a cloned population of I region-matched stimulator cells (TA3), or with mitogenic signals in the absence of TA3 stimulator cells. Physiologic concentrations of PGE2 inhibited the induction of IL 2 secretion by the T cell hybridomas tested, when they were activated either by TA3 cells or by mitogenic signals. IL 2 production was inhibited in a dose-dependent manner by concentrations of PGE2 between 10(-7) and 10(-11) M, with 50% inhibition occurring at 10(-10) M. Pretreatment of the T hybridoma cells with 10(-7) M PGE2 for 1 hr before culture also resulted in marked inhibition of IL 2 secretion. Similar pretreatment of the TA3 cells did not affect their ability to activate the T cell hybridomas. PGE2 at 10(-8) M induced a 30-fold increase in cAMP levels within 25 min of addition to culture of the E8.A1 T cell hybridoma, but caused no significant elevation of cAMP levels in TA3 cells. The direct addition of dibutyryl cAMP (dcAMP) to cultures of E8.A1 cells resulted in marked inhibition of IL 2 secretion when stimulated by TA3 or by mitogenic signals, with an average of 80% inhibition occurring at 10(-4) M dcAMP. PGE2 and dcAMP also inhibited the growth of E8.A1 cells. Initially, cell growth was virtually halted, but began to recover between 24 and 48 hr after the addition of either PGE2 or dcAMP. Neither PGE2 nor dcAMP inhibited the division of TA3 cells. High affinity binding sites for PGE2 were detected in the E8.A1 T cell hybridomas with an apparent Kd of 7.6 X 10(-10) M, which is consistent with the functional data. No specific binding was detected in the TA3 stimulator cells. These findings suggest that the immunosuppressive effects of PGE2 are localized to the T cell, are receptor regulated, and may be mediated by the associated increase of cAMP levels in the T cell hybridomas.  相似文献   

8.
Incubation of human endothelial cells with leukotriene A4 resulted in the formation of leukotrienes B4, C4, D4 and E4. Endothelial cells did not produce leukotrienes after stimulation with the ionophore A23187 and/or exogenously added arachidonic acid. However, incubation of polymorphonuclear leukocytes with ionophore A23187 together with endothelial cells led to an increased synthesis of cysteinyl-containing leukotrienes (364%, mean, n = 11) and leukotriene B4 (52%) as compared to leukocytes alone. Thus, the major part of leukotriene C4 recovered in mixed cultures was attributable to the presence of endothelial cells. Similar incubations of leukocytes with fibroblasts or smooth muscle cells did not cause an increased formation of leukotriene C4 or leukotriene B4. The increased biosynthesis of cysteinyl-containing leukotrienes and leukotriene B4 in coincubation of leukocytes and endothelial cells appeared to be caused by two independent mechanisms. First, cell interactions resulted in an increased production of the total amount of leukotrienes, suggesting a stimulation of the leukocyte 5-lipoxygenase pathway, induced by a factor contributed by endothelial cells. Secondly, when endothelial cells prelabeled with [35S]cysteine were incubated with either polymorphonuclear leukocytes and A23187, or synthetic leukotriene A4, the specific activity of the isolated cysteinyl-containing leukotrienes were similar. Thus, transfer of leukotriene A4 from stimulated leukocytes to endothelial cells appeared to be an important mechanism causing an increased formation of cysteinyl-containing leukotrienes in mixed cultures of leukocytes and endothelial cells. In conclusion, the present study indicates that the vascular endothelium, when interacting with activated leukocytes, modulates both the quantity and profile of liberated leukotrienes.  相似文献   

9.
The Aurora kinases play a critical role in mitosis and have been suggested as promising targets for cancer therapy due to their frequent overexpression in a variety of tumors. Compared with established inhibitors of cell division such as the anti-tubulins, novel agents target mitotic enzymes and show similar efficacy but with fewer side effects. Several small-molecule inhibitors of Aurora kinases have been developed as anticancer agents, some of which have progressed to early clinical evaluation. Here we identified 3-hydroxyflavone as a novel Aurora B inhibitor through high throughput screening. 3-Hydroxyflavone showed potent inhibition to Aurora B with the IC50 on a nanomolar basis in the enzyme-based kinase activity assay. In the cell-based western blotting analysis, 3-hydroxyflavone dramatically decreased the phosphorylation level of Histone H3 on the site of serine 10, demonstrating the potent endogenous Aurora B activity inhibition in cell level. The followed cell image analysis provided the consist result. To make it clear whether 3-hydroxyflavone inhibited Aurora B by direct binding or not, SPR analysis was carried out to measure the affinity of interaction between Aurora B protein and 3-hydroxyflavone and the result proved the binding with high affinity. Usually Aurora activity suppression induced cancer cell proliferation inhibition. Colony formation and cell viability with/without treatment of 3-hydroxyflavone were measured using CCK-8. The growth suppression under 3-hydroxyflavone present and the growth recovery after being released gave strong evidence that presence of 3-hydroxyflavone efficiently inhibited the fast growth of cancer cells.  相似文献   

10.
When chopped porcine pulmonary arteries were incubated with calcium ionophore A23187 (1) in the presence of indomethacin there was a time dependent generation of a substance which produced contractions of superfused strips of guinea-pig ileum smooth muscle (GPISM) which were indistinguishable from those induced by LTD4. This material however had a different retention time from LTD4 when subjected to HPLC and co-chromatographed with synthetic LTE4. In addition to LTE4 a substance which had properties indistinguishable from those of LTB4 when assayed on a combination of guinea-pig lung parenchymal strips (GPP) and GPISM (2) was generated from the pulmonary artery. This substance co-chromatographed with synthetic LTB4. The adventitia and intima were the richest source of LTE4, the adventitia releasing slightly more than the intima. The output of LTB4 and LTE4 was inhibited by 6,9-deepoxy-6,9-(phenylimino)-delta 6,8 prostaglandin I (U-60,257). Nordihydroguaiaretic acid (NDGA) inhibited the generation of LTE4.  相似文献   

11.
Prostaglandin E2 (PGE2) and leukotriene C4 (LTC4) are the metabolites of arachidonic acid (AA) that increase in forebrain following global ischemia and reperfusion. These mediators are highly potent vasoconstrictors of cerebral arteries leading to enhanced vascular permeability that induces the formation of vasogenic edema. In this study, after developing an experimental animal model simulating the concept of ischemic penumbra in the rat, the levels of PGE2 and LTC4 produced in the forebrain were measured and the effects of these mediators in short duration and prolonged reperfusion were investigated and then correlated with neuropathological findings. We found statistically significant reduction both in PGE2 and LTC4-like activities after just 10 min ischemia (p less than 0.05, p less than 0.05). PGE2-like activity significantly increased in the 4th and 60th min of reperfusion (p less than 0.05, p less than 0.05). In the 15th min of reperfusion, PGE2 was found to be significantly reduced (p less than 0.005) that may be due to the formation of free oxygen radicals by activation of PG hydroperoxidase reaction that inhibits PGE2 production in the cyclooxygenase pathway. LTs were not significantly increased in any reperfused group. Inhibition of the lipoxygenase pathway of AA metabolism may occur as a result of 15-HPETE (15-hydroperoxyeicosatetraenoic acid) production. Pathologically, edema and degeneration of brain tissue were seen beginning from the 4th min of reperfusion that reached a peak in the 60th min of reperfusion which is in accordance with biochemical changes in the damaged tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Prostaglandins have been implicated in the process of uterine decidualization in vitro, but sites of action are uncertain. Since one of the earliest changes in endometrial stroma following induction of decidualization is an increase in alkaline phosphatase activity, we have investigated the effects of PGs on stromal cell alkaline phosphatase activity in vitro. Immature rats were pretreated with hormones to sensitize their uteri for the decidual cell reaction. Endometrial stromal cells were isolated and cultured for up to 4 days with PGE2 (0-10 micrograms/ml) or PGF2 (0-10 micrograms/ml). Analysis of variance revealed a highly significant interaction between day of culture and concentration of PGE2 in medium (P less than 0.01). Stromal cell alkaline phosphatase activity decreased significantly with increasing culture duration (P less than 0.01). In the presence of PGE2, alkaline phosphatase activity was significantly higher (P less than 0.01) regardless of day of culture. In contrast, PGF2 alpha had only a small and inconsistent effect. These data indicate that PGs, and in particular PGE2, can act directly upon stromal cells.  相似文献   

13.
Specific high-affinity binding sites for [3H]-leukotriene B4 have been identified on membrane preparations from rat and human leukocytes. The rat and human leukocyte membrane preparations show linearity of binding with increasing protein concentration, saturable binding and rapid dissociation of binding by excess unlabelled leukotriene B4. Dissociation constants of 0.5 to 2.5 nM and maximum binding of 5000 fmoles/mg protein were obtained for [3H] leukotriene B4 binding to these preparations. Displacement of [3H]-leukotriene B4 by leukotriene B4 was compared with displacement by leukotriene B3 and leukotriene B5 which differ from leukotriene B4 only by the absence of a double bond at carbon 14 or the presence of an additional double bond at carbon 17, respectively. Leukotriene B3 was shown to be equipotent to leukotriene B4 in ability to displace [3H]-leukotriene B4 from both rat and human leukocyte membranes while leukotriene B5 was 20-50 fold less potent. The relative potencies for the displacement of [3H]-leukotriene B4 by leukotrienes B3, B4 and B5 on rat and human leukocyte membranes were shown to correlate well with their potencies for the induction of the aggregation of rat leukocytes and the chemokinesis of human leukocytes.  相似文献   

14.
The myelomonocytic cell line WEHI-3 produces constitutively a factor that affects the growth and differentiation of murine B cells in culture. This cell line also secretes colony-stimulating factors (CSF), interleukin 1 (IL 1) but not interleukin 2. Sequential purification through AcA54 gel filtration, DEAE-Sephacel ion exchange chromatography, and buffer electrofocussing clearly resolved the B cell growth and differentiation factor (BGDF) from the CSF activities but failed to separate BGDF from IL 1. The WEHI-3-derived material responsible for BGDF/IL 1 activity, however, exhibited different behavior on DEAE chromatography (elution at 175 mM NaCl) to that reported for IL 1 from the P388D1 cell line (elution at 50 mM NaCl). B cell growth and differentiation could be induced by WEHI-3 BGDF/IL 1 in cultures of normal spleen cells depleted of T cells and adherent cells but not in cultures of spleen cells from B cell-deficient CBA/N mice, even though thymocytes from such mice displayed a normal response to IL 1. Significant B cell proliferation induced by BGDF/IL 1 was apparent only in the presence of submitogenic concentrations of anti-mouse IgM antibodies, but under these conditions few antibody-forming cells (AFC) were generated. In contrast, B cell differentiation to AFC occurred in the presence of the factor alone, and this response was inhibited by anti-IgM. Thus there appeared to be a reciprocal relationship between B cell proliferation and differentiation induced by BGDF/IL 1. The significance of these results is discussed in the light of other recent studies of BGDF.  相似文献   

15.
OBJECTIVE: The susceptibility of two cell lines, WEHI-3B myelomonocytic leukaemia and its variant Ciprofloxacin-resistant WEHI-3B/CPX to undergo apoptosis induced by Ciprofloxacin was studied and compared. MATERIALS AND METHODS: Apoptosis was checked by measuring the DNA fragmentation and determining the ratio of apoptotic/necrotic cells. The relationship between the induction of apoptosis and G(1), S or G(2) block in the cell cycle has also been investigated and cytogenetical evaluation of chromosomal aberrations in both cell lines has been carried out. The regulation of expression of Bax and Bcl-2 was also checked by western blotting after Ciprofloxacin treatment. RESULTS: We observed that the resistance of the subline was caused by a small percentage of cells that underwent apoptosis during continuous exposure to Ciprofloxacin in comparison with the parental cell line, whereas the percentage of necrotic cells remained unchanged. The WEHI-3B cells showed a G(2) block and a higher degree of cytogenetic damage after drug exposure. The two cell lines expressed the same level of Bax and Bcl-2 following stimulation by Ciprofloxacin. Only in the resistant subclone, the ratio Bcl-2/Bax reversed in the anti-apoptotic gene expression. CONCLUSION: The resistance to ciprofloxacin observed is not related to mitochondrial function and although Bcl-2/Bax ratio behaviour does not fully explain the resistance of the WEHI3B/CPX subclone it is consistent with phenotypic character of resistance to CPX. The toxic effect on sensitive cells could be mediated by the cell cycle arrest whereas in the resistant clone, the prolonged G(2) phase could play a key role to favour cell cycle progression and proliferation.  相似文献   

16.
Monocytes have previously been shown both to augment and suppress human natural killer (NK) cell activity depending upon the conditions. An interleukin-1/interleukin-2 (IL-1/IL-2)-dependent mechanism has been shown to be involved in the augmentative effect. In the current study, the role of the method of monocyte isolation was evaluated. Monocytes isolated by Percoll gradient centrifugation were ineffective for modulating NK activity, but monocytes isolated by adherence from most donors exhibited increased augmentation with increased interval of adherence (up to 1 h). However, monocytes isolated by adherence from certain donors reproducibly exhibited increased suppression with increased interval of adherence. The observation of augmentation was correlated with an increase in the balance between IL-1 production and prostaglandin E (PGE) production by the monocytes. The roles of PGE2 and IL-1 were therefore examined by mixing these cytokines with enriched null lymphocyte preparations in the absence or presence of monocytes in the NK assay system. The participation of PGE2 was further examined using monocytes treated with indomethacin (10(-6) M), and the participation of monocyte-membrane-bound IL-1 was evaluated using monocytes fixed with 1% paraformaldehyde. The results revealed that PGE2 production is involved in the suppression of human NK activity by human monocytes, and the functional balance between IL-1 and PGE2 determines whether suppression or augmentation is observed. The data of this and previous studies are consistent with the suggestion that membrane-associated IL-1 is the important IL-1 moiety for the augmentation of human NK activity by monocytes.  相似文献   

17.
Despite advances in the treatment of ALL, in most patients long-term survival rates remain unsatisfactory. The objective of the present study was to investigate the anti-cancer effects of Prostaglandin E2 (PGE2) in two different ALL cell lines (CCRF-CEM (T-ALL) and Nalm-6 (B-ALL)). The anti-leukemic effects of PGE2 were also compared with two epigenetic compounds (trichostatin A and 5-aza-2'-deoxycytidine). MTT assay was used to assess growth inhibition by anti-cancer drugs in these cells. All three compounds were shown to induce apoptosis in both ALL cell lines using flow cytometry and Western blotting. To evaluate the differentiation induction by these agents, the expressions of CD19 and CD38 markers on Nalm-6 cell line and CD7 marker on CCRF-CEM cell line were assayed. Surprisingly, the flow cytometric analysis showed a significant increase in CD markers expression in response to PGE2 treatments. We, for the first time, provide evidences that PGE2 has anti-leukemic effects and induces differentiation at micromolar ranges in both T- and B-cell derived ALL cell lines. Since T-ALL cells are insensitive to current chemotherapies, these findings may help the designing of new protocols for T-ALL differentiation therapy in the future.  相似文献   

18.
Mucosal mast cells (MMC) were isolated from the intestine of Nippostrongylus brasiliensis-infected rats and then activated with Ag or with anti-IgE in order to assess their metabolism of arachidonic acid to leukotriene (LT) C4, LTB4, and prostaglandin D2 (PGD2). After challenge of MMC preparations of 19 +/- 1% purity with five worm equivalents of N. brasiliensis Ag, the net formation of immunoreactive equivalents of LTC4, LTB4, and PGD2 was 58 +/- 8.3, 22 +/- 4.5, and 22 +/- 3.4 ng/10(6) mast cells, respectively (mean +/- SE, n = 7). When MMC preparations of 56 +/- 9% purity were activated by Ag, the net generation of immunoreactive equivalents of LTC4, LTB4, and PGD2/10(6) MMC was 107 +/- 15, 17 +/- 5.4, and 35 +/- 18 ng, respectively. These data indicate that the three eicosanoids originated from the MMC rather than from a contaminating cell. Analysis by reverse phase HPLC of the C-6 sulfidopeptide leukotrienes present in the supernatants of the activated MMC preparations of lower purity revealed LTC4, LTD4, and LTE4. In a higher purity MMC preparation only LTC4 was present, suggesting that other cell types in the mucosa are able to metabolize LTC4 to LTD4 and LTE4. The release of histamine and the generation of eicosanoids from intestinal MMC and from peritoneal cavity-derived connective tissue-type mast cells (CTMC) isolated from the same N. brasiliensis-infected rats were compared. When challenged with anti-IgE, these MMC released 165 +/- 41 ng of histamine/10(6) mast cells, and generated 29 +/- 3.6, 12 +/- 4.2, and 4.7 +/- 1.0 ng (mean +/- SE, n = 3) of immunoreactive equivalents of LTC4, LTB4, and PGD2/10(6) mast cells, respectively. In contrast, CTMC isolated from the same animals and activated with the same dose of anti-IgE released approximately 35 times more histamine (5700 +/- 650 ng/10(6) CTMC), generated 7.5 +/- 2.3 ng of PGD2/10(6) mast cells, and failed to release LTC4 or LTB4. These studies establish, that upon immunologic activation, rat MMC and CTMC differ in their quantitative release of histamine and in their metabolism of arachidonic acid to LTC4 and LTB4.  相似文献   

19.
Xu  Hongli  Liang  Shengnan  Hu  Junjie  Liu  Wentong  Dong  Zhiqiang  Wei  Shaozhong 《Molecular biology reports》2022,49(3):1661-1668
Molecular Biology Reports - The mortality rate of colorectal cancer (CRC) remains high in developing countries. Interventions that can inhibit the proliferation of tumor cells represent promising...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号