首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X Xu  M Colombini 《Biophysical journal》1997,72(5):2129-2136
VDAC, a mitochondrial outer membrane channel, has the ability to catalyze and direct the insertion of other VDAC channels into planar phospholipid membranes. The spontaneous rate of insertion of detergent-solubilized VDAC channels into phospholipid membranes is estimated to be 1.5 x 10(-5) channels min-1 micron-2. VDAC channels already in the membrane can increase this rate by a factor of 10(9). The presence of 5 M urea on the opposite side of the membrane increases this 10-fold to 4.5 x 10(5) channels min-1 microns-2. Similar but weaker effects are observed with Triton X100 addition (10(-3)% (v/v)). These agents are not acting on uninserted channels because they do not affect the delay from sample addition to first insertion. Under the chosen conditions, this delay is long (240 s) without preinserted channels. However, the presence of a few VDAC channels in the membrane reduces this delay to 14 s, close to the diffusion limit. Therefore, urea and Triton, added to the side of the membrane opposite that to which the VDAC sample was added, likely increase the flexibility of the VDAC channels in the membrane, allowing them to be more efficient catalysts for VDAC insertion. There are obvious implications for membrane protein insertion and targeting.  相似文献   

2.
The mitochondrial channel, VDAC, forms large (3 nm in diameter) aqueous pores through membranes. We measured ATP flow (using the luciferin/luciferase method) through these channels after reconstitution into planar phospholipid membranes. In the open state of VDAC, as many as 2 x 10(6) ATP molecules can flow through one channel per second. The half-maximum rate occurs at approximately 75 mM ATP. The permeability of a single channel for ATP is 1.1 x 10(-14) cm3/s (about 1 cm/s after correcting for cross-sectional area), which is 100 times less than the permeability for chloride and 10 times less than that for succinate. Channel closure results in a 50% reduction in conductance, showing that monovalent ions are still quite permeable, yet ATP flux is almost totally blocked. This is consistent with an electrostatic barrier that results in inversion of the selectivity of the channel and could be an example of how large channels selectively control the flow of charged metabolites. Thus VDAC is ideally suited to controlling the flow of ATP between the cytosol and the mitochondrial spaces.  相似文献   

3.
The channel-forming protein called VDAC forms the major pathway in the mitochondrial outer membrane and controls metabolite flux across that membrane. The different VDAC isoforms of a species may play different roles in the regulation of mitochondrial functions. The mouse has three VDAC isoforms (VDAC1, VDAC2 and VDAC3). These proteins and different versions of VDAC3 were expressed in yeast cells (S. cerevisiae) missing the major yeast VDAC gene and studied using different approaches. When reconstituted into liposomes, each isoform induced a permeability in the liposomes with a similar molecular weight cutoff (between 3,400 and 6,800 daltons based on permeability to polyethylene glycol). In contrast, electrophysiological studies on purified proteins showed very different channel properties. VDAC1 is the prototypic version whose properties are highly conserved among other species. VDAC2 also has normal gating activity but may exist in 2 forms, one with a lower conductance and selectivity. VDAC3 can also form channels in planar phospholipid membranes. It does not insert readily into membranes and generally does not gate well even at high membrane potentials (up to 80 mV). Isolated mitochondria exhibit large differences in their outer membrane permeability to NADH depending on which of the mouse VDAC proteins was expressed. These differences in permeability could not simply be attributed to different amounts of each protein present in the isolated mitochondria. The roles of these different VDAC proteins are discussed. Received: 19 June 1998/Revised: 1 April 1999  相似文献   

4.
The mitochondrial outer membrane contains a protein, called VDAC, that forms large aqueous pores. In Neurospora crassa outer membranes, VDAC forms two-dimensional crystalline arrays whose size and frequency can be greatly augmented by lipase treatment of these membranes (C. Mannella, Science 224, 165, 1984). Fourier filtration and surface reconstruction of freeze-dried/shadowed (45 degrees) arrays produced detailed images of two populations of crystals, whose lattices are mirror images of each other. Most likely, this technique has revealed both surfaces of the same two-dimensional crystal with lattice parameters: a = 12.3 +/- 0.1 nm, b = 11.2 +/- 0.1 nm, and theta = 109 +/- 1 degree. Three-dimensional reconstructions of the surface reliefs on both sides of the crystal show them to be very similar. The majority of the protein forming the channel appears to be at or below the level of the membrane. To address the issue of the number of 30-kDa polypeptides that form a VDAC channel, measurements of mass per unit area were carried out by analyzing scanning transmission electron micrographs of unstained, freeze-dried arrays. The crystal form used for mass analysis contained the same motif of six stain-accumulating centers per unit cell, with p2 symmetry as in the oblique configuration, but it had a different orientation relative to the lattice lines. These data yielded a surface density of 1.9 +/- 0.2 kDa/nm2, indicating that there is a one-to-one ratio between VDAC polypeptides and the channels visualized in filtered electron micrographs, and that VDAC membrane crystals contain 68% protein and 32% lipid by mass.  相似文献   

5.
Class 1 porins (PorA/C1) from Neisseria meningitidis achieve both high selectivity and high conductance. The channel is highly selective (24:1 Na+ over Cl-), suggesting a highly negatively charged selectivity filter. The trimeric nature of PorA/C1 accounts for part of the enormous conductance in 200 mM NaCl (0.97nS). However, the currents that can be achieved exceed the simple infinite-sink calculation for a pore 0.7 nm in radius (estimated from nonelectrolyte permeability). The conductance is linear with salt activity from 20 mM to 2.0 M NaCl with no sign of saturation at low salt. Impermeant polymers reduce the conductance in a manner consistent with their ability to reduce bulk conductivity. Extrapolating from the known structure of homologous porins, the selectivity filter is likely to be small and localized. If small and highly negatively charged ( approximately 9 charges), the predicted conductance would be an order of magnitude higher than that observed. The rate at which ions reach the selectivity filter seems to limit overall ionic flux. PorA/C1 rectifies strongly, and this rectification can be accounted for by calculated differences in the voltage and concentration profiles in the access regions. Thus, it appears that the conductance of this channel is determined by the access resistance and the selectivity by a highly-conductive filter.  相似文献   

6.
The fluorescent probe 9-aminoacridine was used to measure the rate of decay of experimentally established pH gradients across liposome membranes. From the rate of decay, separate permeability coefficients for protons (PH) and hydroxyls (POH) were calculated and summed to yield the net proton-hydroxyl permeability (Pnet). The net permeability of protons and hydroxyls was found to be approximately 10(-4) cm/s, six orders of magnitude greater than that measured for sodium and pyrophosphate ions under similar conditions. This suggests that protons and/or hydroxyls cross lipid bilayers by a different mechanism than do other monovalent cations and anions. In addition, the measurements provide a standard for net proton-hydroxyl permeability in pure phospholipid bilayers for comparison with biological membranes.  相似文献   

7.
Spontaneous membrane insertion and folding of beta-barrel membrane proteins from an unfolded state into lipid bilayers has been shown previously only for few outer membrane proteins of Gram-negative bacteria. Here we investigated membrane insertion and folding of a human membrane protein, the isoform 1 of the voltage-dependent anion-selective channel (hVDAC1) of mitochondrial outer membranes. Two classes of transmembrane proteins with either alpha-helical or beta-barrel membrane domains are known from the solved high-resolution structures. VDAC forms a transmembrane beta-barrel with an additional N-terminal alpha-helix. We demonstrate that similar to bacterial OmpA, urea-unfolded hVDAC1 spontaneously inserts and folds into lipid bilayers upon denaturant dilution in the absence of folding assistants or energy sources like ATP. Recordings of the voltage-dependence of the single channel conductance confirmed folding of hVDAC1 to its active form. hVDAC1 developed first beta-sheet secondary structure in aqueous solution, while the alpha-helical structure was formed in the presence of lipid or detergent. In stark contrast to bacterial beta-barrel membrane proteins, hVDAC1 formed different structures in detergent micelles and phospholipid bilayers, with higher content of beta-sheet and lower content of alpha-helix when inserted and folded into lipid bilayers. Experiments with mixtures of lipid and detergent indicated that the content of beta-sheet secondary structure in hVDAC1 decreased at increased detergent content. Unlike bacterial beta-barrel membrane proteins, hVDAC1 was not stable even in mild detergents such as LDAO or dodecylmaltoside. Spontaneous folding of outer membrane proteins into lipid bilayers indicates that in cells, the main purpose of membrane-inserted or associated assembly factors may be to select and target beta-barrel membrane proteins towards the outer membrane instead of actively assembling them under consumption of energy as described for the translocons of cytoplasmic membranes.  相似文献   

8.
Summary The outer mitochondrial membranes of all organisms so far examined contain a protein which forms voltage-dependent anion selective channels (VDAC) when incorporated into planar phospholipid membranes. Previous reports have suggested that the yeast (Saccharomyces cerevisiae) outer mitochondrial membrane component responsible for channel formation is a protein of 29,000 daltons which is also the major component of this membrane. In this report, we describe the purification of this 29,000-dalton protein to virtual homogeneity from yeast outer mitochondrial membranes. The purified protein readily incorporates into planar phospholipid membranes to produce ionic channels. Electrophysiological characterization of these channels has demonstrated they have a size, selectivity and voltage dependence similar to VDAC from other organisms. Biochemically, the purified protein has been characterized by determining its amino acid composition and isoelectric point (pI). In addition, we have shown that the purified protein, when reconstituted into liposomes, can bind hexokinase in a glucose-6-phosphate dependent manner, as has been shown for VDAC purified from other sources. Since physiological characterization suggests that the functional parameters of this protein have been conserved, antibodies specific to yeast VDAC have been used to assess antigenic conservation among mitochondrial proteins from a wide number of species. These experiments have shown that yeast VDAC antibodies will recognize single mitochondrial proteins fromDrosophila, Dictyostelium andNeurospora of the appropriate molecular weight to be VDAC from these organisms. No reaction was seen to any mitochondrial protein from rat liver, rainbow trout,Paramecium, or mung bean. In addition, yeast VDAC antibodies will recognize a 50-kDa mol wt protein present in tobacco chloroplasts. These results suggest that there is some antigenic as well as functional conservation among different VDACs.  相似文献   

9.
The preceding paper (Hammer, C.H., A. Nicholson, and M. M. Mayer, 1975, Proc. Natl. Acad. Sci., 72:5076) presented evidence on insertion of polypeptide chains from the C5b and C7 subunits of C5b, 6, 7 complex into the phospholipid bilayer of erythrocyte membranes. In the present study, EAC1-8 and EAC1-9 (sheep erythrocytes carrying rabbit antibody and complement proteins C1 through C8 or C9, respectively), prepared with either 125I-C8 or 125I-C9, were incubated with trypsin or chymotrypsin and the release of 125I was measured. Only 9 to 19% of the specifically bound radioactivity was released. In addition, elution experiments were performed with 0.02 M EDTA-1.0 M NaCl. This solution did not elute C9 from EAC1-9. By contrast cellbound C9 was recovered from erythrocyte membranes with sodium dodecyl sulfate (SDS). Thus, enzymatic stripping and elution experiments indicate that cellbound C9 behaves like an integral membrane protein, presumably due to insertion into the lipid bilayer. EAC1-9 membranes that had been subjected to extended digestion with trypsin or chymotrypsin were extracted with SDS to recover the enzyme-resistant part of the C9 molecule from the membrane. Even though this domain of C9 carried 90% of the radioiodine associated with native C9, its m.w. was found to be only 18,000 daltons by analysis on SDS-PAGE. This represents one-quarter of the native C9 molecule.  相似文献   

10.
Fusion of multilamellar phospholipid vesicles with planar phospholipid bilayer membranes was monitored by the rate of appearance in the planar membrane of an intrinsic membrane protein present in the vesicle membranes. An essential requirement for fusion is an osmotic gradient across the planar membrane, with the cis side (the side containing the vesicles) hyperosmotic to the opposite (trans) side; for substantial fusion rates, divalent cation must also be present on the cis side. Thus, the low fusion rates obtained with 100 mM excess glucose in the cis compartment are enhanced orders of magnitude by the addition of 5-10 mM CaCl2 to the cis compartment. Conversely, the rapid fusion rates induced by 40 mM CaCl2 in the cis compartment are completely suppressed when the osmotic gradient (created by the 40 mM CaCl2) is abolished by addition of an equivalent amount of either CaCl2, NaCl, urea, or glucose to the trans compartment. We propose that fusion occurs by the osmotic swelling of vesicles in contact with the planar membrane, with subsequent rupture of the vesicular and planar membranes in the region of contact. Divalent cations catalyze this process by increasing the frequency and duration of vesicle-planar membrane contact. We argue that essentially this same osmotic mechanism drives biological fusion processes, such as exocytosis. Our fusion procedure provides a general method for incorporating and reconstituting transport proteins into planar phospholipid bilayer membranes.  相似文献   

11.
Yeast VDAC channels (isolated from the mitochondrial outer membrane) form large aqueous pores whose walls are believed to consist of 1 a helix and 12 strands. Each channel has two voltage-gating processes: one closes the channels at positive potentials, the other at negative. When VDAC is reconstituted into phospholipid (soybean) membranes, the two gating processes have virtually the same steepness of voltage dependence and the same midpoint voltage. Substituting lysine for glutamate at either end of one putative strand (E145K or E152K) made the channels behave asymmetrically, increasing the voltage dependence of one gating process but not the other. The asymmetry was the same whether 1 or 100 channels were in the membrane, indicating oriented channel insertion. However, the direction of insertion varied from membrane to membrane, indicating that the insertion of the first channel was random and subsequent insertions were directed by the previously inserted channel (s). This raises the prospect of an auto-directed insertion with possible implications to protein targeting in cells. Each of the mutations affected a different gating process because the double mutant increased voltage dependence of both processes. Thus this strand may slide through the membrane in one direction or the other depending on the gating process. We propose that the model of folding for VDAC be altered to move this strand into the sensor region of the protein where it may act as a tether and guide/restrict the motion of the sensor.This work was supported by grants from the Office of Naval Research (N00014-90-J-1024) and the National Institutes of Health (GM 35759). Present address: Department of Physiology, 6811 Med. Sciences Bldg 2, University of Michigan, Ann Arbor, MI 48109 Present address: Department of Physiology, K.U. Leuven Medical School, Gasthuijsberg, 3000 Leuven, Belgium  相似文献   

12.
The folding pathway and rate coefficients of the folding of a knotted protein are calculated for a potential energy function with minimal energetic frustration. A kinetic transition network is constructed using the discrete path sampling approach, and the resulting potential energy surface is visualized by constructing disconnectivity graphs. Owing to topological constraints, the low-lying portion of the landscape consists of three distinct regions, corresponding to the native knotted state and to configurations where either the N or C terminus is not yet folded into the knot. The fastest folding pathways from denatured states exhibit early formation of the N terminus portion of the knot and a rate-determining step where the C terminus is incorporated. The low-lying minima with the N terminus knotted and the C terminus free therefore constitute an off-pathway intermediate for this model. The insertion of both the N and C termini into the knot occurs late in the folding process, creating large energy barriers that are the rate limiting steps in the folding process. When compared to other protein folding proteins of a similar length, this system folds over six orders of magnitude more slowly.  相似文献   

13.
Boya P  Roques B  Kroemer G 《The EMBO journal》2001,20(16):4325-4331
Mitochondrial membrane permeabilization (MMP) is a critical step of several apoptotic pathways. Some infectious intracellular pathogens can regulate (induce or inhibit) apoptosis of their host cells at the mitochondrial level, by targeting proteins to mitochondrial membranes that either induce or inhibit MMP. Pathogen-encoded mitochondrion-targeted proteins may or may not show amino acid sequence homology to Bcl-2-like proteins. Among the Bcl-2-unrelated, mitochondrion-targeted proteins, several interact with the voltage-dependent anion channel (VDAC) or with the adenine nucleotide translocator (ANT). While VDAC-targeted proteins show homology to VDAC/porin, ANT-targeted proteins possess relatively short cationic binding domains, which may facilitate insertion into the negatively charged inner mitochondrial membrane. It may be speculated that such proteins employ pre-existing host-intrinsic mechanisms of MMP control.  相似文献   

14.
The intrinsic fluorescence of the colicin A thermolytic fragment does not change after insertion into normal phospholipid vesicles and is thus an unsuitable probe for monitoring the membrane insertion process. In this paper, we report the results of studies on the quenching of this fluorescence by brominated dioleoylphosphatidylglycerol (Br-DOPG) vesicles. Bromine atoms located at the midpoint of the phospholipid acyl chain quench the tryptophan fluorescence, indicating contact between fluorophores of the protein and the bilayer's hydrophobic core. Addition of Br-DOPG vesicles to a protein solution quenches the tryptophan fluorescence in a time-dependent manner. This quenching can be fitted to a single-exponential function, and thus interpreted as a one-step process. This allows calculation of an apparent rate constant of protein insertion into the membrane. Parameters known to affect the insertion of the thermolytic fragment into phospholipid monolayers or vesicles (pH and negative charge density) also affect the rate constant in comparable ways. In addition to the information gained concerning membrane exposure in the steady state, this approach provides the first real-time method for measuring the insertion of colicin into membranes. It is highly quantitative and can be used on all versions of the protein, e.g., full size, proteolytic fragments, and mutants. Brominated lipids provide experimental conditions identical to normal lipids and allow for great flexibility in protein/lipid ratios and concentrations. The kinetic analysis shows clearly the existence of a two-step process involving a rapid adsorption of the protein to the lipid surface followed by a slow insertion.  相似文献   

15.
We present a detailed study of the translocation rate of two headgroup-labeled phospholipid derivatives, one with two acyl chains, NBD-DMPE, and the other with a single acyl chain, NBD-lysoMPE, in lipid bilayer membranes in the liquid-disordered state (POPC) and in the liquid-ordered states (POPC/cholesterol (Chol), molar ratio 1:1, and sphingomyelin (SpM)/Chol, molar ratio 6:4). The study was performed as a function of temperature and the thermodynamic parameters of the translocation process have been obtained. The most important findings are 1), the translocation of NBD-DMPE is significantly faster than the translocation of NBD-lysoMPE for all bilayer compositions and temperatures tested; and 2), for both phospholipid derivatives, the translocation in POPC bilayers is approximately 1 order of magnitude faster than in POPC/Chol (1:1) bilayers and approximately 2-3 orders of magnitude faster than in SpM/Chol (6:4) bilayers. The permeability of the lipid bilayers to dithionite has also been measured. In liquid disordered membranes, the permeability rate constant obtained is comparable to the translocation rate constant of NBD-DMPE. However, in liquid-ordered bilayers, the permeability of dithionite is significantly faster then the translocation of NBD-DMPE. The change in enthalpy and entropy associated with the formation of the activated state in the translocation and permeation processes has also been obtained.  相似文献   

16.
Evidence is accumulating that lipids play important roles in permeabilization of the mitochondria outer membrane (MOM) at the early stage of apoptosis. Lamellar phosphatidylcholine (PC) and nonlamellar phosphatidylethanolamine (PE) lipids are the major membrane components of the MOM. Cardiolipin (CL), the characteristic lipid from the mitochondrial inner membrane, is another nonlamellar lipid recently shown to play a role in MOM permeabilization. We investigate the effect of these three key lipids on the gating properties of the voltage-dependent anion channel (VDAC), the major channel in MOM. We find that PE induces voltage asymmetry in VDAC current-voltage characteristics by promoting channel closure at cis negative applied potentials. Significant asymmetry is also induced by CL. The observed differences in VDAC behavior in PC and PE membranes cannot be explained by differences in the insertion orientation of VDAC in these membranes. Rather, it is clear that the two nonlamellar lipids affect VDAC gating. Using gramicidin A channels as a tool to probe bilayer mechanics, we show that VDAC channels are much more sensitive to the presence of CL than could be expected from the experiments with gramicidin channels. We suggest that this is due to the preferential insertion of VDAC into CL-rich domains. We propose that the specific lipid composition of the mitochondria outer membrane and/or of contact sites might influence MOM permeability by regulating VDAC gating.  相似文献   

17.
The quenching of fluorescence of n-(9-anthroyloxy)stearic acids and other probes by different ubiquinone homologues and analogues has been exploited to assess the localization and lateral mobility of the quinones in lipid bilayers of model and mitochondrial membranes. The true bimolecular collisional quenching constants in the lipids together with the lipid/water partition coefficients were obtained from Stern-Volmer plots at different membrane concentrations. A monomeric localization of the quinone in the phospholipid bilayer is suggested for the short side-chain ubiquinone homologues and for the longer derivatives when cosonicated with the phospholipids. The diffusion coefficients of the ubiquinones, calculated from the quenching constants either in three dimensions or in two dimensions, are in the range of (1-6) X 10(-6) cm2 s-1, both in phospholipid vesicles and in mitochondrial membranes. A careful analysis of different possible locations of ubiquinones in the phospholipid bilayer, accounting for the calculated diffusion coefficients and the viscosities derived therefrom, strongly suggests that the ubiquinone 10 molecule is located within the lipid bilayer with the quinone ring preferentially adjacent to the polar head groups of the phospholipids and the hydrophobic tail largely accommodated in the bilayer midplane. The steady-state rates of either ubiquinol 1-cytochrome c reductase or NADH:ubiquinone 1 reductase are proportional to the concentration of the quinol or quinone substrate in the membrane. The second-order rate constants appear to be at least 3 orders of magnitude lower than the second-order constants for quenching of the fluorescent probes; this is taken as a clear indication that ubiquinone diffusion is not the rate-determining step in the quinone-enzyme interaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The voltage-dependent anion channel (VDAC) is the most abundant protein of the mitochondrial outer membrane (MOM) where it regulates transport of ions and metabolites in and out of the organelle. VDAC function is extensively studied in a lipid bilayer system that allows conductance monitoring of reconstituted channels under applied voltage. The process of switching from a high-conductance state, open to metabolites, to a variety of low-conducting states, which excludes metabolite transport, is termed voltage gating and the mechanism remains poorly understood. Recent studies have implicated the involvement of the membrane-solvated residue E73 in the gating process through β-barrel destabilization. However, there has been no direct experimental evidence of E73 involvement in VDAC1 voltage gating. Here, using electrophysiology measurements, we exclude the involvement of E73 in murine VDAC1 (mVDAC1) voltage gating process. With an established protocol of assessing voltage gating of VDACs reconstituted into planar lipid membranes, we definitively show that mVDAC1 gating properties do not change when E73 is replaced by either a glutamine or an alanine. We further demonstrate that cholesterol has no effect on mVDAC1 gating characteristics, though it was shown that E73 is coordinating residue in the cholesterol binding site. In contrast, we found a pronounced gating effect based on the charge of the phospholipid headgroup, where the positive charge stimulates and negative charge suppresses gating. These findings call for critical evaluation of the existing models of VDAC gating and contribute to our understanding of VDAC's role in control of MOM permeability and regulation of mitochondrial respiration and metabolism.  相似文献   

19.
Elucidating molecular mechanisms by which lipids regulate protein function within biological membranes is critical for understanding the many cellular processes. Recently, we have found that dimeric αβ-tubulin, a subunit of microtubules, regulates mitochondrial respiration by blocking the voltage-dependent anion channel (VDAC) of mitochondrial outer membrane. Here, we show that the mechanism of VDAC blockage by tubulin involves tubulin interaction with the membrane as a critical step. The on-rate of the blockage varies up to 100-fold depending on the particular lipid composition used for bilayer formation in reconstitution experiments and increases with the increasing content of dioleoylphosphatidylethanolamine (DOPE) in dioleoylphosphatidylcholine (DOPC) bilayers. At physiologically low salt concentrations, the on-rate is decreased by the charged lipid. The off-rate of VDAC blockage by tubulin does not depend on the lipid composition. Using confocal fluorescence microscopy, we compared tubulin binding to the membranes of giant unilamellar vesicles (GUVs) made from DOPC and DOPC/DOPE mixtures. We found that detectable binding of the fluorescently labeled dimeric tubulin to GUV membranes requires the presence of DOPE. We propose that prior to the characteristic blockage of VDAC, tubulin first binds to the membrane in a lipid-dependent manner. We thus reveal a new potent regulatory role of the mitochondrial lipids in control of the mitochondrial outer membrane permeability and hence mitochondrial respiration through tuning VDAC sensitivity to blockage by tubulin. More generally, our findings give an example of the lipid-controlled protein-protein interaction where the choice of lipid species is able to change the equilibrium binding constant by orders of magnitude.  相似文献   

20.
Previous research suggests that the lifetime carbon gain of a leaf is constrained by a tradeoff between metabolism and longevity. The biophysical reasons underlying this tradeoff are not fully understood. We used a photosynthesis-leaf water balance model to evaluate biophysical constraints on carbon gain. Leaf hydraulic conductance (K(Leaf)), carbon isotope discrimination (Δ(13)C), leaf mass per unit area (LMA) and the driving force for water transport from stem to leaf (ΔΨ(Stem-Leaf)) were characterized for leaves spanning three orders of magnitude in surface area and two orders of magnitude in lifespan. We observed positive isometric scaling between K(Leaf) and leaf area but no relationship between Δ(13)C and leaf area. Leaf lifespan and LMA had minimal effect on K(Leaf) per unit leaf area, but a negative correlation exists among LMA, lifespan, and K(Leaf) per unit dry mass. During periods of leaf water loss, ΔΨ(Stem-Leaf) was relatively constant. We show for the first time that K(Leaf, mass), an index of the carbon cost associated with water use, is negatively correlated with lifespan. This highlights the importance of characterizing K(Leaf, mass) and suggests a tradeoff between resource investment in liquid phase processes and structural rigidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号