首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Histological and hypoxic changes in different tissue elements (neurones and glia), testifying to active disturbances of metabolic processes, are observed in the sensorimotor cerebral cortex of rabbits with experimental neurosis. These changes indicate a complex structural-metabolic rearrangement, occuring with this form of CNS pathology. The results of the study may be used for investigation of mechanisms compensating disturbances in the higher nervous activity and for pathogenetically grounded therapy.  相似文献   

2.
Topic organization of the dental representation was studied in experiments on rabbits by the method of induced potentials. Every tooth proved to be locally represented in the sensory-motor zone of the brain cortex. These zones do not overlap in the case of stimulation of the threshold strength. Topic dental projection region occupies a territory including fields Par I, Praecag, Preacgr, and PC.  相似文献   

3.
4.
5.
Disturbances of higher nervous activity (experimental neurosis) are attended with morphological changes of blood circulation in the sensorimotor area of the cerebral cortex, corresponding to distonic vascular disorders, as well as with hypoxic and neuroglial changes. Observed changes in the nervous tissue also reflect adaptive and defensive mechanisms of the brain (in rabbits).  相似文献   

6.
7.
8.
9.
The density of distribution of callosal neurons in the rabbit sensomotor cortex was studied by injecting horseradish peroxidase into the symmetrical region of the cortex. The degree of inequality of distribution of labeled neurons was determined visually and by statistical analysis. Stained callosal neurons were mainly small and medium-sized pyramidal cells, located chiefly in layer III–IV, and substantially less frequently in layers V and VI. Different forms of grouping of labeled neurons were observed in layer III–IV: two cells at a time, five to eight cells arranged vertically, or in concentrations, whose width was usually 120–200µ, and separated by areas with reduced density. The results are regarded as confirmation of those drawn previously from results of electrophysiological investigations on the modular organization of callosal connections in the rabbit sensomotor cortex.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Brain Institute, Academy of Medical Sciences of the USSR, Moscow. I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 16, No. 4, pp. 451–457, July–August, 1984.  相似文献   

10.
Antidromic responses of two callosal neurones to a local electrical stimulation of the rabbit sensorimotor cortex may be recorded simultaneously with one microelectrode in the homotopic cortical area. In such recording conditions the relative amplitude of extracellularly recorded action potentials of the two neurones is determined primarily by the distance between these neurones and the electrode's tip. In response to the stimulation of the symmetrical area transcallosal monosynaptic excitation of the callosal neurone may occur; two callosal neurones may exite monosynaptically one and the same recorded neurone. The results suggest the existence of clusters or columns, formed jointly by the bodies and terminals of callosal neurones; a functional interconnection between symmetrical clusters or columns may exist, in particular a positive feedback.  相似文献   

11.
Intercortical connections of primary sensory (visual, auditory, somatosensory) areas with the parietal association cortex were studied in cats by the retrograde axonal transport of horseradish peroxidase and the Fink-Heimer silver impregnation of degenerated fibers techniques. This combined study revealed the shape, size, and intracortical location of cells connecting the primary sensory areas monosynaptically with the parietal cortex and also the distribution of preterminals and terminals of the fibers of these cells in the parietal association cortex. The greatest number of cells forming connections with area 7 of the parietal association cortex was shown to occur in visual area V1, and with area 5 in somatosensory area S1. Besides pyramidal neurons tagged with horseradish peroxidase, which were located mainly in layers II–IV, a few tagged stellate and fusiform cells also were found. The results supplement and confirm data on afferent connections of the parietal association cortex in cats.M. Gor'kii Donetsk Medical Institute. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 3–6, January, 1981.  相似文献   

12.
Acute experiments on nonanesthetized curare-treated rats with the recording of the neuronal activity of the cortex were conducted; a determination was made of the threshold doses in which diazepam influenced the spontaneous and induced activity of the neurons of the sensory-motor and optic cortex. Diazepam proved to depress the spontaneous and induced activity of the neurons of the sensory-motor and optic cortex. Diazepam proved to depress the spontaneous and induced activity of the neurons of the sensory-motor cortex in considerably lesser doses than the neuronal activity of the optic cortex. It is supposed that the neurons of the anterior portions of the cortex were more sensitive to diazepam than the neurons of the limbic structures and the reticular formation.  相似文献   

13.
The cortical formations of the brain involved in visual functions (the occipital and temporo-parieto- occipital areas, the oculomotor area of the prefrontal cortex), as well as the motor cortex in the representation zone of the arm and the medial region of the frontal cortex adjacent to the limbic lobe, were studied in post-mortem material. The thickness of the cortex and cortical layer III, the sizes of pyramidal neurons, the specific volumes of neurons and intracortical vessels were studied in subjects of both sexes, from birth to the age of 20 years, at yearly intervals (103 observations) using histological techniques, computer morphometric and stereological analysis. The thickness of the cortex of the cerebral hemispheres was observed to intensively increase from birth to the age of 3 years in the occipital, temporo-parieto-occipital and prefrontal cortical areas involved in visual recognition processes. The increase in thickness of the cerebral cortex continues until the age of 6 in the occipital cortex and in the oculomotor area, until the age of 7 years in the temporo-parietooccipital area and the medial prefrontal area, and until the age of 8–9 years in the motor cortex. The sizes of pyramidal neurons increase until the age of 6 years in the motor cortex, until the age of 8 years on the medial surface of the frontal lobe, and until the age of 9–10 years in the temporo-parieto-occipital area and in the dorsolateral area of the prefrontal cortex. The specific volume of neurons and blood vessels in the cortex of the cerebral hemispheres decreases and the volume of intracortical fibers increases throughout the ascending ontogeny, which is manifested most intensively in the prefrontal cortex.  相似文献   

14.
Experiments on unanesthetized, immobilized cats showed different effects of individual hypothalamic nuclei on spontaneous unit activity in the sensomotor cortex. Compared with the posterior hypothalamic nucleus (PHN) and its anteromedial region (AMH), in response to stimulation of the lateral hypothalamic nucleus (LHN) changes in spontaneous activity were more frequently found. The ratio between activation and inhibitory responses was 36 and 36% for AMH, 51 and 30% for LHN, and 47 and 28% for PHN. An approximately equal number of sensomotor neurons (27–34%) gave tonic responses. Phasic changes in spontaneous activity were observed more often in response to stimulation of LHN, less frequently to stimulation of AMH and PHN. Responses of "nonpyramidal" neurons to stimulation of AMH and LHN were identical. "Pyramidal" units were more sensitive to LHN stimulation. Variations in hypothalamic effects depending on the type of response of sensomotor neurons to sensory stimuli were detected. Cells with tonic responses were more susceptible to influences of LHN and AMH than cells which responded by phasic changes in spontaneous activity to sensory stimuli. Fewer still positive responses were recorded in areactive neurons.Medical Institute, Chita. Translated from Neirofiziologiya, Vol. 4, No. 2, pp. 115–122, March–April, 1972.  相似文献   

15.
16.
17.
Unit responses of the sensomotor cortex to paired electrical stimulation and visual cortex, applied either simultaneously or after various delays (from 0 to 200 msec) depend on the order of application of the stimuli and on the interval between them. If stimulation of the sensomotor cortex was used in a conditioning role the response continued unchanged when the intervals between stimuli were increased to 200 msec. If, however, stimulation of the sensomotor cortex had a testing role interaction was observed between the stimuli so that responses to both first and second stimuli were blocked; this was exhibited most clearly for intervals of 40–80 msec between stimuli. The blocking effect persisted on some neurons with delays of up to 200 msec between stimuli, while the response of others to both the first and the second stimulus was restored.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 6, pp. 628–635, November–December, 1973.  相似文献   

18.
19.
The tonic influence of the superior colliculus (SC) on the formation of visual evoked responses of the sensomotor cortex (SMC) was demonstrated in experiments on conscious rabbits. The influence of SC on the function of SMC was found to be realized with the involvement of tectothalamocortical (through the nucleus lateral is posterior thalami — NLPT) connections. SMC of the conscious rabbit, in turn, exerts a phasic inhibitory influence on visual function of SC. The findings are discussed in the light of involvement of tectocortical and corticotectal inter-relations in the organization of visuomotor integration, which is essential for visually controlled behavior.A. I. Karaev Institute of Physiology, Azerbaidzhan Academy of Sciences, Baku. Translated from Neirofiziologiya, Vol. 24, No. 1, pp. 37–44, January–February, 1992.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号