首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The S 3 allele of the S gene has been cloned from Papaver rhoeas cv. Shirley. The sequence predicts a hydrophilic protein of 14.0 kDa, showing 55.8% identity with the previously cloned S 1 allele, preceded by an 18 amino acid signal sequence. Expression of the S 3 coding region in Escherichia coli produced a form of the protein, denoted S3e, which specifically inhibited S3 pollen in an in vitro bioassay. The recombinant protein was ca. 0.8 kDa larger than the native stigmatic form, indicating post-translational modifications in planta, as was previously suggested for the S1 protein. In contrast to other S proteins identified to date, S3 protein does not appear to be glycosylated. Of particular significance is the finding that despite exhibiting a high degree of sequence polymorphism, secondary structure predictions indicate that the S1 and S3 proteins may adopt a virtually identical conformation. Sequence analysis also indicates that the P. rhoeas S alleles share some limited homology with the SLG and SRK genes from Brassica oleracea. Previously, cross-classification of different populations of P. rhoeas had revealed a number of functionally identical alleles. Probing of western blots of stigma proteins from plants derived from a wild Spanish population which contained an allele functionally identical to the Shirley S 3 allele with antiserum raised to S3e, revealed a protein (S 3 s) which was indistinguishable in pI and M r from that in the Shirley population. A cDNA encoding S 3 s was isolated, nucleotide sequencing revealing a coding region with 99.4% homology with the Shirley-derived clone at the DNA level, and 100% homology at the amino acid level.  相似文献   

2.
Summary We have isolated and sequenced cDNAs for S2- and S3-alleles of the self-incompatibility locus (S-locus) in Solanum chacoense Bitt., a wild potato species displaying gametophytic self-incompatibility. The S2-and S3-alleles encode pistil-specific proteins of 30 kDa and 31 kDa, respectively, which were previously identified based on cosegregation with their respective alleles in genetic crosses. The amino acid sequence homology between the S2- and S3-proteins is 41.5%. This high degree of sequence variability between alleles is a distinctive feature of the S-gene system. Of the 31 amino acid residues which were previously found to be conserved among three Nicotiana alata S-proteins (S2, S3, and S6) and two fungal ribonucleases (R Nase T2 and R Nase Rh), 27 are also conserved in the S2- and S3-proteins of S. chacoense. These residues include two histidines implicated in the active site of the R Nase T2, six cysteines, four of which form disulfide bonds in R Nase T2, and hydrophobic residues which might form the core structure of the protein. The finding that these residues are conserved among S-proteins with very divergent sequences suggests a functional role for the ribonuclease activity of the S-protein in gametophytic self-incompatibility.  相似文献   

3.
Summary Allelic complexity is a key feature of self-incompatibility (S) loci in gametophytic plants. We describe in this report the allelic diversity and gene structure of the S locus in Solanum tuberosum revealed by the isolation and characterization of genomic and cDNA clones encoding S-associated major pistil proteins from three alleles (S 1, S r1, S 2). Genomic clones encoding the S1 and S2 proteins provide evidence for a simple gene structure: Two exons are separated by a small intron of 113 (S 1) and 117 by (S 2). Protein sequences deduced from cDNA clones encoding S1 and Sr1 proteins show 95% homology. 15 of the 25 residues that differ between these S 1and S r1alleles are clustered in a short hypervariable protein segment (amino acid positions 44–68), which corresponds in the genomic clones to DNA sequences flanking the single intron. In contrast, these alleles are only 66% homologous to the S 2allele, with the residues that differ between the alleles being scattered throughout the sequence. DNA crosshybridization experiments identify a minimum of three classes of potato S alleles: one class contains the alleles S 1, S r1and S 3, the second class S 2and an allele of the cultivar Roxy, and the third class contains at present only S 4. It is proposed that these classes reflect the origin of the S alleles from a few ancestral S sequence types.  相似文献   

4.
The nucleotide sequences of ten SP11 and nine SRK alleles in Raphanus sativus were determined, and deduced amino acid sequences were compared with those of Brassica SP11 and SRK. The amino acid sequence identity of class-I SP11s in R. sativus was about 30% on average, the highest being 52.2%, while that of the S domain of class-I SRK was 77.0% on average and ranged from 70.8% to 83.9%. These values were comparable to those of SP11 and SRK in Brassica oleracea and B. rapa. SP11 of R. sativus S-21 was found to be highly similar to SP11 of B. rapa S-9 (89.5% amino acid identity), and SRK of R. sativus S-21 was similar to SRK of B. rapa S-9 (91.0%). SP11 and SRK of R. sativus S-19 were also similar to SP11 and SRK of B. oleracea S-20, respectively. These similarities of both SP11 and SRK alleles between R. sativus and Brassica suggest that these S haplotype pairs originated from the same ancestral S haplotypes.  相似文献   

5.
Lai  Zhao  Ma  Wenshi  Han  Bin  Liang  Lizhi  Zhang  Yansheng  Hong  Guofan  Xue  Yongbiao 《Plant molecular biology》2002,50(1):29-41
In many flowering plants, self-fertilization is prevented by an intraspecific reproductive barrier known as self-incompatibility (SI), that, in most cases, is controlled by a single multiallelic S locus. So far, the only known S locus product in self-incompatible species from the Solanaceae, Scrophulariaceae and Rosaceae is a class of ribonucleases called S RNases. Molecular and transgenic analyses have shown that S RNases are responsible for pollen rejection by the pistil but have no role in pollen expression of SI, which appears to be mediated by a gene called the pollen self-incompatibility or Sp gene. To identify possible candidates for this gene, we investigated the genomic structure of the S locus in Antirrhinum, a member of the Scrophulariaceae. A novel F-box gene, AhSLF-S 2, encoded by the S 2 allele, with the expected features of the Sp gene was identified. AhSLF-S 2 is located 9 kb downstream of S 2 RNase gene and encodes a polypeptide of 376 amino acids with a conserved F-box domain in its amino-terminal part. Hypothetical genes homologous to AhSLF-S 2 are apparent in the sequenced genomic DNA of Arabidopsis and rice. Together, they define a large gene family, named SLF (S locus F-box) family. AhSLF-S 2 is highly polymorphic and is specifically expressed in tapetum, microspores and pollen grains in an allele-specific manner. The possibility that Sp encodes an F-box protein and the implications of this for the operation of self-incompatibility are discussed.  相似文献   

6.
Gametophytic self-incompatibility in plants involves rejection of pollen when pistil and pollen share the same allele at the S locus. This locus is highly multiallelic, but the mechanism by which new functional S alleles are generated in nature has not been determined and remains one of the most intriguing conceptual barriers to a full understanding of self-incompatibility. The S(11) and S(13) RNases of Solanum chacoense differ by only 10 amino acids, but they are phenotypically distinct (i.e., they reject either S(11) or S(13) pollen, respectively). These RNases are thus ideally suited for a dissection of the elements involved in recognition specificity. We have previously found that the modification of four amino acid residues in the S(11) RNase to match those in the S(13) RNase was sufficient to completely replace the S(11) phenotype with the S(13) phenotype. We now show that an S(11) RNase in which only three amino acid residues were modified to match those in the S(13) RNase displays the unprecedented property of dual specificity (i.e., the simultaneous rejection of both S(11) and S(13) pollen). Thus, S(12)S(14) plants expressing this hybrid S RNase rejected S(11), S(12), S(13), and S(14) pollen yet allowed S(15) pollen to pass freely. Surprisingly, only a single base pair differs between the dual-specific S allele and a monospecific S(13) allele. Dual-specific S RNases represent a previously unsuspected category of S alleles. We propose that dual-specific alleles play a critical role in establishing novel S alleles, because the plants harboring them could maintain their old recognition phenotype while acquiring a new one.  相似文献   

7.
Summary Pistil proteins associated with three different S-alleles of the self-incompatibility locus (S locus) in Solanum chacoense have been identified which cosegregated with their respective S alleles in a series of genetic crosses involving six S. chacoense plants, their F1 progeny, and backcrosses. The molecular weights of these three S-allele-associated proteins, designated S1 S2, and S3, were 29 kDa, 30 kDa, and 31 kDa, respectively. They were all basic proteins with a similar pI of approximately 8.6. They have been found only in the stigma and style of the pistil where their maximum synthesis was reached at one day before anthesis. Their rate of synthesis in both self- and cross-pollinated pistils was the same as that in the unpollinated pistil until 2 days after pollination.On sabbatical leave from Laboratoire de Genetique et Physiologie du Developpement des Plantes, C.N.R.S., F-91190 Gifsur-Yvette, France  相似文献   

8.
PCR-based identification of all 13 known self-incompatibility (S) alleles of sweet cherry is reported. Two pairs of consensus primers were designed from our previously published cDNA sequences of S1 to S6 S-RNases, the stylar components of self-incompatibility, to reveal length variation of the first and the second introns. With the exception of the first intron of S13, these also amplified S7 to S14 and an allele previously referred to as Sx, which we now label S16. The genomic PCR products were cloned and sequenced. The partial sequence of S11 matched that of S7 and the alleles were shown to have the same functional specificity. Allele-specific primers were designed for S7 to S16, so that allele-specific primers are now available for all 13 S alleles of cherry (S8, S11 and S15 are duplicates). These can be used to distinguish between S alleles with introns of similar size and to confirm genotypes determined with consensus primers. The reliability of the PCR with allele-specific primers was improved by the inclusion of an internal control. The use of the consensus and allele-specific primers was demonstrated by resolving conflicting genotypes that have been published recently and by determining genotypes of 18 new cherry cultivars. Two new groups are proposed, Group XXIII (S3S16), comprising 'Rodmersham Seedling' and 'Strawberry Heart', and Group XXIV (S6S12), comprising 'Aida' and 'Flamentiner'. Four new self-compatibility genotypes, S3S3, S4S6, S4S9 and S4S13, were found. The potential use of the consensus primers to reveal incompatibility alleles in other cherry species is also demonstrated.Communicated by H.F. Linskens  相似文献   

9.
Petunia inflata, a species with gametophytic self-incompatibility, has previously been found to contain a large number of ribonucleases in the pistil. The best characterized of the pistil ribonucleases are the products of the S alleles, the S proteins, which are thought to be involved in self-incompatibility interactions. Here we report the characterization of a gene encoding another pistil ribonuclease of P. inflata, RNase X2. Degenerate oligonucleotides, synthesized based on the amino-terminal sequence of RNase X2, were used as probes to isolate cDNA clones, one of which was in turn used as a probe to isolate genomic clones containing the gene for RNase X2, rnx2. The deduced amino acid sequence of RNase X2 shows 42% to 71% identity to the 20 solanaceous S proteins reported so far, with the highest degree of similarity being to S3 and S6 proteins of Nicotiana alata. The cDNA sequence predicts a leader peptide of 22 amino acids, suggesting that RNase X2, like S proteins, is an extracellular ribonuclease. Also, similar to the S gene, rnx2 is expressed only in the pistil, and contains a single intron comparable in size and identical in location to that of the S gene. However, rnx2 is not linked to the S locus, and, in contrast to the highly polymorphic S gene, it is monomorphic. The possible biological function of RNase X2 is discussed.  相似文献   

10.
Summary The expressed activity in pollen and stigma was determined for both S alleles of sixteen S-alíele heterozygous genotypes and for one of the two S alleles of two additional heterozygotes. Activities were measured using pollen tube penetration and seed set data from reciprocal crosses between each S-allele heterozygote and its two corresponding S-allele homozygotes.In pollen the S-allele activities ranged from zero to 100% inhibition of pollen tube penetration and seed set, and in the stigma they ranged from 8 to 100% inhibition. Of the sixty-eight S-allele activities measured, thirty-three (48%) were 90 to 100% inhibition, nine (13%) were 80 to 89% inhibition and one to five were within each ten-unit range below 80% inhibition.In an S-allele heterozygote, each subset of two S alleles had an activity for each allele in both pollen and stigma which was highly repeatable among duplicate pollinations within and among successive years. Each subset of two S alleles had a specific S-allele interaction in the pollen, and the same or another specific interaction in the stigma. In pairings with six other S alleles, allele S 2 had four calculated levels of activity in pollen that ranged from 88 to 94%, and five levels in the stigmas between 15 and 94%. When paired in a heterozygote, alleles S 3 and S 5 had activities ranging between 42 and 59%, representing mutual weakening of S-allele activity. Also, heterozygote S 15 S 3 had pollen activities, respectively, of 25 and 6%, i.e. mutual weakening in the pollen.These results indicate that in heterozygous combination with a series of other S alleles, each S-allele may have activity in pollen and also in stigma that potentially is between zero and 100% inhibition. They further indicate that the defined sexual-organ X S-allele-interaction Types I, II, III and IV are extremes; all intermediate variations including complete weakening of both alleles are possible. Recessiveness is weakening of the activity of but one of the two S alleles. The pollen tube penetrations into the style and seed set were highly correlated.Department of Plant Breeding and Biometry Paper No. 683  相似文献   

11.
Self-incompatibility has been studied extensively at the molecular level in Solanaceae, Rosaceae and Scrophulariaceae, all of which exhibit gametophytic self-incompatibility controlled by a single polymorphic locus containing at least two linked genes, i.e., the S-RNase gene and the pollen-expressed SFB/SLF (S-haplotype-specific F-box/S-locus F-box) gene. However, the SFB gene in Japanese plum (Prunus salicina Lindl.) has not yet been identified. We determined eight novel sequences homologous to the SFB genes of other Prunus species and named these sequences PsSFB. The gene structure of the SFB genes and the characteristic domains in deduced amino acid sequences were conserved. Three sequences from 410 to 2,800 bp of the intergenic region between the PsSFB sequences and the S-RNase alleles were obtained. The eight identified PsSFB sequences showed S-haplotype-specific polymorphism, with 74–83% amino acid identity. These alleles were exclusively expressed in the pollen. These results suggest that the PsSFB alleles are the pollen S-determinants of GSI in Japanese plum. Nucleotide sequence data reported are available in the NCBI database under the accession numbers DQ849084–DQ849090 and DQ849118.  相似文献   

12.
In this study, the tissue printing technique has been used to rapidly localize in female tissues the presence of specific mRNA representing the products (or some of the products) of the self-incompatibility S-locus gene(s). The methodology, initially developed for Brassica oleracea (sporophytic self-incompatibility) has been successfully employed on Solanum chacoense (gametophytic self-incompatibility). In the Brassica system tissue printing has allowed rapid discrimination between S alleles belonging to class 1 (dominant types) vs. class 2 (recessive types), and thus parallels findings obtained by restriction analyses. In the Solanum system the level of the S-RNase messages was analysed by scanning laser densitometry, and it was found that the message levels of the allele S14 declined faster than those coming from S13 in mature flowers.  相似文献   

13.
Summary cDNA clones for an S-allele, designated S5, of the self-incompatibility locus (S-locus) of Lycopersicon peruvianum have been isolated by probing a pistil cDNA library with cDNAs for S-alleles of Petunia inflata and Solanum chacoense. The longest S5-cDNA is 869 bp and contains an open reading frame of 217 amino acids. An alignment of the deduced amino acid sequence of S5-protein with that of the 18 S-proteins from five other solanaceous species is presented. Sequence comparison further refines the primary structural features of the S-proteins previously revealed from comparison of subsets of these sequences. Based on this comparison and evidence presented elsewhere, it is proposed that accumulation of point mutations, and not intragenic recombination, is responsible for the generation of new allelic specificities.  相似文献   

14.
Diploid Hordeum bulbosum (a wild relative of cultivated barley) exhibits a two-locus self-incompatibility (SI) system gametophytically controlled by the unlinked multiallelic loci S and Z. This unique SI system is observed in the grasses (Poaceae) including the tribe Triticeae. This paper describes the identification and characterization of two F-box genes cosegregating with the S locus in H. bulbosum, named Hordeum S locus-linked F-box 1 (HSLF1) and HSLF2, which were derived from an S 3 haplotype-specific clone (HAS175) obtained by previous AMF (AFLP-based mRNA fingerprinting) analysis. Sequence analysis showed that both genes encode similar F-box proteins with a C-terminal leucine-rich repeat (LRR) domain, which are distinct from S locus (or S haplotype-specific) F-box protein (SLF/SFB), a class of F-box proteins identified as the pollen S determinant in S-RNase-based gametophytic SI systems. A number of homologous F-box genes with an LRR domain were found in the rice genome, although the functions of the gene family are unknown. One allele of the HSLF1 gene (HSLF1-S 3) was expressed specifically in mature anthers, whereas no expression was detected from the other two alleles examined. Although the degree of sequence polymorphism among the three HSLF1 alleles was low, a frameshift mutation was found in one of the unexpressed alleles. The HSLF2 gene showed a low level of expression with no tissue specificity as well as little sequence polymorphism among the three alleles. The multiplicity of S locus-linked F-box genes is discussed in comparison with those found in the S-RNase-based SI system. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers AB511822–AB511825 and AB511859–AB511862.  相似文献   

15.
While the molecular basis of sporophytic self-incompatibility (SSI) has been investigated extensively in the Brassicaceae, almost nothing is known about the molecular regulation of SSI in other families, such as the Asteraceae. In species of Brassica and in Arabidopsis lyrata, a stigma-specific serine-threonine receptor kinase (SRK) and its cognate ligand, a pollen coating-borne cysteine-rich protein (SCR/SP11), determine the female and male sides of the SSI response, respectively. Here we have used RT-PCR with degenerate primers to conserved regions of SRK to amplify three SRK-like gene fragments expressed in stigmas of Senecio squalidus (Asteraceae). The Senecio S-receptor-like kinase (SSRLK) sequences share ~43% amino acid sequence identity with Brassica SRK3 but higher amino acid sequence identity (~50%) with two Solanum bulbocastanum receptor-like kinase genes of unknown function. Despite expression in stigmas, all three SSRLKs were expressed at varying levels in floral and vegetative tissues. No allelic polymorphism was detected for the three SSRLKs in two S homozygous lines of S. squalidus or three other lines of S. squalidus carrying different S alleles. A full-length cDNA clone was obtained for SSRLK1 and its predicted amino acid sequence revealed significant structural differences to Brassica SRKs, most notably a major N-terminal truncation of 169 amino acids and the presence of just 8 conserved cysteine residues within the putative receptor domain instead of 12. Together, the sequence characteristics and expression characteristics of SSRLKs suggest that they are unlikely to be directly involved in the SSI response of S. squalidus. These findings are discussed in terms of the evolution of the SRK multigene family and the molecular basis of SSI in S. squalidus and the Asteraceae.  相似文献   

16.
A simple method of detecting polymorphism of S locus glycoprotein gene, SLG, in Chinese cabbage and cabbage was developed, and used for identification of breeding lines. DNA was amplified by the polymerase chain reaction (PCR) with a pair of primers having S 6 SLG sequences from inbred lines, and digested with restriction endonucleases which recognize tetranucleotide sequences. The cleaved DNA fragments were size-fractionated by polyacrylamide gel electrophoresis and detected by silver staining. PCR with S 6 SLG primers amplified a fragment of ca. 1.3kb in more than half of the inbred lines tested. After digestion, polyacrylamide gel electrophoresis revealed polymorphism between the amplified 1.3kb DNA fragments. These polymorphic bands were detected by Southern hybridization using a probe of S 6 SLG cDNA, suggesting that the amplified DNA was SLG. Primers having the SLG sequences of S 2 , a representative of recessive S alleles, were used for amplification of SLG in the lines which did not give the 1.3kb DNA fragment by the PCR with S 6 SLG primers. Polymorphism of amplified DNA was found in these lines. However these primers also appeared to amplify an invariant SLR-2 sequence of 1.3kb in addition to the polymorphic S 2 SLG related sequences. Although the used primer sequences still need improvement for the analysis of recessive S alleles, PCR-RFLP of SLG was considered to be useful for identification of breeding lines as well as for S allele identification in cruciferous vegetables. F1 hybrids exhibited the sum of the bands of both parents, and, therefore, this method is expected to be used for a purity test of F1 seeds.  相似文献   

17.
The S locus and its flanking regions in the genus Prunus (Rosaceae) contain four pollen-expressed F-box genes. These genes contain the S locus F-box genes with low allelic sequence polymorphism genes 1, 2, and 3 (SLFL1, SLFL2, and SLFL3) as well as the putative pollen S gene, named the S haplotype-specific F-box protein gene (SFB). As much less information is available on the function of SLFLs than that of SFB, we analyzed the SLFLs of six S haplotypes of sweet cherry (Prunus avium) in this study. Genomic DNA blot analysis and the isolation of SLFL1 showed that the SLFL1 gene in a functional self-incompatible S 3 haplotype is deleted and only a partial sequence resembling SLFL1 is left in the S 3 locus region, suggesting that SLFL1 by itself is not directly involved in either the GSI reaction or pollen-tube growth. Genomic DNA blot analysis showed that there was no substantial modification or mutation in SLFL2 and SLFL3. A phylogenic analysis of F-box genes in the rosaceous S locus and its border regions showed that Prunus SLFLs were more closely related to maloid S locus F-box brothers than to Prunus SFBs. The functions of SLFLs and the evolution of self-incompatibility in Prunus are discussed based on these results. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. The nucleotide sequence data reported appear in the DDBJ, EMBL, and GenBank Nucleotide Sequence Databases under the accession numbers, AB360339, AB360340, AB360341, and AB360342, for SLFL1-S 1 , SLFL1-S 2 , SLFL1-S 5 , and SLFL1-S 6 , respectively.  相似文献   

18.
The self-incompatibility reaction of cruciferous plants prevents self-fertilization and has been shown to be controlled by at least two genes situated at a single multiallelic locus, theS locus. One of these two genes, theS locus glycoprotein (SLG) gene, encodes an abundant glycoprotein secreted to the cell wall of stigma papillae. Identification of thoseS alleles present at theS locus is of prime interest when studying the self-incompatibility response and can be achieved by identifying the SLG of the stigma. Here, we show that using anti-SLG antibodies in an immunochemical analysis, combined with a SSCP (single-strand conformation polymorphism) approach to characterize the corresponding stigma-specific, SLG mRNA, allowed the identification of plants heterogeneous at theS locus among populations of plants that were thought to be homozygous for known SLG alleles. This analysis stresses the importance of testing the homozygosity at theS locus of lines considered inbred for a knownS allele as mix-up of seeds may occur during the breeding programme.  相似文献   

19.
Summary The gametophytic self-incompatibility system of Solarium tuberosum is controlled by a single locus, designated as the S-locus. Protein extracts from potato styles of defined S-genotypes have been analysed by two-dimensional gel electrophoresis, and found to contain a group of basic glycoproteins. Each genetically determined allele S 1 to S 4 was associated with the presence of one of a number of these polypeptides differing slightly in isoelectric points (in the range 8.3–>9.1) and/or apparent molecular weight (ranging from 23,000 to 29,000). Two abundant basic polypeptides, one of which is apparently not glycosylated, were present in all genotypes examined. Amino-terminal protein sequence determinations revealed homologies of the S. tuberosum stylar proteins S2, S3 and S4 with SI-associated polypeptides from Nicotiana alata and Lycopersicon peruvianum. With an oligonucleotide generated to the potato-S2 N-terminal protein sequence, it was possible to detect a style-specific RNA species of 920 nucleotides. The oligonucleotide also behaved as an allele-specific probe when hybridized to total RNA of different S-genotypes.  相似文献   

20.
Self-incompatibility in the genus Prunus is controlled by two genes at the S-locus, S-RNase and SFB. Both genes exhibit the high polymorphism and high sequence diversity characteristic of plant self-incompatibility systems. Deduced polypeptide sequences of three myrobalan and three domestic plum S-RNases showed over 97% identity with S-RNases from other Prunus species, including almond, sweet cherry, Japanese apricot and Japanese plum. The second intron, which is generally highly polymorphic between alleles was also remarkably well conserved within these S-allele pairs. Degenerate consensus primers were developed and used to amplify and sequence the co-adapted polymorphic SFB alleles. Sequence comparisons also indicated high degrees of polypeptide sequence identity between three myrobalan and the three domestic plum SFB alleles and the corresponding Prunus SFB alleles. We discuss these trans-specific allele identities in terms of S-allele function, evolution of new allele specificities and Prunus taxonomy and speciation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号