首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flavin-containing monooxygenase has been purified from rabbit liver and lung microsomes. SDS-PAGE analysis shows that both enzyme forms migrate as a single band with an apparent Mr of 59000. The NH2-terminus of both forms is blocked. The liver oxidase contains a lower percentage of glutamine/glutamate and a greater amount of phenylalanine than does the lung flavoprotein. Polyclonal antibodies to a 14-amino-acid peptide obtained after CNBr cleavage of the liver oxidase cross-react with the microsomal and purified liver enzyme, but do not recognize the lung oxidase. HPLC profiles of tryptic digests of the liver and lung enzymes exhibit different patterns. Sequence alignment of selected peptides from the liver and lung oxidases reveals aberrant residues within homologous segments. These findings are interpreted to mean that both enzymes represent distinct gene products.  相似文献   

2.
1. Flavin-containing monooxygenase (FMO) in pulmonary and hepatic microsomes from sheep was analyzed by western blotting by probing with antibodies raised against FMO purified from rabbit lung and pig liver. 2. Pulmonary microsomes from sheep contain a single major protein which cross-reacts with the antibody to rabbit lung FMO, but no band can be observed when probed with the antibody to the pig liver enzyme. Likewise, sheep liver microsomes contain a protein which cross-reacts with the antibody to pig liver FMO, but no significant staining is observed following incubation with antibody to the lung enzyme. 3. Sheep pulmonary and hepatic microsomal FMO also display a difference in activity toward chlorpromazine and n-dodecylamine. 4. Preliminary evidence suggests that sheep FMO may be induced (liver) or repressed (lung) during pregnancy. 5. Sheep are similar to rodents (rat, mouse, guinea pig, hamster and rabbit) in having distinct forms of pulmonary and hepatic FMO. The immunochemical and catalytic difference between sheep liver and lung FMO is similar to that of rabbit.  相似文献   

3.
Inhibitory antibodies against NADPH-cytochrome P-450 reductase, detergent solubilization to dissociate functional interaction between the reductase and cytochrome P-450, and selective trypsin degradation have been used to characterize flavin-containing monooxygenase activity in microsomes from different tissues and species. A comparison of assay methods is reported. The native microsome-bound flavin-containing monooxygenase of mouse, rabbit, and rat liver, lung, and kidney can metabolize compounds containing thiol, sulfide, thioamide, secondary and tertiary amine, hydrazine, and phosphine substituents. Therefore, this enzyme from these common experimental animals has catalytic capabilities similar to those of the well-characterized porcine liver enzyme. True allosteric activation by n-octylamine does not appear to be a property of either the mouse, rabbit, or rat liver enzymes, but is a property of the pig liver and mouse lung enzymes. The microsomal pulmonary flavin-containing monooxygenase of the rabbit has some unique substrate preferences which differ from the mouse lung enzyme. Both the rabbit and mouse pulmonary enzymes have recently been shown to be distinct enzyme forms. However, the rat pulmonary flavin-containing monooxygenase appears to be catalytically identical to the rat liver enzyme, and does not have any of the unusual catalytic properties of either the rabbit or mouse lung enzymes. Enzyme activity of mouse, rabbit, and rat kidney microsomes is qualitatively similar to the hepatic activities. Substrates which saturate the microsome-bound flavin-containing monooxygenase at 1.0 mM, including thiourea, thioacetamide, methimazole, cysteamine, and thiobenzamide, are metabolized at common maximal velocities. This suggests that the kinetic mechanism of the native enzyme is similar to that established for the isolated porcine liver enzyme in that the rate-limiting step of catalysis occurs after substrate binding, and that all substrates capable of saturating the microsomal enzyme should be metabolized at a common maximal velocity.  相似文献   

4.
Three functional mouse flavin-containing monooxygenases (mFMOs) (i.e., mFMO1, mFMO3, and mFMO5) have been reported to be the major FMOs present in mouse liver. To examine the biochemical features of these enzymes, recombinant enzymes were expressed as maltose-binding protein fusion proteins (i.e., MBP-mFMO1, MBP-mFMO3, and MBP-mFMO5) in Escherichia coli and isolated and purified with affinity chromatography. The substrate specificity of these three mouse hepatic FMO enzymes were examined using a variety of substrates, including mercaptoimidazole, trimethylamine, S-methyl esonarimod, and an analog thereof, and a series of 10-(N,N-dimethylaminoalkyl)-2-(trifluoromethyl)phenothiazine analogs. The kinetic parameters of the three mouse FMOs for these substrates were compared in an attempt to explore substrate structure--function relationships specific for each mFMO. Utilizing a common phenothiazine substrate for all three enzymes, we compared the pH dependence for the recombinant enzymes under similar conditions. In addition, thermal stability for mFMO1, mFMO3, and mFMO5 enzymes was examined in the presence and absence of NADPH. The results revealed unique features for mFMO5, suggesting possible impact on the functional significance of this abundantly expressed FMO5 isoform in both human and mouse liver.  相似文献   

5.
The flavin-containing monooxygenase (FMO) was purified from mouse lung microsomes. On SDS-PAGE, the purified enzyme separated as two bands, a major band of 58,000 daltons and a minor band of 59,000 daltons. Antibodies to mouse liver FMO cross-reacted with both bands in the purified preparations, whereas antibodies to rabbit lung FMO cross-reacted only with the major band. In microsomal preparations the major band was recognized by both antibodies, but neither antibody detected the minor band in microsomes. A cDNA encoding the pig liver FMO hybridized with mRNA isolated from mouse liver, kidney, and lung, whereas cDNA encoding the rabbit lung FMO hybridized only with mouse lung and kidney mRNA. Thermal stability studies showed that the FMO preparation purified from mouse lung consisted of a heat-stable and a heat-labile component. The heat-labile component of lung FMO was inhibited competitively by imipramine, whereas the heat-stable component was insensitive to the presence of imipramine. Immunoprecipitation of purified mouse lung FMO with anti-rabbit lung FMO completely removed the protein band reactive to anti-rabbit lung FMO while leaving reactivity to anti-liver FMO. The catalytic and immunochemical differences seen between FMO from rabbit lung and mouse lung appear to result from the expression of at least two forms of FMO in the mouse lung, one similar to the rabbit pulmonary form and one similar to the major mouse liver form of FMO.  相似文献   

6.
Liver microsomal, flavin-containing monooxygenases catalyze NADPH- and oxygen-dependent oxidation of a wide variety of antipsychotic and narcotic drugs. Two forms of these enzymes have been isolated and partially characterized (Ozols, J. (1989) Biochem. Biophys. Res. Commun. 163, 49-55). The amino acid sequence of form 1 is presented here. Sequence determination has been achieved by automated Edman degradation of peptides generated by chemical and enzymatic cleavages. The NH2 terminus of form 1 oxygenase is blocked. Partial acid hydrolysis of the blocked peptides removed acetyl groups and permitted their analysis by Edman degradation. Form 1 monooxygenase contains 536 residues. A peptide of 32 residues at the COOH terminus of the protein could not be sequenced in a gas-phase or pulsed liquid-phase sequenator, due to its extreme hydrophobicity. Covalent coupling of this peptide to an aryl amine membrane by means of carbodiimide, followed by automated solid-phase sequencing, established the order of 30 amino acid residues. The hydrophobic segment at the COOH terminus presumably functions to anchor the monooxygenase to the microsomal membrane. The amino acid sequence of form 1 monooxygenase, despite overlapping substrate specificity, is not related to the cytochrome P-450 superfamily. Comparison of the sequence of form 1 oxygenase with other known sequences, except for some short segments similar to those in the bacterial flavin-containing monooxygenases, did not reveal significant sequence similarities that would suggest a structural or evolutionary relationship.  相似文献   

7.
  • 1.1. The microsomal flavin-containing monooxygenase has been purified from mouse and pig liver utilizing Cibacron-Blue Sepharose, Procion-Red agarose, and 2'5'-ADP Sepharose.
  • 2.2. The enzymes had a final specific activity of 1200 and 954 nmol/min/mg protein from mouse and pig liver respectively.
  • 3.3. The enzyme from both mouse and pig liver displayed typical flavoprotein spectra and appeared homogeneous by denaturing polyacrylamide gel electrophoresis.
  相似文献   

8.
Pregnancy related changes in oxidative metabolism of model substrates were examined in CD1 mice. As compared to nonpregnant females, a significant decrease in the hepatic microsomal aminopyrine-but not in dimethylaniline-N-demethylase activity was observed in pregnant mice. The rates of microsomal flavin-containing monooxygenase-catalyzed N-oxidation of dimethylaniline remained relatively unchanged during pregnancy in the liver, lung, kidney, and uterus. In contrast to this, N-oxidase activity of placental microsomes was increased nearly 5-fold when measured at day 12 and 18 of gestation.  相似文献   

9.
Two distinct forms (FMO-I and FMO-II) of flavin-containing monooxygenase were purified from the liver microsomes of guinea pig. The minimum molecular weights estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 54,000 for FMO-I and 56,000 for FMO-II, respectively. Tryptic digestion of these enzymes gave different electrophoretic patterns, suggesting that FMO-I and -II have distinct amino acid sequences. The amino terminal sequence of FMO-II could not be estimated probably due to its blocking while that of FMO-I was determined to be highly homologous to the rabbit liver flavin-containing monooxygenase (J. Ozols, 1989, Biochem. Biophys. Res. Commun. 163, 49-55). Absorption maxima of FMO-I and -II were recorded at 368 and 440 nm and 381 and 456 nm, respectively. Molar ratios of FAD to both of these apoenzymes were shown to be one to one. Substrate specificity of FMO-I and -II was determined using 15 compounds as the substrate. The results showed two enzymes that exhibited overlapped but different specificity toward these substrates although FMO-I had lower activity than did FMO-II with all compounds except thiobenzamide. Of particular interest, only FMO-II showed considerably high activities for primary amines, n-octylamine, and n-decylamine. Immunoglobulin G raised against FMO-II could recognize FMO-I as well as FMO-II, but the reactivity of FMO-I toward the antibody was obviously lower than that of FMO-II. Electrophoresis followed by immunostaining revealed that microsomes of lung, kidney, urinary bladder, testis, and spleen contain the same protein as FMO-II and/or FMO-I. Only lung was shown to have an additional isozyme of FAD-monooxygenase with a molecular weight apparently higher than those of FMO-I and -II. These results strongly suggest that at least two forms of flavin-containing monooxygenases distinct from the lung-type isozyme are expressed in liver of guinea pigs.  相似文献   

10.
Flavin-containing monooxygenases (FMO) are membrane-associated enzymes contributing to oxidative metabolism of drugs and other chemicals. There are no known structures similar enough to FMO to provide accurate insights into the structural basis for differences in metabolism observed among FMOs. To develop an FMO amenable to crystallization, we introduced mutations into rabbit FMO2 (rF2) to increase solubility, decrease aggregation, and simplify isolation. Alterations included removal of 26 AA (Delta26) from the carboxyl-terminus, His(6)-fusion to the amino-terminus and a double Ser substitution designed to reduce local hydrophobicity. Only Delta26 FMO variants retained normal activity, increased the yield of cytosolic rF2 and decreased protein aggregation. Delta26 constructs increased rF2 in cytosol in low (from 2 to 13%), and high salt (from 24 to 62%) conditions. His-fusion proteins, while active and useful for purification, did not affect solubility. Delta26 variants should prove useful for identifying conditions suitable for production of an FMO crystal.  相似文献   

11.
Rabbit lung flavin-containing monooxygenase (FMO, EC 1.14.13.8) was denatured, reduced, carboxymethylated, digested with endoproteinase Glu-C or trypsin, and subjected to mass spectrometric analysis. The amino acid sequences of selected peptides were determined by tandem mass spectrometry. Over 90% of rabbit lung FMO was mapped by liquid secondary ion mass spectrometry (LSIMS). The FMO N-terminal amino acid was found to be N-acetylated, and the N-terminal 23 amino acid peptide contained an FAD binding domain consisting of Gly-X-Gly-X-X-Gly. Another peptide was found to contain a NADP+ binding domain consisting of Gly-X-Gly-X-X-Ala. The mapped and/or sequenced peptides were found to be completely consistent with the peptide sequence deduced from the cDNA data and the previously published gas-phase sequencing data. Further mass spectrometry and protein analytical work unambiguously showed that rabbit lung FMO existed in tight association with a calcium-binding protein, calreticulin. Over 68% of rabbit lung calreticulin was mapped by LSIMS. Tandem mass spectrometric and gas-phase sequencing studies provided direct evidence for the identification of the N-terminal and other rabbit lung calreticulin-derived peptide sequences that were identical to other previously reported calreticulins. The complexation of calreticulin to rabbit lung FMO could account for some of the unusual physical properties of this FMO enzyme form.  相似文献   

12.
Liver microsomal flavin-containing monooxygenase (MFMO) has been shown to exhibit a stable 4a-flavin hydroperoxide intermediate in the absence of oxygenatable substrate (Poulsen, L. L., and Ziegler, D. M. (1979) J. Biol. Chem. 254, 6449-6455; Beaty, N. B., and Ballou, D. P. (1981) J. Biol. Chem. 256, 4619-4625). The reaction of this intermediate with an assortment of substrates was studied by stopped flow techniques. The first observed spectral change is a small blue shift in the absorbance peak of the 4a-flavin intermediate. The rate of this spectral change is dependent on the concentration of the substrate. This small spectral change is succeeded by a large increase in the absorbance at 450 nm. The rate of appearance of oxidized flavin is independent of substrate concentration but does increase at higher pH. Steady state turnover rates also greater at higher pH, consistent with earlier observations that the formation of oxidized flavin is rate determining in catalysis. Upon oxygenation by MFMO, thiobenzamide and iodide each undergo a spectral change which is dependent on substrate concentration. The spectral changes corresponding to oxygenation of these substrates occur at the same rates as do the initial small spectral changes contributed by the flavin chromophore as observed with all substrates. However, no substrate tested to date shows any effect on the rate of formation of oxidized flavin. Previous work has shown MFMO to catalyze the oxygenation of a variety of nitrogen- and sulfur-containing hydrophobic compounds. Two new classes of compounds are shown here to be substrates for this enzyme. The nucleophilic anions, iodide and thiocyanate, catalyze the decomposition of the 4a-flavin hydroperoxide. Organic boronic acids (e.g. phenylboronic acid and butylboronic acid) also appear to be oxygenated with no striking differences in kinetic characteristics from those of nucleophilic substrates. These organic boronic acids are classic electrophiles and suggest that like peracids, the 4a-flavin hydroperoxide is capable of oxygenating both nucleophiles and electrophiles (Lee, J. B., and Uff, B. C. (1967) Quart. Rev. 21, 429-457).  相似文献   

13.
Two forms of rabbit pulmonary cytochrome P-450 have been characterized spectrally and their activities in reconstituted monooxygenase systems investigated. The presence of both microsomal phospholipids and sodium cholate was required to obtain optimum activity. Only one of the cytochromes (I) was active in the N-demethylation of benzphetamine and the O-deethylation of 7-ethoxycoumarin. However, cytochrome II was 20% more active than cytochrome I in the metabolism of benzo[a]pyrene. The profile of the metabolites formed from benzo[a]pyrene indicated that metabolism at the 9 and 10 positions was insignificant in the case of cytochrome I but represented about 40% of the metabolites produced by cytochrome II. The two forms of the cytochrome are present in pulmonary microsomes in approximately equal amounts.  相似文献   

14.
The cDNA clone of mouse flavin-containing monooxygenase 2 (FMO2) was obtained as an expressed sequence tag (EST) isolated from a female mouse kidney cDNA library from the I.M.A.G.E. consortium (I.M.A.G.E. CloneID 1432164). Complete sequencing of the EST derived a nucleotide sequence for mouse FMO2, which contains 112 bases of 5' flanking region, 1607 bases of coding region, and 309 bases of 3' flanking region. This FMO2 sequence encodes a protein of 535 amino acids including two putative pyrophosphate binding sequences (GxGxxG/A) beginning at positions 9 and 191. Additionally, this mouse FMO protein sequence shows 87 and 86% homology to rabbit and human FMO2 respectively. The mouse FMO2 sequence was subcloned into the expression vector pJL-2, a derivative of pKK233-2 and used to transform XL1-Blue Escherichia coli. FMO activity in particulate fractions isolated from isopropyl-beta-D-thiogalactopyanoside (IPTG) induced cells was heat stable (45 degrees C for 5 min) and demonstrated optimal activity at a relatively high pH of 10.5. The expressed FMO2 enzyme showed catalytic activity towards the FMO substrate methimazole and further analysis of E. coli fractions utilizing NADPH oxidation demonstrated that the mouse FMO2 enzyme also exhibits catalytic activity towards thiourea, trimethylamine, and the insecticide phorate.  相似文献   

15.
1. The effects of eight newly synthesized 2-aryl substituted benzimidazole derivatives on control and phenobarbital (PB) treated rat liver microsomal aniline 4-hydroxylase and ethylmorphine N-demethylase activities, and their binding to control and PB-treated rat liver microsomal oxidized cytochrome P-450 are presented. 2. All compounds inhibited ethylmorphine N-demethylase activity with I50 values ranging from 8.50 x 10(-4) M to 27.83 x 10(-4) M in control and ranging from 2.80 x 10(-4) M to 15.79 x 10(-4) M in PB-treated rats. 3. Aniline 4-hydroxylase activity was inhibited by all of the compounds tested having I50 values in the range of 7.04 x 10(-4) M-31.37 x 10(-4) M in PB-treated rats, but only five of the compounds showed inhibitory activity in control rats. 4. Only a few significant regression coefficients could be found between the parameters of the chemicals studied and their inhibitory patterns. 5. No correlation has been observed between the binding of the derivatives and their inhibitory pattern.  相似文献   

16.
The FAD-containing monooxygenase (FMO) has been purified from both mouse and pig liver microsomes by similar purification procedures. Characterization of the enzyme from these two sources has revealed significant differences in catalytic and immunological properties. The pH optimum of mouse FMO is slightly higher than that of pig FMO (9.2 vs. 8.7) and, while pig FMO is activated 2-fold by n-octylamine, mouse FMO is activated less than 20%. Compounds, including primary, secondary and tertiary amines, sulfides, sulfoxides, thiols, thioureas and mercaptoimidazoles were tested as substrates for both the mouse and pig liver FMO. Km- and Vmax-values were determined for substrates representative of each of these groups. In general, the mouse FMO had higher Km-values for all of the amines and disulfides tested. Mouse FMO had Km-values similar to those of pig FMO for sulfides, mercaptoimidazoles, thioureas, thiobenzamide and cysteamine. Vmax-values for mouse FMO with most substrates was approximately equal, indicating that as with pig FMO, breakdown of the hydroxyflavin is the rate limiting step in the reaction mechanism. Either NADPH or NADH will serve as an electron donor for FMO, however, NADPH is the preferred donor. Pig and mouse FMOs have similar affinity for NADPH (Km = 0.97 and 1.1 microM, respectively) and for NADH (Km = 48 and 73 microM, respectively). An antibody, prepared by immunizing rabbits with purified pig liver FMO, reacts with purified pig liver FMO but not with mouse liver FMO, indicating structural differences between these two enzymes. This antibody inhibited pig FMO activity up to 60%.  相似文献   

17.
Methionine has previously been shown to be S-oxidized by flavin-containing monooxygenase (FMO) forms 1, 2, and 3. The most efficient catalyst was FMO3, which has a Km value for methionine S-oxidation of approximately 4 mM, and exhibits high selectivity for formation of the d-diastereoisomer of methionine sulfoxide. The current studies provide evidence for an additional methionine S-oxidase activity in liver microsomes. Human and rabbit liver microsomes exhibited a biphasic response to methionine at concentrations ranging from 0.05 to 10 mM, as indicated by both Eadie-Hofstee plots and nonlinear regression. The low-affinity component of the biphasic response had Km values of approximately 3 and 5 mM for humans and rabbits, respectively, as well as high diastereoselectivity for methionine sulfoxide formation. The low-affinity activity in rabbit liver microsomes was inhibited by methimazole, S-allyl-l-cysteine, and by mild heat treatment, suggesting the activity is FMO3. The high-affinity component of the biphasic response had Km values of approximately 0.07 and 0.04 mM for humans and rabbits, respectively, as well as lower diastereoselectivity for methionine sulfoxide formation. Further characterization of the high-affinity activity in rabbit liver microsomes indicated lack of involvement of cytochrome P450s or reactive oxygen species. The high-affinity activity was inhibited 25% by potassium cyanide and greater than 50% by methimazole and S-allyl-l-cysteine. Mild heat treatment produced 85% inhibition of the low-affinity activity, but only 30% inhibition of the high-affinity activity. Both high- and low-affinity activities were decreased by 85% in flavin-depleted microsomes. Because these results suggested the additional S-oxidase activity has characteristics of an FMO, recombinant human FMO4 was evaluated as a potential catalyst of this activity. Recombinant FMO4 catalyzed S-oxidation of both methionine and S-allyl-l-cysteine, with similar diastereoselectivity to the high-affinity microsomal S-oxidase; however, the Km values for both reactions appeared to be greater than 10 mM. In summary, these studies provide evidence for two microsomal methionine S-oxidase activities. FMO3 is the predominant catalyst at millimolar concentrations of methionine. However, at micromolar methionine concentrations, there is an additional S-oxidase activity that is distinct from FMO3.  相似文献   

18.
Hepatic flavin-containing monooxygenases catalyze NADPH-dependent oxygenation of a wide variety of drugs that possess a nucleophilic heteroatom. Two forms of these enzymes (form 1 and 2) have been isolated from rabbit liver microsomes and partially characterized (Ozols, J., 1989, Biochem. Biophys. Res. Commun. 163, 49-55). The complete amino acid sequence of form 2 is presented here. Sequence determination was achieved by pulsed liquid-phase and solid-phase sequencing of 40 peptides generated by chemical and enzymatic cleavages, including CNBr cleavage of tryptophanyl residues. Form 2 monooxygenase contains 533 amino acid residues and has a molecular weight of 60,089. The COOH terminus of this enzyme is very hydrophobic and presumably functions to anchor the protein to the membrane. Form 2 is readily degraded, since a form lacking residues 1 to 278 and a form without the COOH-terminal segment were also isolated from solubilized membrane preparations. The amino acid sequence of form 2 is 52% identical to that of form 1 and shows 55% identity to the sequence of rabbit lung monooxygenase derived from the cDNA data. The putative FAD and NADP binding segments around residues 9 and 190 are conserved in all three forms. Three variable segments can also be identified in these isoforms. These are residues 308 to 321, residues 408 to 421, and the membrane binding domain, residues 505 to 533. A comparison of the presently limited amino acid sequence data of flavin-containing monooxygenases (FMOs) implies that a particular FMO in different mammalian species may be very similar, but isozymes within a species may exhibit more extensive variability with respect to homology and catalytic activity. This study documents the structural diversity of a second hepatic FMO from rabbit liver and establishes this class of drug-metabolizing enzymes as a family of related proteins.  相似文献   

19.
Sex-related differencesin the activity of hepatic FAD-containing monooxygenase (FAD-M) were found in C3H/St mice. Adult female mice had enzyme activities nearly two-fold greater than male mice and these, differences which were absent in sexually immature mice, became apparent at the onset of puberty. The sex differences in hepatic FAD-M appeared to be mediated through the suppressive effect of testosterone; castration of male mice enhanced enzyme activity, while androgenic replacement returned activities to control levels. Testosterone's suppressive effect was found to be relatively specific for hepatic FAD-M. Treatment of castrated male mice with both the anti-androgen flutamide and testosterone returned enzyme activity to control levels, suggesting that testosterone's regulation of hepatic microsomal FAD-M is receptor-mediated. Female gonadectomy had no effect on this enzyme's activity.  相似文献   

20.
A highly sensitive spectrophotometric assay was developed for measuring flavin-containing monooxygenase activity using methimazole (N-methyl-2-mercaptoimidazole) as the substrate. With the procedure described, flavin-containing monooxygenase activity can be accurately measured in whole cell homogenates without interference due to NADPH oxidase activities. The effects of detergents and octylamine on female mouse liver flavin-containing monooxygenase activity were characterized for whole homogenates and microsomes prepared under conditions which tend to cause or minimize microsomal aggregation. A small activation was observed with 0.2% (v/v) Emulgen 913 with nonaggregated microsomes; higher levels of detergents gave maximal activity with aggregated microsomes. Variations in the activity of the female mouse liver enzyme with nutritional state and time of day were evaluated. Higher specific activities were observed in homogenates and microsomes of livers from fed animals than from livers of 24-h starved animals, and higher specific activities were present in samples from livers of animals sacrificed in late afternoon than in the early morning. In the period where activity increased in fed animals (i.e., the AM to PM transition), a portion of flavin-containing monooxygenase was more resistant to thermal inactivation. Other properties are described which suggest structural differences for at least a portion of the flavin-containing monooxygenase. The possibility that these differences may be related to turnover of the flavin-containing monooxygenase is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号