首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The measurements of intralysosomal pH under the action of the number of amines earlier reported to block the process of the initiation of cell proliferation (Nikolsky et al., 1984) were made on Swiss 3T3 cells. The intralysosomal pH (pH1) value was estimated by parameters of fluorescence of fluorescein-labeled dextran in single intact cells. The pHl value was equal to 4.7 +/- 0.2 for both actively growing and quiescent cells. The pH gradient between lysosomes and the cytoplasm was completely destroyed by monensin and partially by carbonylcyamide-m-chlorophenylhydrasone. Methylamine and chloroquine rapidly enhanced the pHl, value to 6.4-7.0. Dansylcadaverine, 5-methoxytryptamine and dimethylurea did not affect pHl value. Intracellular accumulation of dansylcadaverine was shown to be due to the existence of acidic compartments into the cell and highly decreased in the presence of monensin. A conclusion is made that the inhibition of mitogenic signal by amines cannot be unequivocally accounted for by increasing the pH in organelles involved in the intracellular processing of growth factors.  相似文献   

2.
The role of intracellular processing of epidermal growth factor (EGF) in the induction of proliferation of quiescent Swiss 3T3 cells was studied using various inhibitors. The number of amines (dansylcadaverine, chloroquine, cystamine, 5-methoxytryptamine) dimethylurea and monensin were shown to block the mitogenic effect of EGF. The majority of these substances while used in concentrations sufficient to inhibit the proliferation do not significantly influence 125I-EGF binding and internalization. The level of EGF degradation was reduced only by chloroquine. The inhibitory effect of amines and monensin on the generation of proliferative signal was supposed to take place at the stages of EGF processing in "specialized" endosomes and in Golgi apparatus.  相似文献   

3.
In cultured human lung fibroblasts treated with Clostridium difficile toxin B, the development of the cytopathogenic effect was inhibited by the proton ionophore monensin but was not affected by some other ionophores. The calcium channel blockers verapamil and LaCl3 protected the cells against intoxication, as did the calmodulin antagonists trifluoperazine, amitriptyline, R 24571, and dansylcadaverine. Since these agents could not prevent intoxication when added after the toxin internalization was completed, we suggest that calmodulin and uptake of extracellular calcium are needed for the internalization but not for the cytosolic action of the toxin.  相似文献   

4.
Binding studies with cells that had been permeabilized with saponin indicate that alveolar macrophages have an intracellular pool of mannose-specific binding sites which is about 4-fold greater than the cell surface pool. Monensin, a carboxylic ionophore which mediates proton movement across membranes, has no effect on binding of ligand to macrophages but blocks receptor-mediated uptake of 125I-labelled beta-glucuronidase. Inhibition of uptake was concentration- and time-dependent. Internalization of receptor-bound ligand, after warming to 37 degrees C, was unaffected by monensin. Moreover, internalization of ligand in the presence of monensin resulted in an intracellular accumulation of receptor-ligand complexes. The monensin effect was not dependent on the presence of ligand, since incubation of macrophages with monensin at 37 degrees C without ligand resulted in a substantial decrease in cell-surface binding activity. However, total binding activity, measured in the presence of saponin, was much less affected by monensin treatment. Removal of monensin followed by a brief incubation at pH 6.0 and 37 degrees C, restored both cell-surface binding and uptake activity. Fractionation experiments indicate that ligands enter a low-density (endosomal) fraction within the first few minutes of uptake, and within 20 min transfer to the lysosomal fraction has occurred. Monensin blocks the transfer from endosomal to lysosomal fraction. Lysosomal pH, as measured by the fluorescein-dextran method, was increased by monensin in the same concentration range that blocked ligand uptake. The results indicate that monensin blockade of receptor-mediated endocytosis of mannose-terminated ligands by macrophages is due to entrapment of receptor-ligand complexes and probably receptors in the pre-lysosomal compartment. The inhibition is linked with an increase in the pH of acid intracellular vesicles.  相似文献   

5.
The increase of uridine phosphorylation during the first hour after epidermal growth factor (EGF) stimulation (1.25 nM) of Swiss 3T3 cells is completely blocked by 100 microM dansylcadaverine (DC). Lack of the effect of DC on uridine transport, uridine kinase activity in cell homogenate, intracellular ATP concentration and plasma membrane permeability for phosphorylated uridine derivatives makes it possible to propose the inhibition by DC (100 microM) of the activated state of uridine kinase. The rapidity of the inhibition of EGF effect and the lack of influence of DC (in tested concentration) upon the clustering of EGF-receptor complexes, rate of their internalization (Sorkin, 1985; Nikol'ski? et al., 1987) and pH value of intracellular compartments (Sorkin et al., 1985; Teslenko et al., 1986) may suggest an association of DC inhibitory action with blocking of some steps of the receptor mediated endocytosis. Accumulation of DC in cell membranes, rather than in intracellular compartments with acidic pH, is a necessary factor for its blocking effect. Possibilities of DC action through the influence on calmodulin-dependent proteins or EGF-induced cell protein phosphorylation are discussed.  相似文献   

6.
The effect of monensin on endocytosis, transcytosis, recycling and transport to the Golgi apparatus in filter-grown Madin-Darby canine kidney (MDCK) cells was investigated using 125I-labeled ricin as a marker for membrane transport, and horseradish peroxidase (HRP) as a marker for fluid phase transport. Monensin (10 microM) stimulated transcytosis of both markers about 3-fold in the basolateral to apical direction. Transcytosis of HRP in the opposite direction, apical to basolateral, was reduced to approximately 50% of the control by monensin, whereas that of ricin was slightly increased. Recycling of markers endocytosed from the apical surface was reduced in the presence of monensin and there was an increased accumulation of both ricin and HRP in the cells. Transport of ricin to the Golgi apparatus increased to the same extent as the increase in intracellular accumulation. No change in recycling or accumulation was observed with monensin when the markers were added basolaterally, but transport of ricin to the Golgi apparatus increased almost 3-fold. Our results indicate that basolateral to apical transcytosis is increased in the absence of low endosomal pH, and they suggest that apical to basolateral transcytosis of a membrane-bound marker (ricin) is affected by monensin differently from that of a fluid phase marker (HRP).  相似文献   

7.
It has been shown that endocytic vesicles in BALB/c 3T3 cells have a pH of 5.0 (Tycko and Maxfield, Cell, 28:643-651). In this paper, a method for measuring the effect of various agents, including weak bases and ionophores, on the pH of endocytic vesicles is presented. The method is based on the increase in fluorescein fluorescence with 490-nm excitation as the pH is raised above 5.0. Intensities of cells were measured using a microscope spectrofluorometer after internalization of fluorescein-labeled alpha 2-macroglobulin by receptor-mediated endocytosis. The increase in endocytic vesicle pH was determined from the increase in fluorescence after addition of various concentrations of the test agents. The following agents increased endocytic vesicle pH above 6.0 at the indicated concentrations: monensin (6 microM), FCCP (10 microM), chloroquine (140 microM), ammonia (5 mM), methylamine (10 mM). The ability of many of these agents to raise endocytic vesicle pH may account for many of their effects on receptor-mediated endocytosis. Dansylcadaverine caused no effect on vesicle pH at 1 mM. The observed increases in vesicle pH were rapid (1-2 min) and could be reversed by removal of the perturbant. This reversibility indicates that the vesicles themselves contain a mechanism for acidification. The increase in vesicle pH due to these treatments can be observed visually using an SIT video camera. Using this method, it is shown that endocytic vesicles become acidic at very early times (i.e., within 5-7 min of continuous uptake at 37 degrees C).  相似文献   

8.
Rat ovarian granulosa cells, isolated from immature female rats 48 h after stimulation with 5 IU of pregnant mare's serum gonadotropin, were maintained in culture. The effects of monensin, a monovalent cationic ionophore, on various aspects of proteoglycan metabolism were studied by metabolically labeling cultures with [35S]sulfate, [3H]glucosamine, or [3H]glucose. Monensin inhibited post-translational modification of both heparan sulfate (HS) proteoglycans and dermatan sulfate (DS) proteoglycans, resulting in decreased synthesis of completed proteoglycans [( 35S]sulfate incorporation decreased to 10% of control by 30 microM monensin, with an ED50 approximately 1 microM). Proteoglycans synthesized in the presence of monensin showed undersulfation of both DS and HS glycosaminoglycans and altered N-linked and O-linked oligosaccharides, suggesting that the processing of all sugar moieties is closely associated. Monensin caused a decrease in the endogenous sugar supply to the UDP-N-acetylhexosamine pool as indicated by an increased 3H incorporation into DS chains [( 3H]glucosamine as precursor) in spite of the decrease in glycosaminoglycan synthesis. Monensin reduced and delayed transport of both secretory and membrane-associated proteoglycans from the Golgi complex to the cell surface. It took 2-4 min for newly labeled proteoglycans to reach the main transport process inhibited by monensin. Monensin at 30 microM did not prevent internalization of cell surface 35S-labeled proteoglycans but almost completely inhibited their intracellular degradation to free [35S]sulfate (ED50 approximately 1 microM), resulting in intracellular accumulation of both DS and HS proteoglycans. Pulse-chase experiments demonstrated that one of the intracellular degradation pathways involving proteolysis of both DS and HS proteoglycans and limited endoglycosidic cleavage of HS continued to operate in the presence of monensin. These results suggest that the intracellular degradation of proteoglycans involve both acidic and nonacidic compartments with monensin inhibiting those processes that normally occur in such acidic compartments as endosomes or lysosomes by raising their pH.  相似文献   

9.
We investigated the involvement of ClC-3 chloride channels in endosomal acidification by measurement of endosomal pH and chloride concentration [Cl-] in control versus ClC-3-deficient hepatocytes and in control versus ClC-3-transfected Chinese hamster ovary cells. Endosomes were labeled with pH or [Cl-]-sensing fluorescent transferrin (Tf), which targets to early/recycling endosomes, or alpha2-macroglobulin (alpha2M), which targets to late endosomes. In pulse label-chase experiments, [Cl-] was 19 mM just after internalization in alpha2M-labeled endosomes in primary cultures of hepatocytes from wild-type mice, increasing to 58 mM over 45 min, whereas pH decreased from 7.1 to 5.4. Endosomal acidification and [Cl-] accumulation were significantly impaired in hepatocytes from ClC-3 knock-out mice, with [Cl-] increasing from 16 to 43 mM and pH decreasing from 7.1 to 6.0. Acidification and Cl- accumulation were blocked by bafilomycin. In Tf-labeled endosomes, [Cl-] was 46 mM in wild-type versus 35 mM in ClC-3-deficient hepatocytes at 15 min after internalization, with corresponding pH of 6.1 versus 6.5. Approximately 4-fold increased Cl- conductance was found in alpha2M-labeled endosomes isolated from hepatocytes of wild-type versus ClC-3 null mice. In contrast, Golgi acidification was not impaired in ClC-3-deficient hepatocytes. In transfected Chinese hamster ovary cells expressing ClC-3A, endosomal acidification and [Cl-] accumulation were enhanced. [Cl-] in alpha2M-labeled endosomes was 42 mM (control) versus 53 mM (ClC-3A) at 45 min, with corresponding pH 5.8 versus 5.2; [Cl-] in Tf-labeled endosomes at 15 min was 37 mM (control) versus 49 mM (ClC-3A) with pH 6.3 versus 5.9. Our results provide direct evidence for involvement of ClC-3 in endosomal acidification by Cl- shunting of the interior-positive membrane potential created by the vacuolar H+ pump.  相似文献   

10.
Recent studies have characterized a specific binding site for the C-terminal 3-8 fragment of angiotensin II (Ang IV). In the present study we looked at the internalization process of this receptor on bovine aortic endothelial cells (BAEC). Under normal culture conditions, BAEC efficiently internalized (125)I-Ang IV as assessed by acid-resistant binding. Internalization of (125)I-Ang IV was considerably decreased after pretreatment of cells with hyperosmolar sucrose or after pretreatment of BAEC with inhibitors of endosomal acidification such as monensin or NH(4)Cl. About 50% of internalized (125)I-Ang IV recycled back to the extracellular medium during a 2 h incubation at 37 degrees C. (125)I-Ang IV remained mostly intact during the whole process of internalization and recycling as assessed by thin layer chromatography. As expected, internalization of (125)I-Ang IV was completely abolished by divalinal-Ang IV, a known AT(4) receptor antagonist. Interestingly, (125)I-divalinal-Ang IV did not internalize into BAEC. These results suggest that AT(4) receptor undergoes an agonist-dependent internalization and recycling process commonly observed upon activation of functional receptors.  相似文献   

11.
In spite of intensified efforts to understand cell signaling from endosomes, there is no direct evidence demonstrating that endosomal signaling is sufficient to activate signal transduction pathways and no evidence to demonstrate that endosomal signaling is able to produce a biological outcome. The lack of breakthrough is due in part to the lack of means to generate endosomal signals without plasma membrane signaling. In this paper, we report the establishment of a system to specifically activate epidermal growth factor (EGF) receptor (EGFR) when it endocytoses into endosomes. We treated cells with EGF in the presence of AG-1478, a specific EGFR tyrosine kinase inhibitor, and monensin, which blocks the recycling of EGFR. This treatment led to the internalization of nonactivated EGF-EGFR complexes into endosomes. The endosome-associated EGFR was then activated by removing AG-1478 and monensin. During this procedure we did not observe any surface EGFR phosphorylation. We also achieved specific activation of endosome-associated EGFR without using monensin. By using this system, we provided original evidence demonstrating that (i) the endosome can serve as a nucleation site for the formation of signaling complexes, (ii) endosomal EGFR signaling is sufficient to activate the major signaling pathways leading to cell proliferation and survival, and (iii) endosomal EGFR signaling is sufficient to suppress apoptosis induced by serum withdrawal.  相似文献   

12.
The compartmentalization of the epidermal growth factor (EGF) receptors in A-431 cells was studied using centrifugation of the microsomal fraction of these cells in continuous Percoll gradient. The existence of an intact (non-degraded) EGF receptor in plasma membrane and endosome fraction was demonstrated by electrophoretic analysis of in vitro phosphorylated Percoll fractions. No phosphorylated receptor was revealed in lysosomal fraction by this method. The existence of non dissociated EGF-receptor complexes in intracellular compartments 30 minutes after the start of internalization was proven using a synthesized photoreactive labeled EGF derivative (125I-EGF-SANAH). The removing of pH gradient in organellar membranes by 10 mkM of monensin did not affect dissociation from its receptor. The data obtained proved the existence of non-dissociated and non-degraded EGF-receptor complexes in the endosomal compartment of A-431 cells.  相似文献   

13.
The monovalent cationic ionophores monensin and nigericin stimulated rapid guinea pig sperm acrosome reactions in the presence of extracellular Na+, Ca2+ and bicarbonate (HCO3-/CO2). Extracellular K+ (mM concentrations), in contrast, was not required for the stimulatory effect of the ionophores. The effect of HCO3-/CO2 is concentration, pH and temperature dependent, with maximal responses obtained with 50 microM monensin or 25 microM nigericin at a concentration of 30 mM HCO3-, 2.5% CO2 and pH 7.8 at 25 degrees C. At a constant HCO3- concentration (30 mM), monensin stimulated acrosome reactions within the pH range 7.5-7.8, whereas a higher or lower pH did not support acrosome reactions at 25 degrees C. At constant extracellular pH (7.8), monensin stimulated acrosome reactions in the presence of 30 mM HCO3-, whereas higher and lower concentrations did not support acrosome reactions at 25 degrees C. The permeant anions pyruvate and lactate were essential to maintain sperm motility when treated with monensin under these conditions. NH4Cl, sodium acetate and 4,41-diisothiocyano-2, 21-disulfonic acid stibene (DIDS; 25 microM), an anion transport inhibitor, blocked the ability of monensin to stimulate acrosome reactions. Verapamil (100 microM), a putative Ca2+ transport antagonist, in contrast, did not prevent the monensin-induced acrosome reactions. Physiological concentrations of Na+ were needed for monensin to stimulate acrosome reactions, but high concentrations of Mg2+ prevented the monensin stimulation. The Ca2+ ionophore A23187 (75 nM) also required physiological concentrations of Na+ for the rapid induction of maximal acrosome reactions at an elevated pH (8.3) but did not require the presence of extracellular HCO3-. These studies suggest that a monovalent ionophore-induced rise in sperm intracellular Na+ concentrations is a pre-Ca2+ entry event, that stimulates an endogenous Ca2+/Na+ exchange that allows a Ca2+ influx which in turn induces the acrosome reaction. The possible regulatory role of the sperm intracellular pH and Na+, K+-ATPase during the capacitation process under physiological conditions is discussed.  相似文献   

14.
Prevotella bryantii cultures treated with monensin grew more slowly than untreated cultures, but only if the monensin concentration was greater than 1 microM. Cultures that were repeatedly transferred (eight transfers or 25 doublings) with monensin always grew rapidly, even at a 10 microM concentration. The amount of monensin needed to facilitate half-maximal potassium depletion (K(d)) from monensin-selected cells was 16-fold greater than "unadapted" wild-type cultures (3,200 versus 200 nM). Cells taken from continuous culture had a K(d) of 100 nM, and these inocula could not grow in batch culture when the monensin concentration was greater than 300 nM. Continuous cultures treated with monensin nearly washed out, but the surviving cells had a K(d) of 1,300 nM. When wild-type cells were transferred in batch culture with 10 microM monensin, the K(d) did not reach its maximum value (3,200 nM) until after eight transfers (25 doublings). K(d) declined when monensin was removed, and it took eight transfers to reach the control value (200 nM). The most probable number of wild-type cells was 1,000-fold lower than of the monensin-selected cells, but calculations based on relative growth advantage and K(d) indicated that the wild-type culture had 1 to 10% highly monensin-resistant cells. Cell pellets of wild-type cultures were more difficult to disperse than were monensin-selected cells, and water-soluble phenol extracts of monensin-selected cells had 1.8-fold more anthrone-reactive material than did the wild type. Wild-type cultures that were washed in Tris buffer (pH 8.0) released little alkaline phosphatase and were agglutinated by lysozyme. Monensin-selected cultures leaked ninefold more alkaline phosphatase and were not agglutinated by lysozyme. Wild-type colonies taken from high-dilution agar roll tubes retained the lysozyme agglutination phenotype even if transferred with monensin, and monensin-selected colonies were never agglutinated. These observations indicated that wild-type P. bryantii cultures had a subpopulation with different outer membrane characteristics and increased monensin resistance.  相似文献   

15.
Rat embryo fibroblasts cultured in the presence of monensin exhibited an inhibited uptake of horseradish peroxidase. The inhibition was detected after 3 h, after which time the cells became increasingly vacuolated; the concentration of monensin required to inhibit pinocytosis (0.4 microM for half-maximum inhibition at 18 h) was similar to that found by others to inhibit secretion. Both the exchange of 5'-nucleotidase between the membranes of cytoplasmic organelles and the cell surface and the internalization of anti-5'-nucleotidase bound to the cell surface were inhibited by approximately 90% in monensin- treated cells. The effects of monensin were reversible: cells cultured first with monensin, and then in fresh medium, exhibited control levels of horseradish peroxidase uptake, exchange of 5'-nucleotidase, and internalization of anti-5'-nucleotidase bound to the cell surface. After monensin treatment, the median density of both galactosyl transferase and 5'-nucleotidase increased from 1.128 to 1.148, and the median density of both N-acetyl-beta-glucosaminidase and horseradish peroxidase taken up by endocytosis decreased from 1.194 to 1.160. The results indicate that monensin is a reversible inhibitor of pinocytosis and, presumably, therefore, of membrane recycling. They suggest that the inhibition of membrane recycling occurs at a step other than the fusion of pinocytic vesicles with lysosomes and is perhaps a consequence of an effect of the ionophore on the Golgi complex.  相似文献   

16.
P Soubigou  M Ali    C Plas 《The Biochemical journal》1987,246(3):567-573
Sequential changes in the numbers of cell-surface receptors induced by a transitory exposure to insulin in cultured 18-day foetal-rat hepatocytes were investigated in the presence of drugs and at a temperature of 22 degrees C, which inhibit cellular insulin degradation. Chloroquine (70 microM) and monensin (3 microM) did not greatly change the initial rate of internalization of cell-surface receptor sites after exposure to 10 nM-insulin, but led to a steady state after 20 min, which represented 40% of the initial binding, compared with 5 min and 60% in the absence of the drug. Moreover, these drugs strongly decreased the proportion of receptor sites recovered at the cell surface after subsequent removal of the hormone. They were ineffective when insulin was not present. The removal of monensin together with the hormone allowed partial restoration of cell-surface receptor sites and degradation of cell-associated insulin to start again at the initial speed, indicating a reversible effect of the drug. During this phase, the drug concentration-dependence for the two effects showed that receptor recycling was restored with concentrations of monensin not as low as for insulin degradation. The effect of vinblastine (50-100 microM) was similar to that of chloroquine and monensin, whereas no modification in the internalization and recovery processes was observed in the presence of bacitracin concentrations (1-3 mM) that inhibit insulin degradation by 70%. A temperature of 22 degrees C did not prevent the receptor internalization, but had a slowing effect on the recycling process, which appeared to vary in experiments where insulin degradation remained inhibited. The present study shows that the process of insulin degradation mediated by receptor endocytosis is not a prerequisite for insulin-receptor recycling in cultured foetal hepatocytes.  相似文献   

17.
Immature pig Sertoli cells, cultured in a chemically defined medium, are able to maintain many of their functional characteristics for at least two weeks. This model was used to investigate the binding, internalization and degradation of 125I-labelled human follitropin (hFSH) and the effects of pig FSH (pFSH) on its own receptors. The binding of 125I-labelled hFSH was dependent on time, temperature and concentration. At 4 degrees C, the apparent steady state was reached in 8-12 h and remained constant for at least 24 h, whereas at 33 degrees C the apparent equilibrium was reached in 4-6 h. Thereafter the total binding declined and by 24 h it was less than 50% of the maximum binding. At 33 degrees C the binding for the hormone to its surface receptor was followed by internalization of the hormone (half-life approximately equal to 1 h) and its degradation (half-life approximately equal to 3 h). The receptor-mediated internalization of hFSH was blocked by phenylarsine oxide. In the presence of the ionophore monensin (20 microM) the rates of binding and internalization were not modified but the degradation rate was much lower (half-life approximately equal to 18 h). Thus, in the presence of monensin, maximum binding increased twofold to threefold, and remained constant for 24 h. This increase was mainly due to an increase of the internalized hormone. When Sertoli cells were exposed to pFSH there was a loss of its own receptor, which was both dose-dependent (ED50 = 250 ng/ml) and time-dependent (t 1/2 = 14 h). Cycloheximide did not modify the FSH-induced down-regulation, whereas monensin enhanced the down-regulation process. These results show that FSH, like other ligands, is internalized and degraded by its target cells and indicate that the hormone-mediated down-regulation is related to the internalization process. However, the discrepancy between the rate of internalization and of hormone-induced down-regulation, suggests that some of the internalized receptors are recycled.  相似文献   

18.
The mechanism of autodegradation of cell-surface macromolecules shed by human melanoma cells was studied by incubating radio-iodinated shed macromolecules with unlabeled sister cells and measuring the appearance of acid-soluble radioactivity. After a preliminary latent period of 1-3 h, degradation continually increased up to 24 h and was concentration-dependent. By contrast, binding to cells was very rapid reaching half-maximal value within 15 min. Autodegradation was markedly reduced (44-82%) by pharmacological agents which interfere with endocytosis or lysosomal enzyme activity, including drugs which inhibit receptor migration into coated pits (dansylcadaverine), endocytosis and intracellular transport (colchicine, cytochalasin B, and monensin), and the activity of lysosomal enzymes (chloroquine, ammonium chloride, leupeptin). Degradation was almost totally suppressed (95%) at 4 degrees C. These data suggest that surface macromolecules shed by melanoma cells are autodegraded in part by re-uptake into melanoma cells followed by degradation in lysosomes.  相似文献   

19.
Treatment of Chinese hamster ovary cells with dansylcadaverine or N-(6-aminohexyl)-5-chloro-1-naphthylenesulfonamide (W7) reduced cell attachment in a reversible, dose-dependent manner. The concentration of dansylcadaverine required to produce 50% inhibition of adhesion was significantly higher than that of W7, 300 microM and 50 microM, respectively. Concentrations of dansylcadaverine and W7 which produced decreased adhesion also antagonized calmodulin-dependent activation of phosphodiesterase. Chlorpromazine, another calmoldulin antagonist also decreased cell attachment. Dansylcadaverine and W7 both interfere with cellular transglutaminase activity, but several other transglutaminase antagonists, such as methylamine, butylamine, putrescine and bacitracin, had no effect on CHO cell attachment. We conclude that naphthylsulfonamides such as dansylcadaverine and W7 may inhibit the attachment of CHO cells by a mechanism which could involve inhibition of calmodulin-dependent processes, although further studies are required to show a direct role of calmodulin in cell adhesion.  相似文献   

20.
We studied the effect of hyperosmotic inhibition of the clathrin coated pit cycle on the monensin- and chloroquine-dependent loss of surface galactosyl (Gal) receptor activity on isolated rat hepatocytes. Cells treated for 60 min without ligand at 37 degrees C with 25 microM monensin or 300 microM chloroquine in normal medium (osmolality congruent to 275 mmol/kg) bound 40-60% less 125I-asialo-orosomucoid (ASOR) at 4 degrees C than untreated cells. Cells exposed to monensin or chloroquine retained progressively more surface Gal receptor activity, however, when the osmolality of the medium was increased above 400 mmol/kg (using sucrose as osmolite) 10 min prior to and during drug treatment. Cells pretreated for 10 min with hyperosmolal media (600 mmol/kg) alone internalized less than or equal to 10% of surface-bound 125I-ASOR. Thus, the ligand-independent loss of surface Gal receptor activity on monensin- and chloroquine-treated hepatocytes requires internalization of constitutively recycling receptors via a coated pit pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号