首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perlecan is a modular heparan sulphate and/or chondroitin sulphate substituted proteoglycan of basement membrane, vascular tissues and cartilage. Perlecan acts as a low affinity co-receptor for fibroblast growth factors 1, 2, 7, 9, binds connective tissue growth factor and co-ordinates chondrogenesis, endochondral ossification and vascular remodelling during skeletal development; however, relatively little is known of its distribution in these tissues during ageing and development. The aim of the present study was to immunolocalise perlecan in the articular and epiphyseal growth plate cartilages of stifle joints in 2-day to 8-year-old pedigree merino sheep. Perlecan was prominent pericellularly in the stifle joint cartilages at all age points and also present in the inter-territorial matrix of the newborn to 19-month-old cartilage specimens. Aggrecan was part pericellular, but predominantly an extracellular proteoglycan. Perlecan was a prominent component of the long bone growth plates and displayed a pericellular as well as a strong ECM distribution pattern; this may indicate a so far unrecognised role for perlecan in the mineralisation of hypertrophic cartilage. A significant age dependant decline in cell number and perlecan levels was evident in the hyaline and growth plate cartilages. The prominent pericellular distribution of perlecan observed indicates potential roles in cell-matrix communication in cartilage, consistent with growth factor signalling, cellular proliferation and tissue development.  相似文献   

2.
The aim of this study was to ascertain how perlecan was localized in human fetal cartilaginous joint rudiment tissues. Perlecan was immunolocalized in human fetal (12-14-week-old) toe, finger, knee, elbow, shoulder, and hip joint rudiments using a monoclonal antibody to domain-1 of perlecan (MAb A76). Perlecan had a widespread distribution in the cartilaginous joint rudiments and growth plates and was also prominent in a network of convoluted hairpin loop-type vessels at the presumptive articulating surfaces of joints. Perlecan was also present in small perichondrial venules and arterioles along the shaft of the developing long bones, small blood vessels in the synovial lining and joint capsules, and in distinctive arrangements of cartilage canals in the knee, elbow, shoulder, and hip joint rudiments. Perlecan was notably absent from CD-31-positive metaphyseal vessels in the hip, knee, shoulder, and fingers. These vessels may have a role in the nutrition of the expanding cell populations in these developing joint tissues and in the establishment of the secondary centers of ossification in the long bones, which is essential for endochondral ossification.  相似文献   

3.
We undertook a comparative immunolocalisation study on type II collagen, aggrecan and perlecan in a number of 12- to 14-week-old human foetal and postnatal (7–19 months) ovine joints including finger, toe, knee, elbow, hip and shoulder. This demonstrated that perlecan followed a virtually identical immunolocalisation pattern to that of type II collagen in the foetal tissues, but a slightly divergent localisation pattern in adult tissues. Aggrecan was also localised in the cartilaginous joint tissues, which were clearly delineated by toluidine blue staining and the type II collagen immunolocalisations. It was also present in the capsular joint tissues and in ligaments and tendons in the joint, which stained poorly or not at all with toluidine blue. In higher power microscopic views, antibodies to perlecan also stained small blood vessels in the synovial lining tissues of the joint capsule; however, this was not discernable in low power macroscopic views where the immunolocalisation of perlecan to pericellular regions of cells within the cartilaginous rudiments was a predominant feature. Perlecan was also evident in small blood vessels in stromal connective tissues associated with the cartilage rudiments and with occasional nerves in the vicinity of the joint tissues. Perlecan was expressed by rounded cells in the enthesis attachment points of tendons to bone and in rounded cells in the inner third of the meniscus, which stained prominently with type II collagen and aggrecan identifying the chondrogenic background of these cells and local compressive loads. Flattened cells within the tendon and in the surface laminas of articular cartilages and the meniscus did not express perlecan. Collected evidence presented herein, therefore, indicates that besides being a basement membrane component, perlecan is also a marker of chondrogenic cells in prenatal cartilages. In postnatal cartilages, perlecan displayed a pericellular localisation pattern rather than the territorial or interterritorial localisation it displayed in foetal cartilages. This may reflect processing of extracellular perlecan presumably as a consequence of intrinsic biomechanical loading on these tissues or to divergent functions for perlecan and type II collagen in adult compared to prenatal tissues.  相似文献   

4.
The aim of this study was to immunolocalise perlecan in ovine vertebral growth plate (VGP) and cartilaginous endplate (CEP) cartilages using a monoclonal antibody (MAb A76) directed to a core protein epitope in perlecan domain-I, and to compare and contrast its localisation patterns with known cartilage matrix components. Perlecan was a prominent pericellular component of mature hypertrophic chondrocytes in the VGP and CEP in newborn 2- to 5-day-old sheep. Type I, II, VI and X collagen, chondroitin-4 and 6-sulphate, 7-D-4 chondroitin sulphate isomer proteoglycan epitope, keratan sulphate, aggrecan core protein, hyaluronan (HA) and hyaluronan binding proteins (HABPs) each had distinct localisation patterns in the VGP and CEP. Type X collagen was a prominent component of the VGP but was undetectable in the CEP. Aggrecan was strongly localised extracellularly throughout the VGP and CEP but increased cell-associated staining was also evident. In contrast to the aforementioned matrix components, HA, HABPs and perlecan were localised strongly to the pericellular matrices of the hypertrophic VGP and CEP chondrocytes apparently indicating an important role for these components in terminal chondrocyte differentiation.  相似文献   

5.
Comparative immunolocalisations of latent transforming growth factor-beta-1 binding protein (LTBP)-2, fibrillin-1, versican and perlecan were undertaken in foetal human and wild type C57BL/6 mouse and Hspg2 exon 3 null HS deficient mouse intervertebral discs (IVDs). LTBP-2 was a prominent pericellular component of annular fibrochondrocytes in the posterior annulus fibrosus (AF), interstitial matrix adjacent to nucleus pulposus (NP) cells and to fibrillar and cell associated material in the anterior AF of the human foetal IVD and also displayed a pericellular localisation pattern in murine IVDs. Perlecan and LTBP-2 displayed strong pericellular colocalisation patterns in the posterior AF and to fibrillar material in the outer anterior AF in the foetal human IVD. Versican was a prominent fibril-associated component in the posterior and anterior AF, localised in close proximity to fibrillin-1 in fibrillar arrangements in the cartilaginous vertebral rudiments around paraspinal blood vessels, to major collagen fibre bundles in the anterior and posterior AF and shorter fibres in the NP. Fibrillin-1 was prominent in the outer anterior AF of the human foetal IVD and in fibres extending from the AF into the cartilaginous vertebral rudiments. LTBP-2 was prominently associated with annular fibrils containing fibrillin-1, versican was localised in close proximity to these but not specifically with LTBP-2. The similar deposition levels of LTBP-2 observed in the AF of the Hspg2 exon 3 null and wild type murine IVDs indicated that perlecan HS was not essential for LTBP-2 deposition but colocalisation of LTBP-2 with perlecan in the foetal human IVD was consistent with HS mediated interactions which have already been demonstrated in-vitro.  相似文献   

6.
We evaluated the immunohistochemical distribution of three major proteoglycans of cartilage, i.e., aggrecan, versican and perlecan vis-a-vis collagens I and II in the developing human spine of first-trimester foetuses. Aggrecan and perlecan were prominently immunolocalised in the cartilaginous vertebral body rudiments and to a lesser extent within the foetal intervertebral disc. In contrast, versican was only expressed in the developing intervertebral disc interspace. Using domain-specific monoclonal antibodies against the various modules of versican, we discovered the V0 isoform as the predominant form present. Versican immunolocalisations conducted with antibodies directed to epitopes in its N and C termini and GAG-α and GAG-β core protein domains provided evidence that versican in the nucleus pulposus was either synthesised devoid of a G3 domain or this domain was proteolytically removed in situ. The V0 versican isoform was localised with prominent fibrillar components in the annular lamellae of the outer annulus fibrosus. Perlecan was a notable pericellular proteoglycan in the annulus fibrosus and nucleus pulposus but poorly immunolocalised in the marginal tissues of the developing intervertebral disc, apparently delineating the intervertebral disc–vertebral body interface region destined to become the cartilaginous endplate in the mature intervertebral disc. The distribution of collagens I and II in the foetal spine was mutually exclusive with type I present in the outer annulus fibrosus, marginal tissues around the vertebral body rudiment and throughout the developing intervertebral disc, and type II prominent in the vertebral rudiment, absent in the outer annulus fibrosus and diffusely distributed in the inner annulus fibrosus and nucleus pulposus. Collectively, our findings suggest the existence of an intricate and finely balanced interplay between various proteoglycans and collagens and the spinal cell populations which synthesise and assemble these components during spinal development.  相似文献   

7.
The aim of this study was to immunolocalize perlecan in human fetal, postnatal, and mature hyaline cartilages and to determine information on the structure and function of chondrocyte perlecan. Perlecan is a prominent component of human fetal (12-14 week) finger, toe, knee, and elbow cartilages; it was localized diffusely in the interterritorial extracellular matrix, densely in the pericellular matrix around chondrocytes, and to small blood vessels in the joint capsules and perichondrium. Aggrecan had a more intense distribution in the marginal regions of the joint rudiments and in para-articular structures. Perlecan also had a strong pericellular localization pattern in postnatal (2-7 month) and mature (55-64 year) femoral cartilages, whereas aggrecan had a prominent extracellular matrix distribution in these tissues. Western blotting identified multiple perlecan core protein species in extracts of the postnatal and mature cartilages, some of which were substituted with heparan sulfate and/or chondroitin sulfate and some were devoid of glycosaminoglycan substitution. Some perlecan core proteins were smaller than intact perlecan, suggesting that proteolytic processing or alternative splicing had occurred. Surface plasmon resonance and quartz crystal microbalance with dissipation experiments demonstrated that chondrocyte perlecan bound fibroblast growth factor (FGF)-1 and -9 less efficiently than endothelial cell perlecan. The latter perlecan supported the proliferation of Baf-32 cells transfected with FGFR3c equally well with FGF-1 and -9, whereas chondrocyte perlecan only supported Baf-32 cell proliferation with FGF-9. The function of perlecan therefore may not be universal but may vary with its cellular origin and presumably its structure.  相似文献   

8.
Perlecan is a heparan sulfate proteoglycan that is expressed in all basement membranes (BMs), in cartilage, and several other mesenchymal tissues during development. Perlecan binds growth factors and interacts with various extracellular matrix proteins and cell adhesion molecules. Homozygous mice with a null mutation in the perlecan gene exhibit normal formation of BMs. However, BMs deteriorate in regions with increased mechanical stress such as the contracting myocardium and the expanding brain vesicles showing that perlecan is crucial for maintaining BM integrity. As a consequence, small clefts are formed in the cardiac muscle leading to blood leakage into the pericardial cavity and an arrest of heart function. The defects in the BM separating the brain from the adjacent mesenchyme caused invasion of brain tissue into the overlaying ectoderm leading to abnormal expansion of neuroepithelium, neuronal ectopias, and exencephaly. Finally, homozygotes developed a severe defect in cartilage, a tissue that lacks BMs. The chondrodysplasia is characterized by a reduction of the fibrillar collagen network, shortened collagen fibers, and elevated expression of cartilage extracellular matrix genes, suggesting that perlecan protects cartilage extracellular matrix from degradation.  相似文献   

9.
In this study, we demonstrate that articular cartilage chondrocytes are surrounded by the defining basement membrane proteins laminin, collagen type IV, nidogen and perlecan, and suggest that these form the functional equivalent of a basement membrane. We found by real-time PCR that mouse chondrocytes express these four cardinal components of basement membranes and demonstrated by immunohistochemistry that the proteins are present in bovine and mouse cartilage tissues and are deposited in a thin pericellular structure. Immunoelectron microscopy confirmed high laminin concentration in the pericellular matrix. In cartilage from newborn mice, basement membrane components are widespread in the territorial and interterritorial matrix, while in mature cartilage of adult mice the basement membrane components are localized mainly to a narrow pericellular zone. With progression into old age, this layer becomes less distinct, especially in areas of obvious mechanical attrition. Interestingly, individual laminin subunits were located in different zones of the cartilage, with laminin alpha1 showing preferential localization around a select population of superficial layer chondrocytes. We propose that the chondrocyte, like several other cell types of mesenchymal origin, is surrounded by the functional equivalent of a basement membrane. This structure is presumably involved in maintaining chondrocyte phenotype and viability and may well allow a new understanding of cartilage development and provide clues to the progression of degenerative joint disorders.  相似文献   

10.
Teratocarcinoma-derived endodermal PYS-2 cells are known to synthesize an extracellular matrix containing the basement membrane molecules laminin, type IV collagen, and heparan sulfate proteoglycan as major constituents (I. Leivo, K. Alitalo, L. Risteli, A. Vaheri, R. Timpl, J. Wartiovaara, Exp Cell Res 137:15-23, 1982). Immunoferritin techniques with specific antibodies were used in the present study to define the ultrastructural localization of the above constituents in the fibrillar network. Laminin was detected in matrix network adjacent to the basal cell membrane and in protruding matrix fibrils that connect the matrix to the cell membrane. Ruthenium red-stainable heparinase-sensitive 10- to 20-nm particles were often present at the junction of the attachment fibrils and the matrix network, or along the attachment fibrils. A corresponding distribution of ferritin label was observed for basement membrane heparan sulfate proteoglycan. Type IV collagen was found in the matrix network but not in the attachment fibrils. The results suggest that the PYS-2 cells are connected to their pericellular matrix by fibrils containing laminin associated with heparan sulfate-containing particles. These results may also have relevance for the attachment of epithelial cells to basement membranes.  相似文献   

11.
To allow a more valid comparison between our previous ultrastructural data and the immunolocalization of type IX and other minor collagen species in cryosectioned cartilage, we examined both normal and testicular hyaluronidase-digested canine tibial cartilage by electron microscopy. Removal of matrix proteoglycans caused the pericellular capsule to collapse against the cell surface, suggesting that its normal anatomical position is mediated by pericellular matrix hydration. Detailed examination of the pericellular capsule and pericellular channel revealed fine, faintly banded fibrils and an amorphous component somewhat similar in structure to basement membrane collagens. Matrix vesicles and the electron-dense material of the interterritorial matrix were only partially digested by hyaluronidase. We propose that the pericellular capsule is composed of a "felt-like" network of minor collagen species which act synergistically to maintain both the composition of the pericellular matrix and the integrity of the chondrocyte/pericellular matrix complex during compressive loading.  相似文献   

12.
With a view towards the development of methods for cartilage tissue engineering, matrix deposition around individual chondrocytes was studied during de novo matrix synthesis in agarose suspension culture. At a range of times in culture from 2 days to 1 month (long enough for cartilage-like material properties to begin to emerge), pericellular distributions of proteoglycan and matrix protein deposition were measured by quantitative autoradiography, while matrix accumulation and cell volumes were estimated by stereological methods. Consistent with previous work, tissue-average rates of matrix synthesis generally decreased asymptotically with time in culture, as de novo matrix accumulated. Cell-scale analysis revealed that this evolution was accompanied by a transition from predominantly pericellular matrix (within a few microm from the cell membrane) deposition early in culture towards proteoglycan and protein deposition patterns more similar to those observed in cartilage explants at later times. This finding may suggest a differential recruitment of different proteoglycan metabolic pools as matrix assembly progresses. Cell volumes increased with time in culture, suggestive of alterations in volume regulatory processes associated with changes in the microphysical environment. Results emphasize a pattern of de novo matrix construction which proceeds outward from the pericellular matrix in a progressive fashion. These findings provide cell-scale insight into the mechanisms of assembly of matrix proteins and proteoglycans in de novo matrix, and may aid in the development of tissue engineering methods for cartilage repair.  相似文献   

13.
WARP is a recently described member of the von Willebrand factor A domain superfamily of extracellular matrix proteins, and is encoded by the Vwa1 gene. We have previously shown that WARP is a multimeric component of the chondrocyte pericellular matrix in articular cartilage and intervertebral disc, where it interacts with the basement membrane heparan sulfate proteoglycan perlecan. However, the tissue-specific expression of WARP in non-cartilaginous tissues and its localization in the extracellular matrix of other perlecan-containing tissues have not been analyzed in detail. To visualize WARP-expressing cells, we generated a reporter gene knock-in mouse by targeted replacement of the Vwa1 gene with beta-galactosidase. Analysis of reporter gene expression and WARP protein localization by immunostaining demonstrates that WARP is a component of a limited number of distinct basement membranes. WARP is expressed in the vasculature of neural tissues and in basement membrane structures of the peripheral nervous system. Furthermore, WARP is also expressed in the apical ectodermal ridge of developing limb buds, and in skeletal and cardiac muscle. These findings are the first evidence for WARP expression in non-cartilaginous tissues, and the identification of WARP as a component of a limited range of specialized basement membranes provides further evidence for the heterogeneous composition of basement membranes between different tissues.  相似文献   

14.
Initial assembly of extracellular matrix occurs within a zone immediately adjacent to the chondrocyte cell surface termed the cell- associated or pericellular matrix. Assembly within the pericellular matrix compartment requires specific cell-matrix interactions to occur, that are mediated via membrane receptors. The focus of this study is to elucidate the mechanisms of assembly and retention of the cartilage pericellular matrix proteoglycan aggregates important for matrix organization. Assembly of newly synthesized chondrocyte pericellular matrices was inhibited by the addition to hyaluronan hexasaccharides, competitive inhibitors of the binding of hyaluronan to its cell surface receptor. Fully assembled chondrocyte pericellular matrices were displaced using hyaluronan hexasaccharides as well. When exogenous hyaluronan was added to matrix-free chondrocytes in combination with aggrecan, a pericellular matrix equivalent in size to an endogenous matrix formed within 30 min of incubation. Addition of hyaluronan and aggrecan to glutaraldehyde-fixed chondrocytes resulted in matrix assembly comparable to live chondrocytes. These matrices could be inhibited from assembling by the addition of excess hyaluronan hexasaccharides or displaced once assembled by subsequent incubation with hyaluronan hexasaccharides. The results indicate that the aggrecanrich chondrocyte pericellular matrix is not only on a scaffolding of hyaluronan, but actually anchored to the cell surface via the interaction between hyaluronan and hyaluronan receptors.  相似文献   

15.
Problems related to rheumatoid arthritis have been investigated by a group at Cambridge using the organ culture technique. Since auto-allergic reactions may be concerned in the chronicity of the disease, the effects of reactive complement-sufficient antisera (AS+C') on embryonic and post-foetal cartilage were examined. The cartilaginous limb bone rudiments enlarged to several times their original volume in control medium, but in the presence of AS+C' they gradually disintegrated, owing to the breakdown of the cartilage matrix; only the superficial cells of the enveloping soft connective tissue were killed, however. Provided breakdown had not advanced too far, the effects of AS+C' were reversible. It was not clear how AS+C' produced these changes, since cartilage matrix is impermeable to molecules as large as the immunoglobulins. To find whether there was a difference in permeability between embryonic and post-foetal cartilage, similar experiments were made on the articular cartilage of young pigs. AS+C' had no effect on pure articular cartilage, and it was shown immunohistochemically that IgG did not penetrate beyond the most superficial layer of cartilage. When, however, the explant was associated with soft connective tissue either as invading marrow or as an adjacent explant of synovium, the cartilage matrix was depleted of proteoglycan; IgG antibodies then entered the cartilage and reacted with the chondrocytes. After a lapse of 8-10 days, collagen also began to break down. If the degradation of collagen was not too extensive, the changes were reversible. Pure cartilage was depleted of proteoglycan by trypsinization and then cultivated in AS+C'. All the chondrocytes reacted with the IgG antibodies. The peripheral cells were killed, but those in the interior survived and rapidly secreted pericellular capsules rich in proteoglycan, which shielded them from further contact with antibodies. In other experiments, pure cartilage was associated with a synovial explant and cultivated in AS+C' for 10 days; this caused severe depletion of the matrix. The synovial tissue was then removed and the isolated cartilage cultured for a further 10 days in either AS+C' or control medium. If mainly proteoglycan had been lost during the primary culture period, breakdown did not continue in AS+C', and sometimes a little new matrix was regenerated, though less than in control medium; if, however, the collagen had been extensively degraded, breakdown continued even in control medium. It is suggested that in both the embryonic and post-foetal cartilage, degradation of the cartilage matrix was due to the enzymatic activity of the associated soft connective tissue which caused a loss first of proteoglycan, which enabled antibodies to reach the chondrocytes, and then of collagen. The possible relevance of these results to the pathogenesis of rheumatoid arthritis is discussed.  相似文献   

16.
Role of perlecan in skeletal development and diseases   总被引:4,自引:0,他引:4  
Perlecan, a large heparan sulfate proteoglycan (HSPG), is present in the basement membrane and other extracellular matrices. Its protein core is 400 kDa in size and consists of five distinct structural domains. A number of in vitro studies suggest multiple functions of perlecan in cell growth and differentiation and tissue organization. Recent studies with gene knockout mice and human diseases revealed critical in vivo roles of perlecan in cartilage development and neuromuscular junction activity. Published in 2003.  相似文献   

17.
Glycosaminoglycans (GAGs) are essential components of the extracellular matrix contributing to the mechanical properties of connective tissues as well as to cell recognition and growth regulation. The ultrastructural localization of GAGs in porcine lung was studied by means of the dye Cupromeronic Blue in the presence of 0.3 M MgCl2 according to Scott's critical electrolyte concentration technique. GAGs were observed in locations described as follows. Pleura: Dermatan sulphate (DS) and chondroitin sulphate (CS) attached in the region of the d-band of collagen fibrils, interconnecting the fibrils; heparan sulphate (HS) at the surface of elastic fibers and in the basement membrane of the mesothelium and blood vessels. Bronchial cartilage: Abundant amounts of GAGs were observed in three zones: pericellular, in the intercellular matrix and at the perichondrial collagen. By enzyme digestion a superficial cartilage layer with predominantly CS could be distinguished from a deep zone with CS and keratan sulphate. The structure of the large aggregating cartilage proteoglycan was confirmed in situ. Airway epithelium: HS at the whole surface of cilia and microvilli and in the basement membrane of the epithelial cells. Alveolar wall: CS/DS at collagen fibrils, HS at the surface of elastic fibers and in the basement membranes of epithelium and endothelium.  相似文献   

18.
The chondrocyte pericellular matrix is an essential zone for cartilage matrix assembly and turnover. Electron micrographs of native endogenous and composition-defined exogenous pericellular matrices, both preserved via ruthenium hexaminetrichloride fixation procedures, depict strikingly similar networks of hyaluronan and proteoglycan extending out from the cell surface. Biochemical and morphological analyses of matrix regrowth show that monoclonal antibodies directed against the hyaluronan receptor CD44 blocked chondrocyte pericellular matrix assembly. Immunoperoxidase electron microscopy was used to display regular repeating spacing patterns of hyaluronan/proteoglycan assembly at the cell surface. These patterns compared well with the ultrastructural immunolocalization of CD44 at the cell surface. All of these data suggest that the hyaluronan receptor CD44 retains and participates in the assembly of the chondrocyte pericellular matrix.  相似文献   

19.
We compared the distribution of fibronectin and chondronectin within the matrix of canine articular cartilage. Fibronectin was found throughout the matrix as well as pericellularly. In contrast, chondronectin was observed predominantly associated with the cell or pericellular matrix. Interactions of these molecules with matrix components in the pericellular matrix probably differs, however, since concentrations of hyaluronidase which prevented detection of pericellular fibronectin allowed detection of chondronectin. Chondronectin and fibronectin were detected in osteoarthritic cartilage as well as in disease-free cartilage. Penetration of biotinylated fibronectin into cartilage from the external medium occurred only in osteoarthritic cartilage and proceeded only from the articular surface. Disease-free cartilage appeared to maintain a barrier to fibronectin penetration from the articular surface which was sustained even after the proteoglycan content was markedly depleted by incubation of cartilage with catabolin or lipopolysaccharide. In cartilage that was proteoglycan-depleted, the only detectable penetration of external fibronectin was from the cut surface.  相似文献   

20.
We previously reported that fully assembled basement membranes are nonpermissive to smooth muscle cell (SMC) replication and that perlecan (PN), a basement membrane heparan sulfate proteoglycan, is a dominant effector of this response. We report here that SMC adhesion to basement membranes, and perlecan in particular, up-regulate the expression of focal adhesion kinase-related nonkinase (FRNK), a SMC-specific endogenous inhibitor of FAK, which subsequently suppresses FAK-mediated, ERK1/2-dependent growth signals. Up-regulation of FRNK by perlecan is actively and continuously regulated. Relative to the matrix proteins studied, the effects are unique to perlecan, because plating of SMCs on several other basement membrane proteins is associated with low levels of FRNK and corresponding high levels of FAK and ERK1/2 phosphorylation and SMC growth. Perlecan supports SMC adhesion, although there is reduced cell spreading compared with fibronectin (FN), laminin (LN), or collagen type IV (IV). Despite the reduction in cell spreading, we report that perlecan-induced up-regulation of FRNK is independent of cell shape changes. Growth inhibition by perlecan was rescued by overexpressing a constitutively active FAK construct, but overexpressing kinase-inactivated mutant FAK or FRNK attenuated fibronectin-stimulated growth. These data indicate that perlecan functions as an endogenously produced inhibitor of SMC growth at least in part through the active regulation of FRNK expression. FRNK, in turn, may control SMC growth by downregulating FAK-dependent signaling events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号