首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The filamentous fungus Glarea lozoyensis produces a novel, pharmaceutically important pneumocandin (B(0)) that is used to synthesize a lipopeptide which demonstrates cidal activity against clinically relevant pathogens. A range of unwanted pneumocandin analogs are also produced by the organism. To maintain the unwanted impurities to acceptable levels upon scaleup, a good understanding of the impact of chemical and physical environment on the cell physiology is required, which benefits downstream processing. Pilot-scale studies were performed to determine the impact of dissolved oxygen, temperature, pH, and carbon dioxide on the process. Experiments included multiple fermenters (up to seven) at 0.07 and 0.8 m(3) scale using single source medium sterilization and inoculum. Gas blending was used to separate effects of dissolved oxygen from agitation. The process was significantly influenced by dissolved oxygen level. The critical dissolved oxygen tension (C(crit)) for growth was below 2% air saturation. The C(crit) for production of pneumocandin B(0) was 20% air saturation, with a significant reduction of the specific production rate below this value. In contrast, low dissolved oxygen levels produced a substantial increase of pneumocandins B(1), B(5), and E(0), while high dissolved oxygen levels produced a disproportionate increase of D(5). This sensivity to dissolved oxygen was independent of agitation within a power range of 2-15 kW/m(3). Broth viscosity was impacted below 10% dissolved oxygen, suggesting an effect on morphology. The process was shown to be sensitive to temperature but relatively insensitive to pH and carbon dioxide (in the exhaust gas) within the ranges studied. This scaledown analysis explained phenomena seen at pilot scale and helped define operating boundary conditions for successful scale up to 19 m(3).  相似文献   

2.
O'Donnell A  Harvey LM  McNeil B 《Fungal biology》2011,115(4-5):359-369
Despite the importance of filamentous fungi in the biotechnology industry, little is known about their metabolism under the stressful conditions experienced in typical production fermenters. In the present study, oxygen enrichment was used to recreate an industrial batch process, and the effects of the increasing dissolved oxygen tension were studied as regards the cellular metabolism. It was found that elevated dissolved oxygen tension led to an oxidatively stressful environment, as detailed by rapid initial increases in reactive oxygen species (ROS) concentrations and antioxidant enzyme activities. Intracellular protein concentrations also decreased in oxygenated cultures; this appeared to be concomitant with a decrease in the adenosine-5'-triphosphate (ATP) pool in these cultures. Oxygenated cultures showed early senescence and death compared to aerated control cultures. Despite earlier studies proposing various mechanisms for such findings in fungal cultures subjected to oxidative stress, these findings can best be explained by the fact that in such cultures the activity of alternative NADH dehydrogenases was significantly increased, which served to maintain lower ROS concentrations throughout the duration of the process but in doing so also reduced the ability of the organism to create a proton motive force by which to drive ATP synthesis. The findings of the present study help further our understanding of the central roles of these highly conserved enzymes within fungal metabolism under oxidative stress.  相似文献   

3.
The criterion for the oxygen limitation of substrate uptake in microbial film fermenters is expressed in terms of diffusion coefficients, utilization coefficients, and the free solution concentrations of substrate and oxygen. It is proposed that the ideal film thickness in such fermenters is equal to the penetration depth of the limiting substrate. The ideal film thickness is calculated, in terms of the parameters contained in the criterion for oxygen limitation, for three separate kinetic rate expressions. It is found that for the air–glucose–microbe system a simplified kinetic rate expression can be used and the region of dependence on two substrates is shown to be very limited. This is not true for other systems. Maximum uptake rates are calculated for a range of concentrations. Finally, it is shown that the procedure used can be generalized to determine the limiting substrate in a multisubstrate system and to calculate ideal film thickness and uptake rates for any pair of substrates where the kinetics of substrate uptake are known for the individual microorganism.  相似文献   

4.
The growth characteristics of Candida albicans CM145,348 have been examined under aerobic conditions in continuous culture. At different steady states the environment was controlled with respect to the concentrations of dissolved oxygen, carbon and nitrogen, the pH, and the temperature. Dry matter, substrate concentration, yield, specific oxygen uptake, specific carbon dioxide release and respiration quotient were examined as a function of the dilution rate. The morphology depended on the carbon source. Maltose produced a mycelial morphology, whereas with lactate a yeast culture was obtained. With fructose or glucose as a carbon source a mixed morphology of yeast, pseudo-mycelial and mycelial forms was produced. A larger number of different growth conditions were examined in batch culture but a mixed morphology was always obtained.  相似文献   

5.
Nitrification and denitrification are important microbiological reactions of nitrogen. In this work, the kinetics of these reactions have been investigated based on a Monod-type expression involving two growth limiting substrates: ammonium nitrogen and dissolved oxygen for nitrification and nitrate nitrogen and dissolved organic carbon for denitrification. The kinetic constants and yield coefficients were evaluated for both these reactions. Past experimental work was used to determine the constants for the nitrification reaction. For the denitrification reaction, experiments were performed in a stirred tank reactor under conditions such that only one substrate was growth limiting. Steady-state values of the substrate concentrations in the reactor were determined at various dilution rates. These data were analyzed to obtain the kinetic and stoichiometric constants. From these constants it was concluded that in the range of nitrate nitrogen concentrations encountered in waste water, the denitrification reaction can be considered a first-order reaction. It was also found that three times as much organic carbon is required as nitrate nitrogen for complete nitrogen removal.  相似文献   

6.
Summary Growth and metabolism of Brevibacterium linens were studied in a fermentor regulated for fixed levels of pH (7.5 to 8.5), temperature (20–30° C) and dissolved oxygen (40%–60% of air saturated medium). The curves of disappearance of l-lactate and amino acids were invariable, indicating that phenylalanine, tyrosine, arginine, proline, glutamic acid and histidine are growth-limiting nutrients. Ornithine appeared at the beginning of cultures when oxygen consumption was low. Ammonia was produced, but large quantities were observed only when amino acid concentrations were higher than that of the carbon source. When the latter was low, the ammonia produced was consumed before a number of amino acids as an easily assimilable nitrogen source. Whether alkali or acid was consumed to maintain constant pH depended on the pH of the medium and on maximal growth rates.  相似文献   

7.
Scale-up from shake flasks to fermenters has been hampered by the lack of knowledge concerning the influence of operating conditions on mass transfer, hydromechanics, and power input. However, in recent years the properties of shake flasks have been described with empirical models. A practical scale-up strategy for everyday use is introduced for the scale-up of aerobic cultures from shake flasks to fermenters in batch and continuous mode. The strategy is based on empirical correlations of the volumetric mass transfer coefficient (k(L) a) and the pH. The accuracy of the empirical k(L) a correlations and the assumptions required to use these correlations for an arbitrary biological medium are discussed. To determine the optimal pH of the culture medium a simple laboratory method based on titration curves of the medium and a mechanistic pH model, which is solely based on the medium composition, is applied. The effectiveness of the scale-up strategy is demonstrated by comparing the behavior of Corynebacterium glutamicum on lactic acid in shake flasks and fermenters in batch and continuous mode. The maximum growth rate (micro(max) = 0.32 h(-1)) and the oxygen substrate coefficient (Y O2 /S= 0.0174 mol/l) of C. glutamicum on lactic acid were equal for shake flask, fermenter, batch, and continuous cultures. The biomass substrate yield was independent of the scale, but was lower in batch cultures (Y(X/S) = 0.36 g/g) than in continuous cultures (Y(X/S) = 0.45 g/g). The experimental data (biomass, respiration, pH) could be described with a simple biological model combined with a mechanistic pH model.  相似文献   

8.
For the first time a laboratory-scale two-compartment system was used to investigate the effects of pH fluctuations consequent to large scales of operation on microorganisms. pH fluctuations can develop in production-scale fermenters as a consequence of the combined effects of poor mixing and adding concentrated reagents at the liquid surface for control of the bulk pH. Bacillus subtilis was used as a model culture since in addition to its sensitivity to dissolved oxygen levels, the production of the metabolites, acetoin and 2,3-butanediol, is sensitive to pH values between 6.5 and 7.2. The scale-down model consisted of a stirred tank reactor (STR) and a recycle loop containing a plug flow reactor (PFR), with the pH in the stirred tank being maintained at 6.5 by addition of alkali in the loop. Different residence times in the loop simulated the exposure time of fluid elements to high values of pH in the vicinity of the addition point in large bioreactors and tracer experiments were performed to characterise the residence time distribution in it. Since the culture was sensitive to dissolved oxygen, for each experiment with pH control by adding base into the PFR, equivalent experiments were conducted with pH control by addition of base into the STR, thus ensuring that any dissolved oxygen effects were common to both types of experiments. The present study indicates that although biomass concentration remained unaffected by pH variations, product formation was influenced by residence times in the PFR of 60 sec or longer. These changes in metabolism are thought to be linked to both the sensitivity of the acetoin and 2,3-butanediol-forming enzymes to pH and to the inducing effects of dissociated acetate on the acetolactate synthase enzyme.  相似文献   

9.
10.
Summary Limitations in mass and momentum transfer coupled with high hydrostatic pressures create significant spatial variations in dissolved gas concentrations in large fermenters. Microorganisms are subjected to fluctuating environmental conditions as they pass through the zones in a stirred vessel or along a closed loop fermenter.A 7-litre fermenter was modified to simulate the dissolved gas and hydrostatic pressure gradients in large vessels.The effect of cycling dissolved oxygen tension (DOT) on penicillin production by Penicillium chrysogenum P1 was investigated. The fermentation was affected by evironmental conditions such as medium composition, pH, size of inoculum, stirrer speed and DOT. Inoculum size below 10% (v/v) and stirrer speeds above 850 rpm caused significant reductions in specific prenicillin production rates (qpen). qpen values were measured at different constant DOT levels. Below 30% air saturation qpen decreased sharply and no production was observed at 10%. Penicillin synthesis was impaired irreversibly below 10% DOT. The same profile was observed at higher stirrer speeds and air flow rates indicating that the effect was a physiological one. Oxygen uptake of the culture was affected significantly below 7% DOT, demonstrating that the critical DOT values for penicillin production and oxygen uptake are two distinct parameters. Carrying out the fermentation at one atmosphere over pressure was found to have no effect. When the dissolved oxygen concentration of the culture medium was cycled around the critical DOT for penicillin production, a considerable decrease in the specific penicillin production rate was observed. The effect was reversible but not transient, indicating a shift in cell metabolism.These results demonstrate the unfavourable effect of fluctuating environmental conditions on culture performance in stirred tanks. They suggest that these effects should be accounted for during strain selection, process development and scale up stages of an industrial process if the productivities in small scale vessels are to be obtained.  相似文献   

11.
In this paper we report the regulation of Aspergillus niger growth rate during citric acid fermentation in a stirred tank bioreactor. For this, the influence of dissolved oxygen concentration in a medium on intracellular pH values and consequently on overall microbial metabolism was emphasized. Intracellular pH of mycelium grown under different concentrations of dissolved oxygen in the medium was determined. Sensitivity of proteins toward proton concentration is well recognized, therefore pH influences on the activities of key regulatory enzymes of Aspergillus niger were determined at pH values similar to those detected in the cells grown under lower dissolved oxygen concentrations. The results have shown significantly reduced specific activities of hexokinase, 6-phosphofructokinase and glucose-6-phosphate dehydrogenase in more acidic environment, while pyruvate kinase was found to be relatively insensitive towards higher proton concentration. As expected, due to the reduced specific activities of regulatory enzymes under more acidic conditions, overall metabolism should be hindered in the medium with lower dissolved oxygen concentration which was confirmed by detecting the reduced specific growth rates. From the studies, we conclude that dissolved oxygen concentration affects the intracellular pH and thus growth rate of Aspergillus niger during the fermentation process.  相似文献   

12.
An in vitro fermentation system capable of maintaining at least part of the microbial population of the contents of the porcine ileum has been developed. The system was tested over the pH range 6.0-8.5, anaerobically and at dissolved oxygen concentrations within the ranges detected in the ileum of piglets at weaning (50 and 100 μmol 1-1). The results demonstrated that changes in pH and dissolved oxygen within these ranges had relatively little effect on the total numbers of aerobic and anaerobic bacteria. Lactic acid bacteria, enumerated anaerobically, showed changes in viable counts in response to pH changes but were apparently unaffected by changes in dissolved oxygen, although the proportion of aerotolerant species within this group was increased at high concentrations of dissolved oxygen. The relative proportions of lactobacilli and coliforms were similar to those reported in vivo when dissolved oxygen was present at a concentration of 50 μmol 1-1. Under these conditions the simulated population was consistently found to resist colonization by an enterotoxigenic Escherichia coli , of a serotype known to cause weaning scours in the piglet.  相似文献   

13.
Degradation of ferrous(II) cyanide complex (ferrocyanide) ions by free cells of P. fluorescens in the presence of glucose and dissolved oxygen was investigated as a function of initial pH, initial ferrocyanide and glucose concentrations and aeration rate in a batch fermenter. The microorganism used the ferrocyanide ions as the sole source of nitrogen. The ferrocyanide biodegradation rate was 30.7 mg g−1 h−1 under the conditions of initial pH: 5, stirring rate: 150 rpm, aeration rate: 0.15 vvm, initial ferrous(II) cyanide complex ion and glucose concentrations: 100 mg l−1 and 0.465 g l−1, respectively. The culture utilized glucose as the main substrate following the non-competitive toxic component inhibition model in the presence of 100 mg l−1 initial ferrous(II) cyanide complex ion concentration. The inhibition of ferrous(II) cyanide complex ions as a secondary substrate began at very low concentrations. A mathematical model, based on non-competitive substrate inhibition was used to describe the inhibitory effect of ferrous(II) cyanide complex ions on the growth of microorganism and the best fitted model parameters were determined by non-linear regression techniques.  相似文献   

14.
Ursodeoxycholic acid dissolves cholesterol gallstones in humans. In the present study optimum conditions for ursodeoxycholic acid production by Fusarium equiseti M41 were studied. Resting mycelia of F. equiseti M41 showed maximum conversion at 28 degrees C, pH 8.0, and dissolved oxygen tension of higher than 60% saturation. Monovalent cations, such as Na+, K+, and Rb+, stimulated the conversion rate more than twofold. In the presence of 0.5 M KCl, the initial uptake rate and equilibrium concentration of lithocholic acid (substrate) were enhanced by 5.7- and 1.7-fold, respectively. We confirmed that enzyme activity catalyzing 7 beta-hydroxylation of lithocholic acid was induced by substrate lithocholic acid. The activity in the mycelium was controlled by dissolved oxygen tension during cultivation: with a dissolved oxygen tension of 15% and over, the activity peak appeared at 25 h of cultivation, whereas the peak was delayed to 34 and 50 h with 5 and 0% dissolved oxygen tension, respectively. After reaching the maximum, the 7 beta-hydroxylation activity in the mycelium declined rapidly at pH 7.0, but the decline was retarded by increasing the pH to 8.0. Several combinations of operations, such as pH shift (from pH 7 to 8), addition of 0.5 M KCl, and dissolved oxygen control, were applied to the production of ursodeoxycholic acid in a jar fermentor, and a much larger amount of ursodeoxycholic acid (1.2 g/liter) was produced within 96 h of cultivation.  相似文献   

15.
Ursodeoxycholic acid dissolves cholesterol gallstones in humans. In the present study optimum conditions for ursodeoxycholic acid production by Fusarium equiseti M41 were studied. Resting mycelia of F. equiseti M41 showed maximum conversion at 28 degrees C, pH 8.0, and dissolved oxygen tension of higher than 60% saturation. Monovalent cations, such as Na+, K+, and Rb+, stimulated the conversion rate more than twofold. In the presence of 0.5 M KCl, the initial uptake rate and equilibrium concentration of lithocholic acid (substrate) were enhanced by 5.7- and 1.7-fold, respectively. We confirmed that enzyme activity catalyzing 7 beta-hydroxylation of lithocholic acid was induced by substrate lithocholic acid. The activity in the mycelium was controlled by dissolved oxygen tension during cultivation: with a dissolved oxygen tension of 15% and over, the activity peak appeared at 25 h of cultivation, whereas the peak was delayed to 34 and 50 h with 5 and 0% dissolved oxygen tension, respectively. After reaching the maximum, the 7 beta-hydroxylation activity in the mycelium declined rapidly at pH 7.0, but the decline was retarded by increasing the pH to 8.0. Several combinations of operations, such as pH shift (from pH 7 to 8), addition of 0.5 M KCl, and dissolved oxygen control, were applied to the production of ursodeoxycholic acid in a jar fermentor, and a much larger amount of ursodeoxycholic acid (1.2 g/liter) was produced within 96 h of cultivation.  相似文献   

16.
Bioremediation of di-n-butyl phthalate (DnBP) in soil was studied with various concentrations in a bioslurry phase batch reactor operated in sequenting batch mode (bioaugmented with effluent treatment plant (ETP) microflora) for a total cycle period of 96h. Process performance during the reactor operation was assessed by monitoring DnBP concentration and biochemical process parameters viz., pH, dissolved oxygen (DO), colony forming units (CFU) and oxygen uptake rate (OUR), during the sequence phase operation. The degradation rate was observed to be rapid at lower substrate concentrations and found to be slow as the substrate concentration increased. The potent bacterial strain was also isolated from the slurry phase reactor. Metabolites formed during the degradation of DnBP in the slurry phase reactor were identified. Studies on the kinetics and half-life of the reaction revealed that the degradation process followed zero-order kinetic model.  相似文献   

17.
To determine the influence of a multiple inversion aeration system upon the limnology of a small sinkhole lake, we monitored physical-chemical and biological parameters for 15 months prior to starting aeration and for 24 months thereafter. Aeration eliminated thermal stratification and dissolved oxygen concentrations of bottom waters increased significantly. Secchi disk transparency increased during aeration while turbidity, pH, alkalinity, total nitrogen, hydrogen sulfide and iron concentrations decreased significantly. Primary production and mean chlorophyll a did not change significantly during aeration but total phytoplankton cell volume decreased 2-fold. This decrease was caused by a marked reduction in blue-green algae which appears to be attributable to rapid mixing of the lake and to decreases in the pH. Cell volumes of green algae remained constant but numbers of taxa increased 70%. Densities of crustacean zooplankton were reduced markedly by aeration while densities of rotifers increased significantly during the first year but then returned to preaeration levels during the second year. Large-bodied cladocerans were replaced by small-bodied forms during aeration, and copepod populations became dominated by nauplii (97%). Densities of benthic macroinvertebrates declined 2-fold during aeration due to to a marked reduction (10-fold) in the Chaoborus population which correlated strongly with decreases in crustacean zooplankton abundance. The total number of taxa collected on individual sample dates increased throughout the two year aeration period (from 12 to 25) and chironomids became the predominant group (70%).The multiple inversion aeration system successfully eliminated many of the undesirable features of eutrophication (e.g., oxygen depletion, blue-green algal blooms, low benthic diversity), but it did not change the trophic state. Aeration of hypereutrophic lakes for multiple years may be necessary to maintain desired conditions.  相似文献   

18.
Control of fermenters – a review   总被引:2,自引:2,他引:0  
Fermenter control has been an active area of research and has attracted more attention in recent years. This is due to the new developments in other related areas which can be exploited to overcome the inherent difficulties in fermenter control. Beginning with conventional regulatory control of operating variables such as temperature, pH and dissolved oxygen concentration, research in fermenter control has undergone significant changes including the recent neural network based approaches. The objective of the paper is to focus the attention of the researchers to the developments in the control of batch, fed-batch and continuous fermenters over the past few years.  相似文献   

19.
Batch experiments were conducted to examine the effects of dissolved oxygen concentration on the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by an enrichment culture of 2,4-D-utilizing bacteria. A modified Monod equation was found to describe the relationship between the specific growth rate and the concentrations of both the organic substrate and dissolved oxygen. Values for the maximum specific growth rate, yield, and Monod coefficient for growth on 2,4-D were 0.09 h-1, 0.14 g/g, and 0.6 mg/liter, respectively. The half-saturation constant for dissolved oxygen was estimated to be 1.2 mg/liter. These results suggest that dissolved oxygen concentrations below 1 mg/liter may be rate limiting for the biodegradation of chlorinated aromatic compounds such as 2,4-D, which have a requirement for molecular oxygen as a cosubstrate for metabolism.  相似文献   

20.
Succinate-limited continuous cultures of an Azorhizobium caulinodans strain were grown on ammonia or nitrogen gas as a nitrogen source. Ammonia-grown cells became oxygen limited at 1.7 μM dissolved oxygen, whereas nitrogen-fixing cells remained succinate limited even at dissolved oxygen concentrations as low as 0.9 μM. Nitrogen-fixing cells tolerated dissolved oxygen concentrations as high as 41 μM. Succinate-dependent oxygen uptake rates of cells from the different steady states ranged from 178 to 236 nmol min−1 mg of protein−1 and were not affected by varying chemostat-dissolved oxygen concentration or nitrogen source. When equimolar concentrations of succinate and β-hydroxybutyrate were combined, oxygen uptake rates were greater than when either substrate was used alone. Azide could also used alone as a respiratory substrate regardless of nitrogen source; however, when azide was added following succinate additions, oxygen uptake was inhibited in ammonia-grown cells and stimulated in nitrogen-fixing cells. Use of 25 mM succinate in the chemostat resevoir at a dilution rate of 0.1 h−1 resulted in high levels of background respiration and nitrogenase activity, indicating that the cells were not energy limited. Lowering the reservoir succinate to 5 mM imposed energy limitation. Maximum succinate-dependent nitrogenase activity was 1,741 nmol of C2H4h−1 mg (dry weight)−1, and maximum hydrogen-dependent nitrogenase activity was 949 nmol of C2H4 h−1 mg (dry weight)−1. However, when concentration of 5% (vol/vol) hydrogen or greater were combined with succinate, nitrogenase activity decreased by 35% in comparison to when succinate was used alone. Substitution of argon for nitrogen in the chemostat inflow gas resulted in “washout,” proving that ORS571 can grow on N2 and that there was not a nitrogen source in the medium that could substitute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号