首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman microspectroscopy has been used for the first time to determine quantitatively the orientation of the beta-sheets in silk monofilaments from Bombyx mori and Samia cynthia ricini silkworms, and from the spider Nephila edulis. It is shown that, for systems with uniaxial symmetry such as silk, it is possible to determine the order parameters P2 and P4 of the orientation distribution function from intensity ratios of polarized Raman spectra. The equations allowing the calculation of P2 and P4 using polarized Raman microspectroscopy for a vibration with a cylindrical Raman tensor were first derived and then applied to the amide I band that is mostly due to the C=O stretching vibration of the peptide groups. The shape of the Raman tensor for the amide I vibration of the beta-sheets was determined from an isotropic film of Bombyx mori silk treated with methanol. For both the Bombyx mori and Samia cynthia ricini fibroin fibers, the values of P2 and P4 obtained are equal to -0.36 +/- 0.03 and 0.19 +/- 0.02, respectively, even though the two types of silkworm fibroins strongly differ in their primary sequences. For the Nephila edulis dragline silk, values of P2 and P4 of -0.32 +/- 0.02 and 0.13 +/- 0.02 were obtained, respectively. These results clearly indicate that the carbonyl groups are highly oriented perpendicular to the fiber axis and that the beta-sheets are oriented parallel to the fiber axis, in agreement with previous X-ray and NMR results. The most probable distribution of orientation was also calculated from the values of P2 and P4 using the information entropy theory. For the three types of silk, the beta-sheets are highly oriented parallel to the fiber axis. The orientation distributions of the beta-sheets are nearly Gaussian functions with a width of 32 degrees and 40 degrees for the silkworm fibroins and the spider dragline silk, respectively. In addition to these results, the comparison of the Raman spectra recorded for the different silk samples and the polarization dependence of several bands has allowed to clarify some important band assignments.  相似文献   

2.
D. Marsh 《Biophysical journal》1997,72(6):2710-2718
The transition moments for the amide bands from beta-sheet peptide structures generally do not exhibit axial symmetry about the director in linearly polarized Fourier transform infrared (FTIR) measurements on oriented systems. The angular dependences of the dichroic ratios of the amide bands are derived for beta-sheet structures in attenuated total reflection (ATR) and polarized transmission experiments on samples that are oriented with respect to the normal to the substrate and are randomly distributed with respect to the azimuthal angle in the plane of the orienting substrate. The orientational distributions of both the beta-strands and the beta-sheets are considered, and explicit expressions are given for the dichroic ratios of the amide I and amide II bands. The dichroic ratio of the amide II band, which is parallel polarized, can yield the orientation of the beta-strands directly, but to specify the orientations of the beta-sheets completely requires measurement of the dichroic ratios of both the amide I and amide II bands, or generally two bands with parallel and perpendicular polarizations. A random distribution in tilt of the planes of the beta-sheets does not give rise to equal dichroic ratios for bands with perpendicular and parallel polarizations, such as the amide I and amide II bands. The results are applied to previous ATR and polarized transmission FTIR measurements on a potassium channel-associated peptide, the Escherichia coli outer membrane protein OmpA, and the E. coli OmpF porin protein in oriented membranes.  相似文献   

3.
Raman microspectroscopy has been used to quantitatively study the effect of a mechanical deformation on the conformation and orientation of Samia cynthia ricini (S. c. ricini) silk fibroin. Samples were obtained from the aqueous solution stored in the silk gland and stretched at draw ratios (lambda) ranging from 0 to 11. Using an appropriate band decomposition procedure, polarized and orientation-insensitive spectra have been analyzed to determine order parameters and the content of secondary structures, respectively. The data unambiguously show that, in response to mechanical deformation, S. c. ricini fibroin undergoes a cooperative alpha-helix to beta-sheet conformational transition above a critical draw ratio of 4. The alpha-helix content decreases from 33 to 13% when lambda increases from 0 to 11, while the amount of beta-sheets increases from 15 to 37%. In comparison, cocoon silk is devoid of alpha-helical structure and always contains a larger amount of beta-sheets. Although the presence of isosbestic points in different spectral regions reveals that the conformational change induced by mechanical deformation is a two-state process, our results suggest that part of the glycine residues might be incorporated into beta-poly(alanine) structures. The beta-sheets are initially isotropically distributed and orient along the fiber axis as lambda increases, but do not reach the high level of orientation found in the cocoon fiber. The increase in the orientation level of the beta-sheets is found to be concomitant with the alpha --> beta conformational conversion, whereas alpha-helices do not orient under the applied strain but are rather readily converted into beta-sheets. The components assigned to turns exhibit a small orientation perpendicular to the fiber axis in stretched samples, showing that, overall, the polypeptide chains are aligned along the stretching direction. Our results suggest that, in nature, factors other than stretching contribute to the optimization of the amount of beta-sheets and the high degree of orientation found in natural cocoon silk.  相似文献   

4.
Keratin orientation in wool and feathers by polarized raman spectroscopy   总被引:2,自引:0,他引:2  
Good quality polarized Raman spectra of a single wool fiber and an intact feather barbule are presented. The intensity ratio of the alpha-helix component of the amide I band measured parallel and perpendicular to the wool fiber axis was 0.39 +/- 0.05. This is consistent with theoretical predictions based on orientational calculations using the normal Raman polarizability tensor for an alpha-helical amide I band where the protein strands are aligned roughly parallel with the fiber axis. However, the depolarized spectral intensity of the alpha-helix mode was greater than expected. For the feather barbule, despite high quality spectra, a unique orientation of the beta-sheet structure could not be determined using the Raman intensity ratios of the amide I band alone. Using previously developed methods, the protein chains were found to be oriented between 60 and 90 degrees from the long axis of the barbule compared to an angle of 51 degrees calculated from polarized IR spectra of the same barbule. The Raman tensor methods for the determination of protein orientation in these fibers was found to be constrained by the complexity of the materials and the limitations of the band fitting methods used to apportion the intensity among the various vibrational modes of their spectra. Other advantages and limitations of polarized Raman microscopic methods of structural determination are discussed.  相似文献   

5.
Taking advantage of recent advances in polarized Raman microspectroscopy, and based on a rational decomposition of the amide I band, the conformation and orientation of proteins have been determined for cocoon silks of the silkworms Bombyx mori and Samia cynthia ricini and dragline silks of the spiders Nephila clavipes and Nephila edulis. This study distinguished between band components due to beta-sheets, beta-turns, 3(1)-helices, and unordered structure for the four fibers. For B. mori, the beta-sheet content is 50%, which matches the proportion of residues that form the GAGAGS fibroin motifs. For the Nephila dragline and S. c. ricini cocoon, the beta-sheet content (36-37% and 45%, respectively) is higher than the proportion of residues that belong to polyalanine blocks (18% and 42%, respectively), showing that adjacent GGA motifs are incorporated into the beta-sheets. Nephila spidroins contain fewer beta-sheets and more flexible secondary structures than silkworm fibroins. The amorphous polypeptide chains are preferentially aligned parallel to the fiber direction, although their level of orientation is much lower than that of beta-sheets. Overall, the results show that the four silks exhibit a common molecular organization, with mixtures of different amounts of beta-sheets and flexible structures, which are organized with specific orientation levels.  相似文献   

6.
Isotope editing of amide infrared bands not only localises secondary structural elements within the protein but also yields conformational information that is not available from the linear dichroism of aligned samples without isotope editing. The additional information that can be derived on the orientational distribution of alpha-helices in membranes by the combined use of different amide bands and several positions of labelling is presented here. Also, the relationship between the azimuthal orientation of the transition moment and the protein structure is treated explicitly. A comprehensive analysis of the infrared dichroism for beta-sheets and beta-barrels is given here, for the first time. The orientation of the individual transition moments in a beta-sheet that is essential for this analysis is derived for the different amide bands.  相似文献   

7.
The polarized Raman spectra of glycerinated and intact single muscle fibers of the giant barnacle were obtained. These spectra show that the conformation-sensitive amide I, amide III, and C-C stretching vibrations give Raman bands that are stronger when the electric field of both the incident and scattered radiation is parallel to the fiber axis (Izz). The detailed analysis of the amide I band by curve fitting shows that approximately 50% of the alpha-helical segments of the contractile proteins are oriented along the fiber axis, which is in good agreement with the conformation and composition of muscle fiber proteins. Difference Raman spectroscopy was also used to highlight the Raman bands attributed to the oriented segments of the alpha-helical proteins. The difference spectrum, which is very similar to the spectrum of tropomyosin, displays amide I and amide III bands at 1,645 and 1,310 cm-1, respectively, the bandwidth of the amide I line being characteristic of a highly alpha-helical biopolymer with a small dispersion of dihedral angles. A small dichroic effect was also observed for the band due to the CH2 bending mode at 1,450 cm-1 and on the 1,340 cm-1 band. In the C-C stretching mode region, two bands were detected at 902 and 938 cm-1 and are both assigned to the alpha-helical conformation.  相似文献   

8.
The orientation of the protein secondary structures in porin is investigated by Fourier transform infrared (FTIR) linear dichroism of oriented multilayers of porin reconstituted in lipid vesicles. The FTIR absorbance spectrum shows the amide I band at 1,631 cm-1 and several shoulders around 1,675 cm-1 and at 1,696 cm-1 indicative of antiparallel beta-sheets. The amide II is centered around 1,530 cm-1. The main dichroic signals peak at 1,738, 1,698, 1,660, 1,634, and 1,531 cm-1. The small magnitude of the 1,634 cm-1 and 1,531 cm-1 positive dichroism bands demonstrates that the transition moments of the amide I and amide II vibrations are on the average tilted at 47 degrees +/- 3 degrees from the membrane normal. This indicates that the plane of the beta-sheets is approximately perpendicular to the bilayer. From these IR dichroism results and previously reported diffuse x-ray data which revealed that a substantial number of beta-strands are nearly perpendicular to the membrane, a model for the packing of beta-strands in porin is proposed which satisfies both IR and x-ray requirements. In this model, the porin monomer consists of at least two beta-sheet domains, both with their plane perpendicular to the membrane. One sheet has its strands direction lying nearly parallel to the membrane normal while the other sheet has its strands inclined at a small angle away from the membrane plane.  相似文献   

9.
In the present work, we study the structure and the orientation of the 23 N-terminal peptide of the HIV-1 gp 41 protein (AVGIGALFLGFLGAAGSTMGARS) called FP23. The behaviour of FP23 was investigated alone at the air/water interface and inserted into various lipid model systems: in monolayer or multibilayers of a DOPC/cholesterol/DOPE/DOPG (6/5/3/2) and in a DMPC bilayer. PMIRRAS and polarized ATR spectroscopy coupled with Brewster angle microscopy and spectral simulations were used to precisely determine the structure and the orientation of the peptide in its environment as well as the lipid perturbations induced by the FP23 insertion. The infra-red results show the structural polymorphism of the FP23 and its ability to transit quasi irreversibly from an alpha-helix to antiparallel beta-sheets. At the air/water interface, the transition is induced by compression of the peptide alone and is modulated by compression and lipid to peptide ratio (Ri) when FP23 is inserted into a lipid monolayer. In multibilayers and in a single bilayer, there is coexistence in quasi equal proportions of alpha-helix and antiparallel beta-sheets of FP23 at low peptide content (Ri=100, 200) while antiparallel beta-sheets are predominant at high FP23 concentration (Ri=50). In (multi)bilayer systems, evaluation of dichroic ratios and sprectral simulations show that both the alpha-helix and the antiparallel beta-sheets are tilted at diluted FP23 concentrations (tilt angle of alpha-helix with respect to the normal of the interface=36.5+/-3.0 degrees for FP23 in multibilayers of DOPC/Chol/DOPE/DOPG at Ri=200 and 39.0+/-5.0 degrees in a single bilayer of DMPC at Ri=100 and tilt angle of the beta-sheets=36.0+/-2.0 degrees for the beta-sheets in multibilayers and 30.0+/-2.0 degrees in the lipid bilayer). In parallel, the FP23 induces an increase of the lipid chain disorder which shows both by an increase of the methylene stretching frequencies and an increase of the average C-C-C angle of the acyl chains. At high FP23 content (Ri=50), the antiparallel beta-sheets induce a complete disorganization of the lipid chains in (multi)bilayers.  相似文献   

10.
Measurement of the elastic properties of single osteon lamellae is still one of the most demanding tasks in bone mechanics to be solved. By means of site-matched Raman microspectroscopy, acoustic microscopy and nanoindentation the structure, chemical composition and anisotropic elasticity of individual lamellae in secondary osteons were investigated. Acoustic impedance images (911-MHz) and two-dimensional Raman spectra were acquired in sections of human femoral bone. The samples were prepared with orientations at various observation angles theta relative to the femoral long axis. Nanoindentations provided local estimations of the elastic modulus and landmarks necessary for spatial fusion of the acoustic and spectral Raman images. Phosphate nu(1) (961 cm(-1)) and amide I (1665 cm(-1)) band images representing spatial distributions of mineral and collagen were fused with the acoustic images. Acoustic impedance was correlated with the indentation elastic modulus E(IT) (R(2)=0.61). Both parameters are sensitive to elastic tissue anisotropy. The lowest values were obtained in the direction perpendicular to the femoral long axis. Acoustic images exhibit a characteristic bimodal lamellar pattern of alternating high and low impedance values. Since this undulation was not associated with a variation of the phosphate nu(1)-band intensity in the Raman images, it was attributed to variations of the lamellar orientation. After threshold segmentation and conversion to elastic modulus the orientation and transverse isotropic elastic constants were derived for individual ensembles of apparent thin and thick lamellae. Our results suggest that this model represents the effective anisotropic properties of an asymmetric twisted plywood structure made of transverse isotropic fibrils. This is the first report that proves experimentally the ability of acoustic microscopy to map tissue elasticity in two dimensions with micrometer resolution. The combination with Raman microspectroscopy provides a unique way to study bone and mineral metabolism and the relation with mechanical function at the ultrastructural tissue level.  相似文献   

11.
Intact single twitch fibers from frog muscle were stretched to long sarcomere length, micro-injected with the pH indicator dye phenol red, and activated by action potential stimulation. Indicator-related absorbance changes (denoted by delta A0 and delta A90) were measured with 0 degree and 90 degrees polarized light (oriented, respectively, parallel and perpendicular to the fiber axis). Two components of delta A were detected that had generally similar time courses. The "isotropic" component, calculated as the weighted average (delta A0 + 2 delta A90)/3, had the wavelength dependence expected for a change in myoplasmic pH. If calibrated in pH units, this signal's peak amplitude, which occurred 15-20 ms after stimulation, corresponded to a myoplasmic alkalization of average value 0.0025 +/- 0.0002 (+/- SEM; n = 9). The time course of this change, as judged from a comparison with that of the fibers' intrinsic birefringence signal, was delayed slightly with respect to that of the myoplasmic free [Ca2+] transient. On average, the times to half-peak and peak of the phenol red isotropic signal lagged those of the birefringence signal by 2.4 +/- 0.2 ms (+/- SEM; n = 8) and 8.4 +/- 0.5 ms (+/- SEM; n = 4), respectively. The other component of the phenol red signal was "dichroic," i.e., detected as a difference (delta A0-delta A90 greater than 0) between the two polarized absorbance changes. The wavelength dependence of this signal was similar to that of the phenol red resting dichroic signal (Baylor and Hollingworth. 1990. J. Gen. Physiol. 96:449-471). Because of the presence of the active dichroic signal, and because approximately 80% of the phenol red molecules appear to be bound in the resting state to either soluble or structural sites, the possibility exists that myoplasmic events other than a change in pH underlie the phenol red isotropic signal.  相似文献   

12.
Polarized Raman microspectroscopy and atomic force microscopy were used to obtain quantitative information regarding the molecular structure of individual diphenylalanine (FF) nano- and microtubes. The frequencies of the Raman spectral bands corresponding to the amide I (1690 cm(-1)) and amide III (1249 cm(-1)) indicated that the FF-molecules interact by hydrogen bonding at the N-H and not at the C═O sites. The calculated mean orientation angles of the principal axes of the Raman tensors (PARTs) obtained from the polarized Raman spectral measurements were 41 ± 4° for the amide I and 59 ± 5° for amide III. On the basis of the orientation of the PART for the amide I mode, it was found that the C═O bond is oriented at an angle of 8 ± 4° to the tube axis. These values did not vary significantly with the diameter of the tubes (range 400-1700 nm) and were in agreement with the molecular structure proposed previously for larger crystalline specimens.  相似文献   

13.
A detailed comparison with the three-dimensional protein structure provides a stringent test of the models and parameters commonly used in determining the orientation of the alpha-helices from the linear dichroism of the infrared amide bands, particularly in membranes. The order parameters of the amide vibrational transition moments are calculated for the transmembrane alpha-helices of bacteriorhodopsin by using the crystal structure determined at a resolution of 1.55 A (PDB accession number 1C3W). The dependence on the angle delta(M) that the transition moment makes with the peptide carbonyl bond is fit by the expression ((3)/(2)S(alpha) cos(2) alpha)cos(2)(delta(M) + beta) - 1/2S(alpha), where S(alpha) (0.91) is the order parameter of the alpha-helices, alpha (13 degrees ) is the angle that the peptide plane makes with the helix axis, and beta (11 degrees ) is the angle that the peptide carbonyl bond makes with the projection of the helix axis on the peptide plane. This result is fully consistent with the model of nested axial distributions commonly used in interpreting infrared linear dichroism of proteins. Comparison with experimental infrared dichroic ratios for bacteriorhodopsin yields values of Theta(A) = 33 +/- 1 degree, Theta(I) = 39.5 +/- 1 degree, and Theta(II) = 70 +/- 2 degrees for the orientation of the transition moments of the amide A, amide I, and amide II bands, respectively, relative to the helix axis. These estimates are close to those found for model alpha-helical polypeptides, indicating that side-chain heterogeneity and slight helix imperfections are unlikely to affect the reliability of infrared measurements of helix orientations.  相似文献   

14.
The orientational and conformational transformation of the native liquid silk into a solid fiber in the major ampullate gland of the spider Nephila clavipes has been studied by Raman spectromicroscopy. The spectra show that the conformation of silk proteins in the glandular sac contains several secondary structure elements, which is consistent with intrinsically unfolded proteins. A few alpha-helices are also present and involve some alanine residues located in the polyalanine segments of the spidroin sequence. The conversion of the silk solution in the major ampullate gland appears to be a two-state process without intermediate states. In the first and second limbs of the duct, silk is isotropic and spidroins are generally native-like. beta-Sheets start to develop between the second and the third limb of the duct, suggesting that early beta-sheets are generated by shear forces. However, most of the beta-sheets are formed between the draw down taper and the valve. The early beta-sheets formed upward of the draw down taper might play the role of nucleation sites for the subsequent beta-sheet aggregation. The alignment of the polypeptides chains occurs near the valve, revealing that orientational and conformational changes do not occur simultaneously. Extensional flow seems to be the driving force to produce the orientational order, which in turn is associated with the formation of the major part of the beta-sheets. The slow evolution of the spidroin conformation up to the draw down taper followed by the rapid transformation between the drawn down taper and the valve may be important to achieve the optimal structure of the final fiber.  相似文献   

15.
The infrared dichroic ratios of the amide bands from oriented beta-barrels yield an experimental value for the mean orientation, beta, of the beta-strands, relative to the barrel axis. For a barrel of n strands, this then gives the shear number, S, that characterizes the stagger of the beta-sheet. Combining values of beta and n specifies the barrel geometry by using the optimized model of Murzin, Lesk & Chothia for regular barrels. Application to published infrared data on the Escherichia coli outer membrane protein, OmpA yields S=9-10 (n=8), a barrel radius of 0.81(+/-0.01) nm, and an internal free volume of 0.031 nm(3) per residue, where the average twist of the beta-sheets is theta approximately 28 degrees, and their coiling angle is epsilon approximately 1 degrees. Hydrophobic matching of the 2.6 nm transmembrane stretch partly determines the shear number of the OmpA beta-barrel.  相似文献   

16.
David C  Foley S  Mavon C  Enescu M 《Biopolymers》2008,89(7):623-634
The reductive unfolding of bovine serum albumin (BSA) and human serum albumin (HSA) induced by dithiothreitol (DTT) is investigated using Raman spectroscopy. The resolution of the S-S Raman band into both protein and oxidized DTT contributions provides a reliable basis for directly monitoring the S-S bridge exchange reaction. The related changes in the protein secondary structure are identified by analyzing the protein amide I Raman band. For the reduction of one S-S bridge of BSA, a mean Gibbs free energy of -7 kJ mol(-1) is derived by studying the reaction equilibrium. The corresponding value for the HSA S-S bridge reduction is -2 kJ mol(-1). The reaction kinetics observed via the S-S or amide I Raman bands are identical giving a reaction rate constant of (1.02 +/- 0.11) M(-1) s(-1) for BSA. The contribution of the conformational Gibbs free energy to the overall Gibbs free energy of reaction is further estimated by combining experimental data with ab initio calculations.  相似文献   

17.
The putative transformation of alpha-helices into beta-sheets has been studied for more than 50 years in the case of hard alpha-keratin. In a previous study of stretched keratin fibers, we specified the conditions for beta-sheet appearance within horsehair: the formation of beta-sheets requires at least 30% relative humidity. However, this phenomenon was observed in the whole tissue. Then there was no clear chemical identification of the beta-sheets (keratin or matrix proteins) and the exact location of the beta-sheets across the fiber could not be specified. In this study, using wide-angle x-ray scattering and high spatial resolution infrared microspectroscopy, we could determine and characterize the structural elements across hair sections stretched in water, which provides new information about the aforementioned transition. Our results show that the process can be split into three steps: 1), unraveling of the alpha-helical coiled-coil domains, which starts at roughly 5% macroscopic strain; 2), further transformation of the unraveled coiled-coils into beta-sheet structures, which occurs above roughly 20% macroscopic strain; and 3), spatial expanding of the beta-structured zones from the sample center to its periphery.  相似文献   

18.
Raman spectra were taken of human alpha (leukocyte) interferon subtype A (HuIFN-alpha A) purified from extracts of transformed Escherichia coli. Quantitative analysis of the conformationally sensitive amide I band indicates that IFN (interferon)-alpha A is 75 +/- 5% helical and 7 +/- 4% beta-strand. An independent analysis of the amide III spectrum indicates 71 +/- 5% helix and 10 +/- 6% beta-strand. These results differ with a recently proposed three-dimensional model based on secondary structure predictions derived from sequence and with circular dichroism measurements. The Raman spectrum of IFN-alpha A is compared with the spectra of several other helical proteins: hemerythrin, intestinal calcium-binding protein, melittin, and insulin.  相似文献   

19.
Although spider silk has been studied for a number of years the structures of the proteins involved have yet to be definitely determined. X-ray diffraction and solid-state nuclear magnetic resonance (NMR) were used to study major ampullate (dragline) silk from Nephila clavipes. The silk was studied in its natural state, in the supercontacted state and in the restretched state following supercontraction. The natural silk structure is dominated by β-sheets aligned parallel to the fiber axis. Supercontraction is characterized by randomizing of the orientation of the β-sheet. When the fiber is restretched alignment is regained. However, the same reorientation was observed for wetting of minor ampullate silk which does not supercontract. Thus, the reorientation of β-sheets alone cannot explain the supercontraction in dragline silk. Cocoon silk showed very little β-sheet orientation in the natural state and there were no changes upon wetting. NMR and X-ray diffraction data are consistent with the β-sheets arising from the poly-alanine sequences known to be present in the proteins of major ampullate silk as has been proposed previously. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
The mean orientations of the transition dipole moments associated with vibrational modes of the proteins and phospholipids of sarcoplasmic reticulum were determined on dry and hydrated membrane multilayers deposited on germanium or zinc selenide crystals, using polarized infrared attenuated total reflectance spectroscopy (P-IR-ATR). For preservation of the enzymatic activity of the Ca(2+)-ATPase the films were prepared from solutions containing 0.05 M KCl, 5 mM imidazole (pH 7.4), 0.5 mM MgCl2, 1-10 mM trehalose and dithiothreitol. The anisotropy was highest in dry films containing congruent to 7.5 micrograms protein/cm2, and decreased with increasing membrane thickness or hydration. The dichroic ratio of the CH2 vibrations (2923 cm-1) of extracted sarcoplasmic reticulum phospholipids on Ge plate was 1.56, compared with a dichroic ratio of 1.68 obtained on dry films of whole sarcoplasmic reticulum. The dichroic ratios of the amide I band (1650 cm-1) of the Ca(2+)-ATPase in the Ca2-E1 state and in the EGTA and vanadate stabilized E2-V state were nearly identical (1.60 vs. 1.62). The dichroism of the amide I, amide II and lipid CH2 vibrations was not affected by changes in the concentration of KCl (25-100 mM) or Ca2+ (approximately equal to 10(-8)-10(-4) M) and by the addition of vanadate (1 mM) or Pi (5 mM) in a calcium-free medium containing 0.5 mM EGTA. The dichroic ratio of the C-C (1033 cm-1) or CO stretching band (1046 cm-1) of trehalose incorporated into SR films was 1.2 on Ge plate; this corresponds to a mean angle of approximately 70 degrees between the plane of the trehalose ring and the normal of the film plane, suggesting that the trehalose molecules are surprisingly well oriented in the polar headgroup region of the phospholipids. The orientation of the trehalose was not affected by the presence of Ca(2+)-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号