首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3-Cyanopyridinase activity, i.e. the ability to convert 3-cyanopyridine to nicotinic acid plus ammonia, was induced in stationary phase cultures of Nocardia rhodochrous LL100-21 by the addition of 2-, 3-, or 4-cyanopyridine or benzonitrile; the latter nitrile gave maximum induction. Harvested bacteria possessing 3-cyanopyridinase activity could stoichiometrically convert 3-cyanopyridine at concentrations of up to 0.5 to nicotinic acid. Both 3-cyanopyridine and nicotinic acid inhibited the hydrolysis of 3-cyanopyridine by intact bacteria. Bacteria immobilized in calcium alginate beads and used in column bioreactors retained 3-cyanopyridinase activity for over 150 h when continuously supplied with 0.3 3-cyanopyridine.  相似文献   

2.
Aspergillus niger K10 cultivated on 2-cyanopyridine produced high levels of an intracellular nitrilase, which was partially purified (18.6-fold) with a 24% yield. The N-terminal amino acid sequence of the enzyme was highly homologous with that of a putative nitrilase from Aspergillus fumigatus Af293. The enzyme was copurified with two proteins, the N-terminal amino acid sequences of which revealed high homology with those of hsp60 and an ubiquitin-conjugating enzyme. The nitrilase exhibited maximum activity (91.6 U mg-1) at 45°C and pH 8.0. Its preferred substrates, in the descending order, were 4-cyanopyridine, benzonitrile, 1,4-dicyanobenzene, thiophen-2-acetonitrile, 3-chlorobenzonitrile, 3-cyanopyridine, and 4-chlorobenzonitrile. Formation of amides as by-products was most intensive, in the descending order, for 2-cyanopyridine, 4-chlorobenzonitrile, 4-cyanopyridine, and 1,4-dicyanobenzene. The enzyme stability was markedly improved in the presence of d-sorbitol or xylitol (20% w/v each). p-Hydroxymercuribenzoate and heavy metal ions were the most powerful inhibitors of the enzyme.  相似文献   

3.
Nitrilases have long been considered as an attractive alternative to chemical catalyst in carboxylic acids biosynthesis due to their green characteristics and the catalytic potential in nitrile hydrolysis. A novel nitrilase from Pseudomonas putida CGMCC3830 was purified to homogeneity. pI value was estimated to be 5.2 through two-dimensional electrophoresis. The amino acid sequence of NH2 terminus was determined. Nitrilase gene was cloned through CODEHOP PCR, Degenerate PCR and TAIL-PCR. The open reading frame consisted of 1113 bp encoding a protein of 370 amino acids. The predicted amino acid sequence showed the highest identity (61.6%) to nitrilase from Rhodococcus rhodochrous J1. The enzyme was highly specific toward aromatic nitriles such as 3-cyanopyridine, 4-cyanopyridine, and 2-chloro-4-cyanopyridine. It was classified as aromatic nitrilase. The nitrilase activity could reach up to 71.8 U/mg with 3-cyanopyridine as substrate, which was a prominent level among identified cyanopyridine converting enzymes. The kinetic parameters Km and Vmax for 3-cyanopyridine were 27.9 mM and 84.0 U/mg, respectively. These data would warrant it as a novel and potential candidate for creating effective nitrilases in catalytic applications of carboxylic acids synthesis through further protein engineering.  相似文献   

4.
Jin LQ  Li YF  Liu ZQ  Zheng YG  Shen YC 《New biotechnology》2011,28(6):610-615
2-Chloronicotinic acid is receiving much attention for its effective applications as a key precursor in the synthesis of pesticides and medicines. In this study, a strain ZJB-09149 converting 2-chloro-3-cyanopyridine to 2-chloronicotinic acid was newly isolated and identified as Rhodococcus erythropolis, based on its physiological and biological tests, and 16S rDNA sequence analysis. In addition, the effects of inducer, carbon source and nitrogen source were examined. Maximum activity was achieved when the above parameters were set as 8 g/l ?-caprolactam, 7 g/l yeast extract and 5 g/l maltose. Moreover, the biotransformation pathway of 2-chloro-3-cyanopyridine to 2-chloronicotinic acid in strain ZJB-09149 was investigated as well. This study revealed that the nitrile hydratase (NHase) and amidase expressed in R. erythropolis ZJB-09149 are responsible for the conversion of 2-chloro-3-cyanopyridine. This is the first time to report on the biotransformation preparation of 2-chloronicotinic acid.  相似文献   

5.
The cell free extract from the nitrile-hydrolyzing strain Aspergillus niger K10 (0.25 mg of protein) was adsorped onto a 1 mL HiTrap Butyl Sepharose column. The benzonitrile-hydrolyzing activity of the immobilized enzyme (about 1.6 U/mg of protein) was stable at pH 8 and 35 °C within the examined period (4 h). The enzyme load on the above column was increased 18 times in order to achieve high nitrile conversion. This enzyme preparation was used for the conversion of 3-cyanopyridine and 4-cyanopyridine under the above conditions. The initial substrate conversion was nearly quantitative. The activity was fairly stable; the conversion of 3-cyanopyridine decreased to 70% after 15 h, while the conversion of 4-cyanopyridine was 60% of the initial value after 39 h. The former substrate was converted into nicotinic acid and nicotinamide (molar ratio approximately 16:1) and the latter one into isonicotinic acid and isonicotinamide (molar ratio approximately 3:1).  相似文献   

6.
利用改进的羟肟酸铁分光光度比色法建立了一种简单、快速、高通量的腈水解酶筛选方法.应用该方法从土壤中筛选获得1株具有3-氰基吡啶水解酶活性的菌株CCZU10 -1,经16S rDNA序列分析,鉴定该菌为红球菌属Rhodococcus sp.;同时确定了最适反应温度、pH和金属离子添加剂分别为30℃、7.0和Ca2+ (0.1 mmol/L).在最适催化反应条件下,催化转化50 mmol/L烟腈36 h,烟酸的产率可达到93.5%.  相似文献   

7.
The coordination of 2-cyanopyridine molecule to Ni(II) atom promotes a nucleophilic addition of solvent molecules (water, methanol, ethanol) to the nitrile group. The addition of water leads to the formation of solid complexes containing pyridine-2- carboxamide as a chelate ligand. An analogous reaction of 2-cyanopyridine with NiX2 (X = Cl, Br, I, NCS) in methanolic solutions gives, however, complexes containing two or three molecules of O-methylpyridine-2-carboximidate. No nucleophilic addition of solvent occurred with 3- and 4-cyanopyridine under the same reaction conditions.The complexes under study exhibit an octahedral geometry. The structure and the mode of the ligand coordination have been determined by IR spectra.  相似文献   

8.
An intracellular nitrilase was purified from a Fusarium solani O1 culture, in which the enzyme (up to 3000 U L−1) was induced by 2-cyanopyridine. SDS-PAGE revealed one major band corresponding to a molecular weight of approximately 40 kDa. Peptide mass fingerprinting suggested a high similarity of the protein with the putative nitrilase from Gibberella moniliformis. Electron microscopy revealed that the enzyme molecules associated into extended rods. The enzyme showed high specific activities towards benzonitrile (156 U mg−1) and 4-cyanopyridine (203 U mg−1). Other aromatic nitriles (3-chlorobenzonitrile, 3-hydroxybenzonitrile) also served as good substrates for the enzyme. The rates of hydrolysis of aliphatic nitriles (methacrylonitrile, propionitrile, butyronitrile, valeronitrile) were 14–26% of that of benzonitrile. The nitrilase was active within pH 5–10 and at up to 50 °C with optima at pH 8.0 and 40–45 °C. Its activity was strongly inhibited by Hg2+ and Ag+ ions. More than half of the enzyme activity was preserved at up to 50% of n-hexane or n-heptane or at up to 15% of xylene or ethanol. Operational stability of the enzyme was examined by the conversion of 45 mM 4-cyanopyridine in a continuous and stirred ultrafiltration-membrane reactor. The nitrilase half-life was 277 and 10.5 h at 35 and 45 °C, respectively.  相似文献   

9.
A bacterial strain capable of utilizing E-pyridine-3-aldoxime as a nitrogen source was isolated from soil after a 4-month acclimation period and was identified as Rhodococcus sp. The strain contained a novel aldoxime dehydration activity that catalyzed a stoichiometric dehydration of E-pyridine-3-aldoxime to form 3-cyanopyridine. The enzyme activity was induced by various aldoximes and nitriles. The strain metabolized the aldoxime as follows: E-pyridine-3-aldoxime was dehydrated to form 3-cyanopyridine, which was converted to nicotinamide by a nitrile hydratase, and the nicotinamide was successively hydrolyzed to nicotinic acid by an amidase. Received: 21 January 1998 / Accepted: 12 May 1998  相似文献   

10.
2-Cyanopyridine proved to act as a powerful nitrilase inducer in Aspergillus niger K10, Fusarium solani O1, Fusarium oxysporum CCF 1414, Fusarium oxysporum CCF 483 and Penicillium multicolor CCF 2244. Valeronitrile also enhanced the nitrilase activity in most of the strains. The highest nitrilase activities were produced by fungi cultivated in a Czapek-Dox medium with both 2-cyanopyridine and valeronitrile. The specific nitrilase activities of these cultures were two to three orders of magnitude higher than those of cultures grown on other nitriles such as 3-cyanopyridine or 4-cyanopyridine.  相似文献   

11.
The nitrile hydratase (NHase, EC 3.5.5.1) activity of Rhodococcus rhodochrous PA-34 was explored for the conversion of 3-cyanopyridine to nicotinamide. The NHase activity (∼18 U/mg dry cell weight, dcw) was observed in 0.1 M phosphate buffer, pH 8.0 containing 1M 3-cyanopyridine as substrate, and 0.75 mg of resting cells (dry cell weight) per ml reaction mixture at 40°C. However, 25°C was more suitable for prolonged batch reaction at high substrate (3-cyanopyridine) concentration. In a batch reaction (1 liter), 7M 3-cyanopyridine (729 g) was completely converted to nicotinamide (855 g) in 12h at 25°C using 9.0 g resting cells (dry cell weight) of R. rhodochrous PA-34.  相似文献   

12.

A novel aliphatic nitrilase, REH16, was found in Ralstonia eutropha H16 and overexpressed in Escherichia coli BL21(DE3), and its enzymatic properties were studied. The temperature and pH optima were 37 °C and 6.6, respectively, and the best thermostability of the nitrilase was observed at 25 °C, which preserved 95% of activity after 120 h of incubation. REH16 has a broad hydrolytic activity toward aliphatic and heterocyclic nitriles and showed high tolerance of 3-cyanopyridine; this enzyme could hydrolyze as high as 100 mM 3-cyanopyridine completely. To improve the 3-cyanopyridine conversion efficiency in an aqueous reaction system, water-miscible organic solvents were tested, and ethanol (10% v/v) was chosen as the optimal co-solvent. Finally, under optimized conditions, using the fed-batch reaction mode, total of 1050 mM 3-cyanopyridine was hydrolyzed completely in 20.8 h with eight substrate feedings, yielding 129.2 g/L production of nicotinic acid and thus showing a potential for industrial application.

  相似文献   

13.
Rhodococcus sp. NDB 1165, a nitrile-transforming organism was isolated from temperate forest soil of Himalayas. The nitrilase (EC 3.5.5.2) activity of this organism had higher substrate specificity toward aromatic nitriles (benzonitrile, 3-cyanopyridine and 4-cyanopyridine) and unsaturated aliphatic nitrile (acrylonitrile) in comparison to saturated aliphatic nitriles (acetonitrile, propionitrile, butyronitrile and isobutyronitrile) nitrile and arylacetonitrile (phenylacetonitrile and indole-3-acetonitrile). The nitrilase of Rhodococcus sp. NDB 1165 was inducible in nature and propionitrile proved to be an efficient inducer. However, the salts of ferrous and cobalt ions had an inhibitory effect. Under optimized reaction conditions (pH 8.0 and temperature 45°C) the nitrilase activity of this organism was 2.39 ± 0.07 U/mg dry cell mass (dcm). The half-life of this enzyme was 150 min and 40 min at 45°C and 50°C respectively. However, it was quite stable at 40°C and around 58 % activity was retained even after 6 h at this temperature. The V max and K m value of this nitrilase were 1.67 μmol/ml min and 0.1 M respectively using 3-cyanopyridine as substrate. However, the decrease in V max and K m values (0.56 μmol/ml min and 0.02 M, respectively) were ␣observed at >0.05 M 3-cyanopyridine which revealed that this enzyme experienced uncompetitive inhibition at higher substrate concentrations. Under optimized reaction conditions, 1.6 M 3-cyanopyridine was successfully converted in to nicotinic acid using 2.0 mg resting cells (dcm)/ml reaction mixture in 11 h. This is the highest production of nicotinic acid i.e. 8.95 mg/mg resting cells (dcm)/h as compared to nitrilase systems reported hitherto.  相似文献   

14.
The transformation dynamics of 2- and 4-cyanopyridines by cells suspended and adsorbed on inorganic carriers has been studied in the Rhodococcus ruber gt1 possessing nitrile hydratase activity and the Pseudomonas fluorescens C2 containing nitrilase. It was shown that both nitrile hydratase and nitrilase activities of immobilized cells against 2-cyanopyridine were 1.5–4 times lower compared to 4-cyanopyridine and 1.6–2 times lower than the activities of free cells against 2-cyanpopyridine. The possibility of obtaining isonicotinic acid during the combined conversion of 4-cyanopyridine by a mixed suspension of R. ruber gt1 cells with a high level of nitrile hydratase activity and R. erythropolis 11-2 cells with a pronounced activity of amidase has been shown. Immobilization of Rhodococcus cells on raw coal and Pseudomonas cells on kaolin was shown to yield a heterogeneous biocatalyst for the efficient transformation of cyanopyridines into respective amides and carboxylic acids.  相似文献   

15.
Nitrile hydratase, which occurs abundantly in cells of Rhodococcus rhodochrous J1, catalyzes the hydration of 4- and 2-cyanopyridine and cyanopyrazine to isonicotinamide, picolinamide and pyrazinamide, respectively. Using resting cells, the reaction conditions for the production of isonicotinamide, picolinamide and pyrazinamide were optimized. Under the optimum reaction conditions, 100% of the added 9 M 4-cyanopyridine, 8 M 2-cyanopyridine and 8 M cyanopyrazine was converted to isonicotinamide, picolinamide and pyrazinamide, respectively, without the formation of the corresponding acids. The highest yields achieved corresponded to 1099 g of isonicotinamide, 977 g of picolinamide and 985 g of pyrazinamide per litre of reaction mixture containing resting cells (1.17 g dry weight). The isonicotinamide, picolinamide and pyrazinamide were crystallized and then identified physicochemically. The substrate specificity of the Rhodococcus nitrile hydratase for various aromatic nitriles was also examined.  相似文献   

16.
The use of 4-cyanopyridine (4-CNpy) and 3-cyanopyridine (3-CNpy) as ditopic ligands with 180° and 120° directionalities, respectively, for the construction of molecular architectures with the 90° metal fragments (en)PtII and (en)PdII in water is hampered by the ease with which these ligands undergo hydrolysis to isonicotinamide (4-C(O)NH2py) and nicotinamide (3-C(O)NH2py). As described in this article, out of six X-ray structurally characterized complexes (1-6), only a single one (1) reveal coordination of the unchanged ligand (4-CNpy) to (en)PtII. Nevertheless also the hydrolysis products are of interest in the context of obtaining discrete metallacyclic compounds: Thus, (en)PtII and 4-C(O)NH2py form a hexanuclear complex, [PF6⊂{(en)Pt}6(4-C(O)NHpy)4](NO3)7·10H2O (2), in which the anionic isonicotinamidate ligands function as tridentate, bridging ligands to produce a hybrid between a metallasquare and a 2-floor open box. The resulting cation with a +8 charge accommodates a single hexafluorophosphate anion in its interior. Adjacent cations of 2 pack in such a way as to develop Pt4 chains as typically seen in “platinum blues” and their [PtII]4 precursors.  相似文献   

17.
3-氰基吡啶水合酶产生菌的筛选及其酶形成条件   总被引:2,自引:2,他引:2  
应用富集培养和梯度底物浓度定向筛选技术,从长期被腈化物污染的土壤中筛选到一株产 3-氰基吡啶水合酶(3-cyanopyridine hydratase)活性较高的马红球菌(Rhodococcus e-qui)SHB-121.研究了该菌3-氰基吡啶水合酶的最适形成条件.在最适条件下,酶的比活力达5.3u/mg干细胞,比在初筛条件下的酶活力提高95倍,而在其细胞内共存的尼克酰胺(烟酰胺)水解酶活力很低.  相似文献   

18.
Whole cells of Rhodococcus equi A4, a producer of nitrile hydratase and amidase activities, were immobilized in lens-shaped hydrogel particles, LentiKats®. The immobilized biocatalyst was applied to the biotransformation of benzonitrile, 3-cyanopyridine, (R,S)-3-hydroxy-2-methylenebutanenitrile and (R,S)-3-hydroxy-2-methylene-3-phenylpropanenitrile. The stability of the nitrile hydratase during the repeated use of the biocatalyst was dependent on the type of the substrate. The enzyme was most stable during the transformation of (R,S)-3-hydroxy-2-methylenebutanenitrile. No significant loss of the amidase activity was observed within the course of the biocatalytic reaction.  相似文献   

19.
Abstract

A series of 3-cyanopyridine glycosides have been synthesized and evaluated for their inhibitory activity against human immunodeficiency virus (HIV) replication in MT-4 cells. Among the 3-cyanopyridine glycosides 6-(p-methylphenyl) and 6-(p-aminophenyl) were the most selective inhibitors of HIV replication.  相似文献   

20.
The homogeneous catalytic hydration of 2-, 3- and 4-cyanopyridines using 0.5 mol% of [(dippe)Ni(μ-H)]2 as catalyst precursor was achieved under heating. In the case of 4-cyanopyridine, production of isonicotinamide was observed at temperatures in the range of 80-120 °C. Heating to 180 °C resulted in formation of isonicotinic acid. In the case of 2- and 3-cyanopyridines the quantitative formation of their corresponding amides was achieved at 100 °C. The catalytic hydration of 2,6-dicyanopyridine was also undertaken in this work, in its case resulting in the synthesis of the mixed cyano/amide product, 2-cyanopyridine-6-carboxamide, at short reaction times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号