首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hallmark of alpha-crystallin-type small heat shock proteins (sHsps) is their highly dynamic oligomeric structure which promotes intermolecular interactions involved in subunit exchange and substrate binding (chaperone-like activity). We studied the oligomeric features of two classes of bacterial sHsps by size exclusion chromatography and nanoelectrospray mass spectrometry. Proteins of both classes formed large complexes that rapidly dissociated upon dilution and at physiologically relevant heat shock temperatures. As the secondary structure was not perturbed, temperature- and concentration-dependent dissociations were fully reversible. Complexes formed between sHsps and the model substrate citrate synthase were stable and exceeded the size of sHsp oligomers. Small Hsps, mutated in a highly conserved glycine residue at the C-terminal end of the alpha-crystallin domain, formed labile complexes that disassembled more readily than the corresponding wild-type proteins. Reduced complex stability coincided with reduced chaperone activity.  相似文献   

2.
Small heat shock proteins (sHsps) are molecular chaperones that efficiently bind non-native proteins. All members of this family investigated so far are oligomeric complexes. For Hsp26, an sHsp from the cytosol of Saccharomyces cerevisiae, it has been shown that at elevated temperatures the 24-subunit complex dissociates into dimers. This dissociation seems to be required for the efficient interaction with unfolding proteins that results in the formation of large, regular complexes comprising Hsp26 and the non-native proteins. To gain insight into the molecular mechanism of this chaperone, we analyzed the dynamics and stability of the two oligomeric forms of Hsp 26 (i.e. the 24-mer and the dimer) in comparison to a construct lacking the N-terminal domain (Hsp26DeltaN). Furthermore, we determined the stabilities of complexes between Hsp26 and non-native proteins. We show that the temperature-induced dissociation of Hsp26 into dimers is a completely reversible process that involves only a small change in energy. The unfolding of the dissociated Hsp26 dimer or Hsp26DeltaN, which is a dimer, requires a much higher energy. Because Hsp26DeltaN was inactive as a chaperone, these results imply that the N-terminal domain is of critical importance for both the association of Hsp26 with non-native proteins and the formation of large oligomeric complexes. Interestingly, complexes of Hsp26 with non-native proteins are significantly stabilized against dissociation compared with Hsp26 complexes. Taken together, our findings suggest that the quaternary structure of Hsp26 is determined by two elements, (i) weak, regulatory interactions required to form the shell of 24 subunits and (ii) a strong and stable dimerization of the C-terminal domain.  相似文献   

3.
The photosynthetic antenna system of diatoms contains fucoxanthin chlorophyll a/c binding proteins (FCPs), which are membrane intrinsic proteins showing high homology to the light harvesting complexes (LHC) of higher plants. In the present study, we used a mild solubilization of P. tricornutum thylakoid membranes in combination with sucrose density gradient centrifugation or gelfiltration and obtained an oligomeric FCP complex (FCPo). The spectroscopic characteristics and pigment stoichiometries of the FCPo complex were comparable to FCP complexes that were isolated after solubilization with higher detergent per chlorophyll ratios. The excitation energy transfer between the FCP-bound pigments was more efficient in the oligomeric FCPo complexes, indicating that these complexes may represent the native form of the diatom antenna system in the thylakoid membrane. Determination of the molecular masses of the two different FCP fractions by gelfiltration revealed that the FCP complexes consisted of trimers, whereas the FCPo complexes were either composed of six monomers or two tightly associated trimers. In contrast to vascular plants, stable functional monomers could not be isolated in P. tricornutum. Both types of FCP complexes showed two protein bands in SDS-gels with apparent molecular masses of 18 and 19 kDa, respectively. Sequence analysis by MS/MS revealed that the 19 kDa protein corresponded to the fcpC and fcpD genes, whereas the 18 kDa band contained the protein of the fcpE gene. The presence of an oligomeric antenna in diatoms is in line with the oligomeric organization of antenna complexes in different photoautotrophic groups.  相似文献   

4.
Proteins UK114 and p14.5 are both members of the putative family of small proteins YER057c/YIL051c/YjgF. The biological role of these proteins is not understood very well, and in addition, their oligomeric structure in solution remains controversial. We therefore investigated the oligomeric structure of UK114 and p14.5 using a number of methods. Both proteins have exhibited a homotrimeric structure in solution. Indeed the trimeric structure of the two proteins appeared to be so similar that when protein subunits derived from different species were mixed, stable heterotrimeric complexes (monomer ratio of 1:2 and 2:1 of UK114 and p14.5, respectively) could be formed in vitro. Furthermore, the trimeric structure of both UK114 and p14.5 proved essential for the stoichiometric hydrophobic ligand, such as fatty acid binding activity of the two proteins.  相似文献   

5.
Fluorescent chimeras composed of enhanced cyan (or enhanced yellow) fluorescent proteins (ECFP or EYFP) and one of the four human small heat shock proteins (HspB1, HspB5, HspB6 or HspB8) were expressed in E. coli and purified. Fluorescent chimeras were used for investigation of heterooligomeric complexes formed by different small heat shock proteins (sHsp) and for analysis of their subunit exchange. EYFP-HspB1 and ECFP-HspB6 form heterooligomeric complex with apparent molecular weight of ∼280 kDa containing equimolar quantities of both sHsp. EYFP-HspB5 and ECFP-HspB6 formed heterogeneous oligomeric complexes. Fluorescent proteins inside heterooligomeric complexes formed by HspB1/HspB6 and HspB5/HspB6 chimeras are closely located, making possible effective fluorescence resonance energy transfer (FRET). Neither the wild type HspB8 nor its fluorescent chimeras were able to form stable heterooligomeric complexes with the wild type HspB1 and HspB5. Homo- and hetero-FRET was used for analysis of subunit exchange of small heat shock proteins. The apparent rate constant of subunit exchange was temperature-dependent and was higher for HspB6 forming small oligomers than for HspB1 forming large oligomers. Replacement induced by homologous subunits was more rapid than the replacement induced by heterologous subunits of small heat shock proteins. Fusion of fluorescent proteins might affect oligomeric structure of small heat shock proteins, however fluorescent chimeras can be useful for investigation of heterooligomeric complexes formed by sHsp and for analysis of kinetics of their subunit exchange.  相似文献   

6.
Many membrane proteins are functional as stable oligomers. An understanding of the conditions that elicit and enhance oligomerization is important in many therapeutics. In this regard, protein–protein and protein–lipid interactions play crucial roles in the assembly and stability of oligomeric complexes. Recent years have seen a rapid increase in the mechanistic information on the importance of cytoplasmic termini in determining subunit assembly and stability of oligomeric complexes. In addition, the role of specific protein–lipid interaction between anionic phospholipids and “hot spots” on the protein surface has also become evident in stabilizing oligomeric assemblies. This review focuses on several contemporary developments of membrane proteins that stabilize oligomers by taking the potassium channel KcsA as an exemplary ion channel.  相似文献   

7.
The hyperthermophilic archaeon, Pyrococcus furiosus, expresses a small, alpha-crystallin-like protein in response to exposure to extreme temperatures, above 103 degrees C. The P. furiosus small heat shock protein (Pfu-sHSP) forms large oligomeric complexes. Based on the available crystal structures of the Methanocaldococcus jannaschii and wheat sHSPs, the protruding carboxy terminal domain is probably involved in subunit interactions. We constructed Pfu-sHSP mutants to analyze chaperone function and to study multi-subunit assembly. The results confirmed that the carboxy terminus of Pfu-sHSP is involved in inter-dimer interactions, whereas the amino terminal deletion mutant still exhibited the wild-type assembly characteristics. The ability to form oligomeric complexes via the carboxy terminal domain was shown to be necessary for thermotolerance of Escherichia coli overexpressing Pfu-sHSP. The amino terminal domain was not required for inter-species thermotolerance.  相似文献   

8.
《Inorganica chimica acta》1986,116(2):163-169
Optically active Schiff base ligands have been formed by the condensation of various salicylaldehydes with a series of chiral amino alcohols. The Eu(III) derivatives of these ligands were obtained as oligomeric materials, exhibiting an empirical 1:1 metal:ligand stoichiometry. The complexes were found to be somewhat soluble in chloroform, where they existed primarily as trimeric species. The optical activity experienced by the Eu(III) ion was observed to be dominated by the presence of configurational effects, corresponding to a dissymmetric arrangement of Schiff base ligands about the Eu(III) ion.  相似文献   

9.
Nickel(II), cobalt(II), zinc(II), and cadmium(II) complexes of Ala-Cys, Phe-Cys, and Ala-Ala-Cys were studied by potentiometric and spectroscopic methods. Ni(II) induces deprotonation and coordination of the amide nitrogens, and the stable monomeric or oligomeric complexes are formed, depending on the metal to ligand molar ratios. Formation of the stable bis-complexes with [S,O] coordination mode is characteristic for cobalt(II), zinc(II), and cadmium(II) ions.  相似文献   

10.
11.
Helicobacter pylori secretes a vacuolating toxin (VacA) that can assemble into water-soluble oligomeric complexes and insert into membranes to form anion-selective channels. Previous studies have described multiple types of oligomeric VacA structures, including single-layered astral arrays, bilayered forms, and two-dimensional crystalline arrays. In the current study, vitrified VacA complexes were examined by cryo-negative staining electron microscopy, views of the different oligomeric structures in multiple orientations were classified and analyzed, and three-dimensional models of the bilayered forms of VacA were constructed with a resolution of about 19 angstroms. These bilayered forms of VacA have a "flower"-like structure, consisting of a central ring surrounded by symmetrically arranged peripheral "petals." Further structural insights were obtained by analyzing a mutant form of VacA (VacADelta6-27), which lacks a unique amino-terminal hydrophobic segment and is defective in the capacity to form membrane channels. Bilayered oligomeric complexes formed by wild-type VacA contained a visible density within the central ring, whereas bilayered complexes formed by VacADelta6-27 lacked this density. These results indicate that deletion of the VacA amino-terminal hydrophobic region causes a structural alteration in the central ring within VacA oligomers, and suggest that the central ring plays an important role in the process by which VacA forms membrane channels.  相似文献   

12.
The human serotonin transporter (hSERT) is responsible for the termination of synaptic serotonergic signaling. Although there is solid evidence that SERT forms oligomeric complexes, the exact stoichiometry of the complexes and the fractions of different coexisting oligomeric states still remain enigmatic. Here we used single molecule fluorescence microscopy to obtain the oligomerization state of the SERT via brightness analysis of single diffraction-limited fluorescent spots. Heterologously expressed SERT was labeled either with the fluorescent inhibitor JHC 1-64 or via fusion to monomeric GFP. We found a variety of oligomerization states of membrane-associated transporters, revealing molecular associations larger than dimers and demonstrating the coexistence of different degrees of oligomerization in a single cell; the data are in agreement with a linear aggregation model. Furthermore, oligomerization was found to be independent of SERT surface density, and oligomers remained stable over several minutes in the live cell plasma membrane. Together, the results indicate kinetic trapping of preformed SERT oligomers at the plasma membrane.  相似文献   

13.
Several human small heat shock proteins (sHsps) are phosphorylated oligomeric chaperones that enhance stress resistance. They are characterized by their ability to interact and form polydispersed hetero-oligomeric complexes. We have analyzed the cellular consequences of the stable expression of either wild type HspB5 or its cataracts and myopathies inducing R120G mutant in growing and oxidative stress treated HeLa cells that originally express only HspB1. Here, we describe that wild type and mutant HspB5 induce drastic and opposite effects on cell morphology and oxidative stress resistance. The cellular distribution and phosphorylation of these polypeptides as well as the oligomerization profile of the resulting hetero-oligomeric complexes formed by HspB1 with the two types of exogenous polypeptides revealed the dominant effects induced by HspB5 polypeptides towards HspB1. The R120G mutation enhanced the native size and salt resistance of HspB1-HspB5 complex. However, in oxidative conditions the interaction between HspB1 and mutant HspB5 was drastically modified resulting in the aggregation of both partners. The mutation also induced the redistribution of HspB1 phosphorylated at serine 15, originally observed at the level of the small oligomers that do not interact with wild type HspB5, to the large oligomeric complex formed with mutant HspB5. This phosphorylation stabilized the interaction of HspB1 with mutant HspB5. A dominant negative effect towards HspB1 appears therefore as an important event in the cellular sensitivity to oxidative stress mediated by mutated HspB5 expression. These observations provide novel data that describe how a mutated sHsp can alter the protective activity of another member of this family of chaperones.  相似文献   

14.
Recently, several studies have reported oligomerization of G protein-coupled receptors, although the functional implications of this phenomenon are still unclear. Using fluorescence resonance energy transfer (FRET) and coimmunoprecipitation (COIP), we previously reported that the human thyrotropin (TSH) receptor tagged with green fluorescent protein (TSHR(GFP)) and expressed in a heterologous system was present as oligomeric complexes on the cell surface. Here, we have extended this biophysical and biochemical approach to study the regulation of such oligomeric complexes. Co-expression of TSHR(GFP) and TSHR(Myc) constructs in Chinese hamster ovary cells resulted in FRET-positive cells. The specificity of the FRET signal was verified by the absence of energy transfer in individually transfected TSHR(GFP) and TSHR(Myc):Cy3 cells cultured together and also by acceptor photobleaching. Occupation of the receptor molecule by the ligand (TSH) resulted in a dose-dependent decrease in the FRET index from 20% in the absence of TSH to <1% with 10(3) microunits/ml of TSH. Such reduction in oligomeric forms was also confirmed by coimmunoprecipitation. Exposure of TSHR(GFP/Myc) cells to forskolin or cytochalasin D caused no change in the FRET index, confirming that the decrease in the oligomeric complexes was a receptor-dependent phenomenon and free of energy or microtuble requirements. The TSH-induced decrease in TSHR oligomers was found to be secondary to dissociation of the TSHR complexes as evidenced by an increase in fluorescent intensity of photobleached spots of GFP fluorescence with 10(3) microunits/ml of TSH. These data indicated that the less active conformation of the TSHR was comprised of receptor complexes and that such complexes were dissociated on the binding of ligand. Such observations support the concept of a constitutively active TSHR dimer or monomer that is naturally inhibited by the formation of higher order complexes. Inhibition of these oligomeric forms by ligand binding returns the TSHR to an activated state.  相似文献   

15.
The survival motor neuron (SMN) protein forms the oligomeric core of a multiprotein complex required for the assembly of spliceosomal small nuclear ribonucleoproteins. Deletions and mutations in the SMN1 gene are associated with spinal muscular atrophy (SMA), a devastating neurodegenerative disease that is the leading heritable cause of infant mortality. Oligomerization of SMN is required for its function, and some SMA patient mutations disrupt the ability of SMN to self-associate. Here, we investigate the oligomeric nature of the SMN·Gemin2 complexes from humans and fission yeast (hSMN·Gemin2 and ySMN·Gemin2). We find that hSMN·Gemin2 forms oligomers spanning the dimer to octamer range. The YG box oligomerization domain of SMN is both necessary and sufficient to form these oligomers. ySMN·Gemin2 exists as a dimer-tetramer equilibrium with Kd = 1.0 ± 0.9 μm. A 1.9 Å crystal structure of the ySMN YG box confirms a high level of structural conservation with the human ortholog in this important region of SMN. Disulfide cross-linking experiments indicate that SMN tetramers are formed by self-association of stable, non-dissociating dimers. Thus, SMN tetramers do not form symmetric helical bundles such as those found in glycine zipper transmembrane oligomers. The dimer-tetramer nature of SMN complexes and the dimer of dimers organization of the SMN tetramer provide an important foundation for ongoing studies to understand the mechanism of SMN-assisted small nuclear ribonucleoprotein assembly and the underlying causes of SMA.  相似文献   

16.
Perfringolysin O (PFO), a soluble toxin secreted by the pathogenic Clostridium perfringens, forms large homo-oligomeric pore complexes comprising up to 50 PFO molecules in cholesterol-containing membranes. In this study, electron microscopy (EM) and single-particle image analysis were used to reconstruct two-dimensional (2D) projection maps from images of oligomeric PFO prepore and pore complexes formed on cholesterol-rich lipid layers. The projection maps are characterized by an outer and an inner ring of density peaks. The outer rings of the prepore and pore complexes are very similar; however, the protein densities that make up the inner ring of the pore complex are more intense and discretely resolved than they are for the prepore complex. The change in inner-ring protein density is consistent with a mechanism in which the monomers within the prepore complex make a transition from a partially disordered state to a more ordered transmembrane beta-barrel in the pore complex. Finally, the orientation of the monomers within the oligomeric complexes was determined by visualization of streptavidin (SA) molecules bound to biotinylated cysteine-substituted residues predicted to face either the inner or outer surface of the oligomeric pore complex. This study provides an unprecedented view of the conversion of the PFO prepore to pore complex.  相似文献   

17.
The oligomeric organization of the voltage-dependent anion-selective channel (VDAC) and its interactions with hexokinase play integral roles in mitochondrially mediated apoptotic signaling. Various small to large assemblies of VDAC are observed in mitochondrial outer membranes, but they do not predominate in detergent-solubilized VDAC samples. In this study, a cholesterol analog, cholesteryl-hemisuccinate (CHS), was shown to induce the formation of detergent-soluble VDAC multimers. The various oligomeric states of VDAC induced by the addition of CHS were deciphered through an integrated biophysics approach using microscale thermophoresis, analytical ultracentrifugation, and size-exclusion chromatography small angle x-ray scattering. Furthermore, CHS stabilizes the interaction between VDAC and hexokinase (Kd of 27 ± 6 μM), confirming the biological relevance of oligomers generated. Thus, sterols such as cholesterol in higher eukaryotes or ergosterol in fungi may regulate the VDAC oligomeric state and may provide a potential target for the modulation of apoptotic signaling by effecting VDAC-VDAC and VDAC-hexokinase interactions. In addition, the integrated biophysical approach described provides a powerful platform for the study of membrane protein complexes in solution.  相似文献   

18.
19.
The light-induced assembly of light-harvesting complex (LHC) II has been followed during the biogenesis of the plastid. Seedlings grown in intermittent light (IML) accumulate only small amounts of chlorophyll b. The minor LHC II apoproteins are present; however, the apoprotein levels of the major LHC II complex, LHC IIb, are severely depressed after exposure to IML. The levels of all LHC II apoproteins increase rapidly upon exposure to continuous illumination. The 25-kD, type 3 LHC IIb subunit appears to be more abundant during the early hours of greening in relation to its level in mature thylakoids. The LHC IIb apoproteins are initially associated with pigments to form monomeric pigment-protein complexes. The abundance of monomeric LHC IIb complexes gradually decreases during exposure to continuous light and a concomitant increase occurs in the amount of the trimeric and higher-order oligomeric forms. Pulse-chase experiments verify that labeled LHC IIb monomeric complexes are intermediates in the formation of trimeric and higher-order oligomeric LHC IIb-pigmented complexes. Therefore, the assembly of LHC II occurs via the initial pigmentation of the apoproteins to form monomeric complexes and proceeds in a sequential manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号