首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The importance of the various structural elements constituting a ricin A chain immunotoxin to the stability of the disulfide bond between the antibody and A chain was examined using a panel of immunoconjugates prepared with the mouse monoclonal antibody Fib75. Analogues of the standard ricin A chain immunotoxin prepared with the N-succinimidyl 3-(2-pyridyldithio)propionate disulfide cross-linker included immunoconjugates made with N-succinimidyl 4-[(iodoacetyl)amino]benzoate the thioether cross-linker; with N-succinimidyl 3-(2-pyridyldithio)butyrate, the hindered disulfide cross-linker; with a peptide spacer between the antibody and cross-linker; or with the dodecapeptide corresponding to the C-terminus of ricin A chain. The cytotoxic activities of the immunoconjugates and their susceptibility to reduction by glutathione in vitro were compared. The thioether-linked immunotoxin could not be cleaved by glutathione in vitro and had low cytotoxic potency, consistent with the requirement of a reducible disulfide linkage for activity. The hindered disulfide-linked immunotoxin was 3-fold more stable to reduction than the immunotoxin containing a standard unhindered disulfide linkage, but the cytotoxic activities of the two constructs were indistinguishable. The introduction of a flexible peptide Ala-Ala-Pro-Ala-Ala-Ala-Pro-Ala-Pro-Ala between Fib75 and the disulfide linkage introduced by SPDP had no deleterious effect on cytotoxic activity and no effect on the susceptibility of the disulfide linkage to reduction. This finding suggests that the enforced proximity of the A chain to the antibody caused by the use of a short chemical cross-linker in a conventional immunotoxin has no influence on either of these properties in this system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Glucose sensing electrodes have been realized by immobilizing glucose oxidase (GOx) on unmodified edge plane of highly oriented pyrolytic graphite (epHOPG) and the native oxide of heavily doped silicon (SiO2/Si). Both kinds of electrode show direct interfacial electron transfer due to the redox process of the immobilized GOx. The measured formal potential of the redox process agrees with that of the native enzyme, suggesting that the immobilized GOx has retained its enzymatic activity. The electron transfer rates of the GOx immobilized electrode are 2s(-1) for GOx/epHOPG electrode and 7.9s(-1) for GOx/SiO2/Si electrode, which are greater than those for which GOx is immobilized on modified electrodes, probably due to the fact that the enzyme makes direct contact to electrode surface. The preservation of the enzymatic activity of the immobilized GOx has been confirmed by observing the response of the GOx/epHOPG and GOx/SiO2/Si electrodes to glucose with a detection limit of 0.050 mM. The response signals the catalyzed oxidation of glucose and, therefore, confirms that the immobilized GOx retained its enzymatic activity. The properties of the electrode as a glucose sensor are presented.  相似文献   

3.
Multi-wall carbon nanotubes (MWNTs) functionalized with amino groups were prepared via silane treatment using 3-aminopropyltrimethoxysilane (APS) as a silane-coupling agent. The resultant amino terminated MWNTs (AMWNTs) were applied to construct glucose biosensors with IO(4)(-)-oxidized glucose oxidase (IO(4)(-)-oxidized GOx) through the layer-by-layer (LBL) covalent self-assembly method without any cross-linker. Scanning electron microscopy (SEM) indicated that the assembled AMWNTs were almost in a form of small bundles or single nanotubes, and the surface density increased uniformly with the number of GOx/AMWNTs bilayers. From the analysis of voltammetric signals, a linear increment of the coverage of GOx per bilayer was estimated. The resulting biosensor showed excellent catalytic activity towards the electroreduction of dissolved oxygen at low overvoltage, based on which glucose concentration was monitored conveniently. The enzyme electrode exhibited good electrocatalytic response towards the glucose and that response increased with the number of GOx/AMWNTs bilayers, suggesting that the analytical performance such as sensitivity and detection limit of the glucose biosensors could be tuned to the desired level by adjusting the number of deposited GOx/AMWNTs bilayers. The biosensor constructed with four bilayers of GOx/AMWNTs showed high sensitivity of 7.46muAmM(-1)cm(-2) and the detection limit of 8.0muM, with a fast response less than 10s. Because of relative low applied potential, the interference from other electro-oxidizable compounds was minimized, which improved the selectivity of the biosensors. Furthermore, the obtained enzyme electrodes also showed remarkable stability due to the covalent interaction between the GOx and AMWNTs.  相似文献   

4.
Amperometric choline biosensors were fabricated by the covalent immobilization of an enzyme of choline oxidase (ChO) and a bi-enzyme of ChO/horseradish peroxidase (ChO/HRP) onto poly-5,2′:5′,2″-terthiophene-3′-carboxylic acid (poly-TTCA) modified electrodes (CPMEs). A sensor modified with ChO utilized the oxidation process of enzymatically generated H2O2 in a choline solution at +0.6 V. The other one modified with ChO/HRP utilized the reduction process of H2O2 in a choline solution at −0.2 V. Experimental parameters affecting the sensitivity of sensors, such as pH, applied potential, and temperature were optimized. A performance comparison of two sensors showed that one based on ChO/HRP/CPME had a linear range from 1.0×10−6 to 8.0×10−5 M and the other based on ChO/CPME from 1.0×10−6 to 5.0×10−5 M. The detection limits for choline employing ChO/HRP/CPME and ChO/CPME were determined to be about 1.0×10−7 and 4.0×10−7 M, respectively. The response time of sensors was less than 5 s. Sensors showed good selectivity to interfering species. The long-term storage stability of the sensor based on ChO/HRP/CPME was longer than that based on ChO/CPME.  相似文献   

5.
Oxidation of membrane cholesterol is a hallmark of many pathological conditions, including cardiovascular diseases. Cholesterol could be oxidized in a result of free radical and enzymatic reactions. Here, we studied the effect of cholesterol oxidation by cholesterol oxidase (ChO) on responses to β-AR stimulation in isolated mouse atria. Acute exposure to ChO led to partial cholesterol oxidation without a significant change in atrial membrane cholesterol content. Pretreatment with ChO itself did not affect contractions and Ca2+ transient amplitude. However, cholesterol oxidation markedly suppressed β-AR-mediated increase in contractility and Ca2+ transient as well as NO levels. At the same time, ChO markedly facilitated β-AR-induced reactive oxygen species (ROS) production. Antioxidant and protein kinase C inhibitor prevented the depressant action of ChO on ISO-dependent contractility, Ca2+ transient and NO production. Similar effects had a selective β2-AR antagonist, which also suppressed the increase in ROS levels after ChO pretreatment. These results suggest that membrane cholesterol oxidation enhances β2-AR-dependent elevation of ROS production, leading to suppression of β-AR-mediated increase in contractility, Ca2+ transient and NO synthesis in mice atria. The oxidative cholesterol modification could contribute to disturbance in β-AR signaling in pathological conditions.  相似文献   

6.
Glucose oxidase (GOx) and glucoamylase (GA) were immobilized and coimmobilized through their carbohydrate moieties onto polyethyleneimine-coated magnetite crosslinked with glutaraldehyde and derivatized with adipic dihydrazide. The carbohydrates were oxidized with sodium periodate, and at optimal concentration, their Vm increased up to 18% for GOx and up to 16% for GA. After immobilization, a remaining activity as high as 88% and 70% for GA with maltose and maltodextrin respectively as substrates was obtained, independently of the particle loading. On the contrary, the remaining activity of GOx strongly decreased at high particle loading. Nevertheless, half of its initial activity was recovered at low loading and was not significantly affected when GA was coimmobilized by saturating the reactive groups left on the particle. The Vm of both immobilized enzymes was improved by crosslinking their carbohydrates with adipic dihydrazide, a treatment which allows further coimmobilization of the other enzyme on a second layer.  相似文献   

7.
The effect of ultrasonication on the enzymatic stability, conformation, and catalytic activity of the important oxidoreductase, glucose oxidase (GOx), was investigated. Thus, buffer-free aqueous solutions of GOx were ultrasonicated (23 kHz at 4 °C) for different periods of time (10, 30, and 60 min) and studied in terms of their enzymatic activity. The ultrasonicated GOx was also studied by UV/vis and circular dichroism (CD) spectroscopy and by thermogravimetric analysis, and compared with pristine GOx. The CD spectra of ultrasonicated GOx showed a different composition with reduced α-helix and β-sheet fractions upon extended sonication compared with the pristine GOx. Along with the changes of the secondary structure, the enzymatic activity measured via HRP-coupled bioassay of the sonicated GOx showed a small corresponding decrease. Low temperature ultrasonic processing of GOx does not appreciably compromise bioactivity.  相似文献   

8.
A directed evolution protocol was developed for glucose oxidase (GOx) from Aspergillus niger that mimics applications conditions and employs a well-known mediator, oxidized ferrocenemethanol, in a medium throughput screen (96-well plate format). Upon reduction, oxidized ferrocenemethanol shows a color change from blue to pale yellow that can be recorded at 625 nm. Under optimized screening conditions, a CV of less than 20% was achieved in 96-well microtiter plates. For validating the screening system, two mutant libraries of GOx were generated by standard error-prone PCR conditions (0.04 mM MnCl(2)) and Saccharomyces cerevisiae was employed as host for secreted GOx expression. Two screening of approximately 2000 GOx mutants yielded a double mutant (T30S I94V) with improved pH and thermal resistance. Thermal resistance at a residual activity of 50% was increased from 58 degrees C (wild type, WT) to 62 degrees C (T30S I94V) and pH stability was improved at basic pH (pH 8-11). K(m) for glucose remained nearly unchanged (20.8 mM WT; 21.3 mM T30S I94V) and k(cat) increased (69.5/s WT; 137.7/s T30S I94V).  相似文献   

9.
Tumor-marker-imprinted hydrogels having lectin and antibody molecules as ligands for a tumor-specific marker glycoprotein were strategically prepared by biomolecular imprinting using minute amounts of low-molecular-weight or high-molecular-weight cross-linkers. The tumor-marker-imprinted hydrogels shrank gradually in response to a target glycoprotein, because their apparent cross-linking density increased owing to simultaneous complex formation of lectin and antibody ligands with a target glycoprotein after their ligands dynamically recognized the glycoprotein. The swelling ratio of the tumor-marker-imprinted hydrogel using high-molecular-weight cross-linker with an optimal chain length decreased more drastically than that using a low-molecular-weight cross-linker, but the hydrogel using the cross-linker with a chain that was too long did not exhibit tumor-marker responsive behavior. This paper focuses on the effect of the molecular weight of cross-linkers on the responsive behavior of tumor-marker-imprinted hydrogels having lectin and antibody molecules as ligands. The cross-linker chain length was an important factor in determining the dynamic glycoprotein recognition and responsive behavior of the biomolecule-imprinted hydrogels.  相似文献   

10.
Molecular simulation techniques have been utilised to investigate the effect of cross-linker type on the structural and dynamical properties of a temperature-sensitive hydrogel, poly (N-isopropyl acrylamide) (PNIPAM) across its lower critical solution temperature (LCST). PNIPAM exhibits an LCST at ~305 K, above which it collapses and below which it is swollen. Molecular dynamics simulations of PNIPAM hydrogel cross-linked with N, N′-methylene bisacrylamide (BIS) and ethylene glycol dimethacrylate (EGD) cross-linkers were carried out below, at and above its LCST (namely 300, 305 and 310 K, respectively). Structural analysis indicates that the cross-linkers did not affect the temperature of the onset of the LCST, but did affect the degree of swelling and pore size distribution, where the EGD-cross-linked hydrogel exhibited a greater degree of structural change than that of the BIS-cross-linked hydrogel. We believe that this could be attributed to the longer chain length and more flexible nature of the EGD cross-linker compared to the BIS cross-linkers.  相似文献   

11.
The binding of 125I-cholecystokinin-33 (125I-CCK-33) to its receptors on rat pancreatic membranes was decreased by modification of membrane protein sulfhydryl groups. Sulfhydryl modifying reagents also caused an accelerated release of bound 125I-CCK-33 from its receptor. Because of the presence of an essential sulfhydryl group(s) in CCK receptor binding we studied the application of the heterobifunctional (SH,NH2) cross-linker, m-maleimidobenzoyl N-hydroxysuccinimide ester (MBS), to affinity label 125I-CCK-33 binding proteins on rat pancreatic plasma membranes. Analysis of the cross-linked products by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography revealed that this heterobifunctional cross-linker affinity labeled a major Mr = 80,000-95,000 protein previously identified as part of the CCK receptor on the basis of affinity labeling using homobifunctional and heterobifunctional photoreactive cross-linkers. Additional proteins of Mr greater than 200,000, and Mr = 130,000-140,000 were affinity labeled using MBS. The efficiency of the cross-linking reaction between 125I-CCK-33 and its membrane binding proteins with MBS was significantly greater than that obtained with NH2-directed homobifunctional reagents such as disuccinimidyl suberate. The efficiency of cross-linking could be dramatically improved by reduction of membrane proteins with low-molecular weight thiols prior to binding and cross-linking. The differential labeling patterns of the CCK binding proteins obtained with chemical cross-linkers of similar length but different chemical reactivity underscores the need for caution in predicting native receptor structure from affinity labeling data alone. Using the same pancreatic plasma membrane preparation and 125I-insulin, the Mr = 125,000 alpha-subunit of the insulin receptor was affinity labeled using MBS as cross-linker, demonstrating its utility in identifying other peptide hormone receptors.  相似文献   

12.
Poly(N-vinylimidazole), PVIm, gels were prepared by γ-irradiation polymerization of N-vinylimidazole in aqueous solutions. These affinity gels with a water swelling ratio of 1800% for plain polymeric gel and between 30 and 80% for Cu(II) and Co(II)-chelated gels at pH 6.0 in phosphate buffer were used in glucose oxidase (GOx) adsorption–desorption studies. Different amounts of Cu(II) and Co(II) ions (maximum 3.64 mmol/g dry gel for Cu(II) and 1.72 mmol/g dry gel for Co(II)) were loaded onto the gels by changing the initial concentration of Cu(II) and Co(II) ions, and pH. GOx adsorption on these gels from aqueous solutions containing different amount of GOx at different pH was investigated in batch reactors. Immobilized glucose oxidase activity onto the poly(N-vinylimidazole), and Cu(II) and Co(II)-chelated poly(N-vinylimidazole) were investigated with changing pH and the initial glucose oxidase concentration. Maximum activity of immobilized glucose oxidase onto the PVIm, Cu(II) and Co(II)-chelated PVIm gels was investigated and pH dependence was observed to be at pH 6.5 for free enzyme, pH 7.0 for PVIm, pH 7.5 for Cu(II) and Co(II)-chelated PVIm gels, respectively. The stability of the immobilized enzyme is very high for all gels and the residual activity was higher than 93% in the first 10 days.  相似文献   

13.
Chemical sensors utilizing immobilized enzymes and proteins are important for monitoring chemical processes and biological systems. In this study, calcium-cross-linked alginate hydrogel microspheres were fabricated as enzyme carriers by an emulsification technique. Glucose oxidase (GOx) was encapsulated in alginate microspheres using three different methods: physical entrapment (emulsion), chemical conjugation (conjugation), and a combination of physical entrapment and chemical conjugation (emulsion-conjugation). Nano-organized coatings were applied on alginate/GOx microspheres using the layer-by-layer self-assembly technique in order to stabilize the hydrogel/enzyme system under biological environment. The encapsulation of GOx and formation of nanofilm coating on alginate microspheres were verified with FTIR spectral analysis, zeta-potential analysis, and confocal laser scanning microscopy. To compare both the immobilization properties of enzyme encapsulation techniques and the influence of nanofilms with uncoated microspheres, the relationship between enzyme loading, release, and effective GOx activity (enzyme activity per unit protein loading) were studied over a period of four weeks. The results produced four key findings: (1) the emulsion-conjugation technique improved the stability of GOx in alginate microspheres compared to the emulsion technique, reducing the GOx leaching from microsphere from 50% to 17%; (2) the polyelectrolyte nanofilm coatings increased the GOx stability over time, but also reduced the effective GOx activity; (3) the effective GOx activity for the emulsion-conjugation technique (about 3.5 x 10(-)(5) AU microg(-)(1) s(-)(1)) was higher than that for other methods, and did not change significantly over four weeks; and (4) the GOx concentration, when compared after one week for microspheres with three bilayers of poly(allylamine hydrochloride)/sodium poly(styrene sulfonate) ({PAH/PSS}) coating, was highest for the emulsion-conjugation technique. As a result, the comparison of these three techniques showed the emulsion-conjugation technique to be a potentially effective and practical way to fabricate alginate/GOx microspheres for implantable glucose biosensor application.  相似文献   

14.
Evidence for a mixed population of covalently and noncovalently associated dimers of the cyanide-resistant alternative oxidase protein in plant mitochondria is presented. High molecular mass (oxidized) species of the alternative oxidase protein, having masses predicted for homodimers, appeared on immunoblots when the sulfhydryl reductant, dithiothreitol (DTT), was omitted from sodium dodecyl sulfate-polyacrylamide gel sample buffer. These oxidized species were observed in mitochondria from soybean (Glycine max [L.] Merr. cv Ransom), Sauromatum guttatum Schott, and mung bean (Vigna radiata [L.] R. Wilcz). Reduced species of the alternative oxidase were also present in the same mitochondrial samples. The reduced and oxidized species in isolated soybean cotyledon mitochondria could be interconverted by incubation with the sulfhydryl reagents DTT and azodicarboxylic acid bis(dimethylamide) (diamide). Treatment with chemical cross-linkers resulted in cross-linking of the reduced species, indicating a noncovalent dimeric association among the reduced alternative oxidase molecules. Alternative pathway activity of soybean mitochondria increased following reduction of the alternative oxidase protein with DTT and decreased following oxidation with diamide, indicating that electron flow through the alternative pathway is sensitive to the sulfhydryl/disulfide redox poise. In mitochondria from S. guttatum floral appendix tissue, the proportion of the reduced species increased as development progressed through thermogenesis.  相似文献   

15.
Cross-linking combined with mass spectrometry is an emerging approach for studying protein structure and protein-protein interactions. However, unambiguous mass spectrometric identification of cross-linked peptides derived from proteolytically digested cross-linked proteins is still challenging. Here we describe the use of a novel cross-linker, bimane bisthiopropionic acid N-succinimidyl ester (BiPS), that overcomes many of the challenges associated with other cross-linking reagents. BiPS is distinguished from other cross-linkers by a unique combination of properties: it is photocleavable, fluorescent, homobifunctional, amine-reactive, and isotopically coded. As demonstrated with a model protein complex, RNase S, the fluorescent moiety of BiPS allows for sensitive and specific monitoring of the different cross-linking steps, including detection and isolation of cross-linked proteins by gel electrophoresis, determination of in-gel digestion completion, and fluorescence-based separation of cross-linked peptides by HPLC. The isotopic coding of BiPS results in characteristic ion signal "doublets" in mass spectra, thereby permitting ready detection of cross-linker-containing peptides. Under MALDI-MS conditions, partial photocleavage of the cross-linker occurs, releasing the cross-linked peptides. This allows differentiation between dead-end, intra-, and interpeptide cross-links based on losses of specific mass fragments. It also allows the use of the isotope doublets as mass spectrometric "signatures." A software program was developed that permits automatic cross-link identification and assignment of the cross-link type. Furthermore photocleavage of BiPS assists in cross-link identification by allowing separate tandem mass spectrometry sequencing of each peptide comprising the original cross-link. By combining the use of BiPS with MS, we have provided the first direct evidence for the docking site of a phosphorylated G-protein-coupled receptor C terminus on the multifunctional adaptor protein beta-arrestin, clearly demonstrating the broad potential and application of this novel cross-linker in structural and cellular biology.  相似文献   

16.
A comparison of the analytical performances of several enzyme biosensor designs, based on the use of different tailored gold nanoparticle-modified electrode surfaces, is discussed. Glucose oxidase (GOx) and the redox mediator tetrathiafulvalene were coimmobilized in all cases by crosslinking with glutaraldehyde. The biosensor designs tested were based on the use of (i) colloidal gold (Au(coll)) bound on cysteamine (Cyst) monolayers self-assembled on a gold disk electrode (AuE) and (ii) glassy carbon electrodes (GCEs) modified with electrodeposited gold nanoparticles (nAu). The results obtained with these designs were compared with those provided by a GOx/Cyst-AuE and a GOx/MPA-AuE. In the second case (ii), configurations based on direct immobilization of GOx on nAu (GOx/nAu-GCE) or on Cyst or MPA self-assembled monolayers (SAMs) previously bound on gold nanoparticles (GOx/Cyst-nAu-GCE or GOx/MPA-nAu-GCE, respectively) were compared. The analytical characteristics of glucose calibration plots and the kinetic parameters of the enzyme reaction were compared for all of the biosensors tested. The GOx/Au(coll)-Cyst-AuE design showed a sensitivity for glucose determination higher than that achieved with GOx/Cyst-AuE and GOx/Au(coll)-Cyst/Cyst-AuE and similar to that achieved with GOx/MPA-AuE. Moreover, the useful lifetime of one single GOx/Au(coll)-Cyst-AuE was 28 days, remarkably longer than that of the other GOx biosensor designs.  相似文献   

17.
Progress in miniature chip-design raises demands for implantable power sources in health care applications such as continuous glucose monitoring of diabetic patients. Pioneered by Adam Heller, miniaturized enzymatic biofuel cells (mBCs) convert blood sugars into electrical energy by employing for example glucose oxidase (GOx) on the anode and bilirubin oxidase on the cathode. To match application demands it is crucial to increase lifetime and power output of mBCs. The power output has been limited by the performance of GOx on the anode. We developed a glucose oxidase detection assay (GODA) as medium-throughput screening system for improving GOx properties by directed protein evolution. GODA is a reaction product detection assay based on coupled enzymatic reactions leading to NADPH formation which is recorded at 340 nm. The main advantage of the assay is that it detects the production of d-gluconolactone instead of the side-product hydrogen peroxide and enables to improve bioelectrochemical properties of GOx. For validating the screening system, a mutagenic library of GOx from Aspergillus niger (EC 1.1.3.4) was generated and screened for improved activity using Saccharomyces cerevisiae as host. Directed evolution resulted in a GOx mutant I115V with 1.4-1.5-fold improved activity for beta-d-glucose (Vmax from 7.94 to 10.81 micromol min(-1) mg(-1); Km approximately 19-21 mM) and oxygen consumption kinetics correlate well [Vmax (O2) from 5.94 to 8.34 micromol min(-1) mg(-1); Km (O2) from 700 to 474 microM]. The developed mutagenic protocol and GODA represent a proof-of-principle that GOx can be evolved by directed evolution in S. cerevisiae for putative use in biofuel cells.  相似文献   

18.
The human multidrug resistance P-glycoprotein (P-gp) interacts with a broad range of compounds with diverse structures and sizes. There is considerable evidence indicating that residues in transmembrane segments 4-6 and 10-12 form the drug-binding site. We attempted to measure the size of the drug-binding site by using thiol-specific methanethiosulfonate (MTS) cross-linkers containing spacer arms of 2 to 17 atoms. The majority of these cross-linkers were also substrates of P-gp, because they stimulated ATPase activity (2.5- to 10.1-fold). 36 P-gp mutants with pairs of cysteine residues introduced into transmembrane segments 4-6 and 10-12 were analyzed after reaction with 0.2 mm MTS cross-linker at 4 degrees C. The cross-linked product migrated with lower mobility than native P-gp in SDS gels. 13 P-gp mutants were cross-linked by MTS cross-linkers with spacer arms of 9-25 A. Vinblastine and cyclosporin A inhibited cross-linking. The emerging picture from these results and other studies is that the drug-binding domain is large enough to accommodate compounds of different sizes and that the drug-binding domain is "funnel" shaped, narrow at the cytoplasmic side, at least 9-25 A in the middle, and wider still at the extracellular surface.  相似文献   

19.
Glucose oxidase (GOx) is an enzymatic workhorse used in the food and wine industries to combat microbial contamination, to produce wines with lowered alcohol content, as the recognition element in amperometric glucose sensors, and as an anodic catalyst in biofuel cells. It is naturally produced by several species of fungi, and genetic variants are known to differ considerably in both stability and activity. Two of the more widely studied glucose oxidases come from the species Aspergillus niger (A. niger) and Penicillium amagasakiense (P. amag.), which have both had their respective genes isolated and sequenced. GOx from A. niger is known to be more stable than GOx from P. amag., while GOx from P. amag. has a six-fold superior substrate affinity (K(M)) and nearly four-fold greater catalytic rate (k(cat)). Here we sought to combine genetic elements from these two varieties to produce an enzyme displaying both superior catalytic capacity and stability. A comparison of the genes from the two organisms revealed 17 residues that differ between their active sites and cofactor binding regions. Fifteen of these residues in a parental A. niger GOx were altered to either mirror the corresponding residues in P. amag. GOx, or mutated into all possible amino acids via saturation mutagenesis. Ultimately, four mutants were identified with significantly improved catalytic activity. A single point mutation from threonine to serine at amino acid 132 (mutant T132S, numbering includes leader peptide) led to a three-fold improvement in k(cat) at the expense of a 3% loss of substrate affinity (increase in apparent K(M) for glucose) resulting in a specify constant (k(cat)/K(M)) of 23.8 (mM(-1) · s(-1)) compared to 8.39 for the parental (A. niger) GOx and 170 for the P. amag. GOx. Three other mutant enzymes were also identified that had improvements in overall catalysis: V42Y, and the double mutants T132S/T56V and T132S/V42Y, with specificity constants of 31.5, 32.2, and 31.8 mM(-1) · s(-1), respectively. The thermal stability of these mutants was also measured and showed moderate improvement over the parental strain.  相似文献   

20.
The interaction between glucose oxidase (GOx) and a typical metal complex, which is chemically stable in both oxidized and reduced forms, has been investigated by a voltammetric method. The evaluation of an electron-transfer mediator useful for glucose oxidation is discussed from thermodynamic and kinetic points of view, i.e. the redox potentials of various metal complexes and the second-order rate constants for the electron transfer between GOx in reduced form and the metal complexes in oxidized form. No mediation of glucose oxidation by [Co(bpy)(3)](2+) (bpy=2,2'-bipyridine) or [Cu(bpy)(2)](2+) occurred, in spite of their appropriate redox potentials. This was attributed mainly to the lower electron-self-exchange rates of the mediator and the reaction with GOx. All three types of osmium(II) complexes, [Os(PP) (n)](2+) ( n=2 or 3; PP=polypyridine), [OsL(2)(PP)(2)](2+) (L=imidazole and its derivatives), and [OsClL(bpy)(2)](+), acted as excellent electron-transfer mediators for the glucose oxidation. Mixed ligand complexes, [OsL(2)(PP)(2)](2+) and [OsClL(bpy)(2)](+), have been concluded to be more efficient electron-transfer mediators. The electron-transfer rates between the mediator and GOx have been found to be accelerated by intermolecular electrostatic interactions or hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号