首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Class I P-glycoproteins [Pgp; MDR1 (ABCB1) in humans, mdr1a and mdr1b in mice] confer resistance to structurally diverse chemotherapeutic drugs in cultured cells and intact animals, but the function of these proteins in normal physiology remains poorly characterized. Based on studies in cell culture, a putative role for class I Pgp in absorption and intracellular trafficking of sterols has been proposed. We examined wild-type and mdr1a(-/)-/1b(-/)- mice to determine whether class I Pgp affects cholesterol absorption and esterification in vivo. Using a dual-isotope protocol, absorption of orally administered radiolabeled cholesterol into serum did not differ between wild-type and mdr1a(-/)-/1b(-/)- mice, demonstrating that class I Pgp is not essential for overall absorption of cholesterol through the intestine. However, the ratio of oral to intravenous labeled cholesterol in liver was decreased significantly in mdr1a(-/)-/1b(-/)- mice. In the liver, but not other tested organs, deletion of class I Pgp enhanced kinetics of esterification of an oral bolus of radiolabeled cholesterol without affecting esterification of cholesterol administered intravenously. Steady-state hepatic content of cholesterol and esterified cholesterol also were unaffected by absence of mdr1a and mdr1b.Thus, in normal animals, class I Pgp functions to kinetically increase hepatic accumulation and decrease esterification of orally administered cholesterol in vivo.  相似文献   

2.
The mouse mdr1a and mdr1b genes are expressed in skeletal muscle, though their precise role in muscle is unknown. Dystrophic muscle is characterized by repeated cycles of degeneration and regeneration. To explore the role of the mdr1 genes during muscle regeneration, we have created a triple knockout mouse lacking the mdr1a, mdr1b, and the dystrophin genes. The resulting ReX mice developed normally and were fertile. However, as adults, ReX had a higher proportion of degenerating muscle fibers and greater long-term loss of muscle mass than mdx. ReX muscles were also characterized by a reduced proportion of muscle side population (mSP) cells, of myogenic cells, and a reduced capacity for muscle regeneration. We found too that mSP cells derived from dystrophic muscle are more myogenic than those from normal muscle. Thus, in dystrophic muscle, the mdr1 gene plays an important role in the preservation of the mSP and of the myogenic regenerative potential. Moreover, our results suggest a hitherto unappreciated role of mdr1 in precursor cells of regenerating tissue; they therefore provide an important clue to the physiological significance of mdr1 expression in stem cells.  相似文献   

3.
Multidrug-resistance gene knockout mdr1a/1b(-/-) mice, which are deficient in P-glycoproteins, are more sensitive than wild-type (WT) mice to acute arsenic toxicity. This study assessed toxic manifestations of chronic oral arsenic in mdr1a/1b(-/-) mice, including oxidative stress and altered gene expression, and investigated altered toxicokinetics as a potential basis of enhanced arsenic toxicity. Thus, mdr1a/1b(-/-) and WT mice were exposed to sodium arsenite (0-80 ppm as arsenic) in the drinking water for 10 weeks at which time hepatic arsenic accumulation, lipid peroxidation (LPO), redox status and change in gene expression level were assessed. All mice survived the arsenic exposure, but body weight gain in the highest dose group was reduced in both mdr1a/1b(-/-) and WT mice. Arsenic induced pathological changes, elevated LPO levels and enhanced glutathione S-transferase (GST) activity, in the liver to a greater extent in mdr1a/1b(-/-) than in WT mice. Arsenic also decreased Cu/Zn superoxide dismutase activity in both mdr1a/1b(-/-) and WT mice. The expressions of certain genes, such as those encoding cell proliferation, GST, acute-phase proteins and metabolic enzymes, were modestly altered in arsenic-exposed mice. The expression of cyclin D1, a potential hepatic oncogene, was enhanced in arsenic-exposed mdr1a/1b(-/-) mice only. At the highest level of exposure, hepatic arsenic content was higher in mdr1a/1b(-/-) than in WT mice, suggesting that enhanced accumulation due to transport deficiency may, in part, account for the enhanced toxicity in these mice. In summary, this study shows that chronic arsenic toxicity, including liver pathology and oxidative stress, is enhanced in mdr1a/1b(-/-) mice, possibly due to enhanced accumulation of arsenic as a result of transport system deficiency.  相似文献   

4.

Background

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive death of motor neurons. Although the pathogenesis of ALS remains unclear, several cellular processes are known to be involved, including apoptosis. A previous study revealed the apoptosis-related gene c-Abl to be upregulated in sporadic ALS motor neurons.

Methodology/Findings

We investigated the possibility that c-Abl activation is involved in the progression of ALS and that c-Abl inhibition is potentially a therapeutic strategy for ALS. Using a mouse motor neuron cell line, we found that mutation of Cu/Zn-superoxide dismutase-1 (SOD1), which is one of the causative genes of familial ALS, induced the upregulation of c-Abl and decreased cell viability, and that the c-Abl inhibitor dasatinib inhibited cytotoxicity. Activation of c-Abl with a concomitant increase in activated caspase-3 was observed in the lumbar spine of G93A-SOD1 transgenic mice (G93A mice), a widely used model of ALS. The survival of G93A mice was improved by oral administration of dasatinib, which also decreased c-Abl phosphorylation, inactivated caspase-3, and improved the innervation status of neuromuscular junctions. In addition, c-Abl expression in postmortem spinal cord tissues from sporadic ALS patients was increased by 3-fold compared with non-ALS patients.

Conclusions/Significance

The present results suggest that c-Abl is a potential therapeutic target for ALS and that the c-Abl inhibitor dasatinib has neuroprotective properties in vitro and in vivo.  相似文献   

5.
6.
There is an intimate relationship between muscle and bone throughout life. However, how alterations in muscle functions in disease impact bone homeostasis is poorly understood. Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease characterized by progressive muscle atrophy. In this study we analyzed the effects of ALS on bone using the well established G93A transgenic mouse model, which harbors an ALS-causing mutation in the gene encoding superoxide dismutase 1. We found that 4-month-old G93A mice with severe muscle atrophy had dramatically reduced trabecular and cortical bone mass compared with their sex-matched wild type (WT) control littermates. Mechanically, we found that multiple osteoblast properties, such as the formation of osteoprogenitors, activation of Akt and Erk1/2 pathways, and osteoblast differentiation capacity, were severely impaired in primary cultures and bones from G93A relative to WT mice; this could contribute to reduced bone formation in the mutant mice. Conversely, osteoclast formation and bone resorption were strikingly enhanced in primary bone marrow cultures and bones of G93A mice compared with WT mice. Furthermore, sclerostin and RANKL expression in osteocytes embedded in the bone matrix were greatly up-regulated, and β-catenin was down-regulated in osteoblasts from G93A mice when compared with those of WT mice. Interestingly, calvarial bone that does not load and long bones from 2-month-old G93A mice without muscle atrophy displayed no detectable changes in parameters for osteoblast and osteoclast functions. Thus, for the first time to our knowledge, we have demonstrated that ALS causes abnormal bone remodeling and defined the underlying molecular and cellular mechanisms.  相似文献   

7.
Oxidative damage, produced by mutant Cu/Zn superoxide dismutase (SOD1), may play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS), a devastating motor neuron degenerative disease. A novel approach to antioxidant therapy is the use of metalloporphyrins that catalytically scavenge a wide range of reactive oxygen and reactive nitrogen species. In this study, we examined the therapeutic potential of iron porphyrin (FeTCPP) in the G93A mutant SOD1 transgenic mouse model of ALS. We found that intraperitoneal injection of FeTCPP significantly improved motor function and extended survival in G93A mice. Similar results were seen with a second group of mice wherein treatment with FeTCPP was initiated at the onset of hindlimb weakness-roughly equivalent to the time at which treatment would begin in human patients. FeTCPP-treated mice also showed a significant reduction in levels of malondialdehyde (a marker of lipid peroxidation), in total content of protein carbonyls (a marker of protein oxidation), and increased neuronal survival in the spinal cord. These results therefore provide further evidence of oxidative damage in a mouse model of ALS, and suggest that FeTCPP could be beneficial for the treatment of ALS patients.  相似文献   

8.
Transgenic mice carrying mutant Cu/Zn superoxide dismutase (SOD1) recapitulate the motor impairment of human amyotrophic lateral sclerosis (ALS). The amyloid-beta (Abeta) peptide associated with Alzheimer's disease is neurotoxic. To investigate the potential role of Abeta in ALS development, we generated a double transgenic mouse line that overexpresses SOD1(G93A) and amyloid precursor protein (APP)-C100. The transgenic mouse C100.SOD1(G93A) overexpresses Abeta and shows earlier onset of motor impairment but has the same lifespan as the single transgenic SOD1(G93A) mouse. To determine the mechanism associated with this early-onset phenotype, we measured copper and zinc levels in brain and spinal cord and found both significantly elevated in the single and double transgenic mice compared with their littermate control mice. Increased glial fibrillary acidic protein and decreased APP levels in the spinal cord of C100.SOD1(G93A) mice compared with the SOD1(G93A) mice agree with the neuronal damage observed by immunohistochemical analysis. In the spinal cords of C100.SOD1(G93A) double transgenic mice, soluble Abeta was elevated in mice at end-stage disease compared with the pre-symptomatic stage. Buffer-insoluble SOD1 aggregates were significantly elevated in the pre-symptomatic mice of C100.SOD1(G93A) compared with the age-matched SOD1(G93A) mice, correlating with the earlier onset of motor impairment in the C100.SOD1(G93A) mice. This study supports abnormal SOD1 protein aggregation as the pathogenic mechanism in ALS, and implicates a potential role for Abeta in the development of ALS by exacerbating SOD1(G93A) aggregation.  相似文献   

9.
Amyotrophic lateral sclerosis (ALS) is primarily a motor neuron disorder. Intriguingly, early muscle denervation preceding motor neuron loss is observed in mouse models of ALS. Enhanced muscle vulnerability to denervation process has been suggested by accelerated muscle deterioration following peripheral nerve injury in an ALS mouse model. Here we provide evidence of biochemical changes in the hindlimb muscle of young, presymptomatic G93A hSOD1 transgenic mice. In this report, we demonstrate that cdk5 activity is reduced in hindlimb muscle of 27-day-old G93A hSOD1 transgenic mice. In vitro analysis revealed mutant hSOD1-mediated suppression of cdk5 activity. Furthermore, the decrease in muscle cdk5 activity was accompanied by a significant reduction in MyoD and cyclin D1 levels. These early muscle changes raise the possibility that the progressive deterioration of muscle function is potentiated by altered muscle biochemistry in these mice at a very young, presymptomatic age.  相似文献   

10.
Kim SM  Kim H  Kim JE  Park KS  Sung JJ  Kim SH  Lee KW 《PloS one》2011,6(3):e17985

Objective

To demonstrate that hypolipidemia is a typical feature of the mouse model of amyotrophic lateral sclerosis (ALS) and to assess the association between hypolipidemia and disease stage, dietary intake, and sex.

Methods

We compared daily dietary intake, body weight, and serumlipid and glucose levels in ALS mice and wild-type controls at different stages of the disease.

Findings

Total cholesterol low-density lipoprotein (LDL) and LDL/high-density lipoprotein (HDL) ratio were significantly lower in ALS mice compared with controls. Subgroup analysis revealed that the incidence of hypolipidemia was significantly greater in male, but not female, ALS mice compared with control mice and that hypolipidemia was present at the presymptomatic stage of the disease. This hypolipidemia can be found without a decrease in the serum levels of other energy sources, such as glucose, in the presymptomatic stage.

Conclusions

Hypolipidemia is present at the presymptomatic stage of the ALS mouse model in the absence of malnutrition, significant neuromuscular degeneration or regeneration, and respiratory difficulty. Our findings suggest that hypolipidemia might be associated with the pathomechanism of ALS and/or lipid-specific metabolism rather than simply an epiphenomenon of neuromuscular degeneration or energy imbalance.  相似文献   

11.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a complex etiology and pathology that makes the development of new therapies difficult. ACTH has neurotrophic and myotrophic effects, but has not been tested in an ALS mouse model. The G93A-SOD1 mouse model of ALS was used to test the ability of this drug to delay ALS-like symptoms. We showed that within a specific dose range, ACTH significantly postponed the disease onset and paralysis in the mouse model. To our surprise and of greater significance is that ACTH significantly reduced the levels of soluble SOD1 in the spinal cord and CNS tissues of G93A-SOD1 treated mice as well as cultured fibroblasts.  相似文献   

12.
Effective therapies are needed for the treatment of amyotrophic lateral sclerosis (ALS), a fatal type of motor neuron disease. Morphological, biochemical, molecular genetic, and cell/animal model studies suggest that mitochondria have potentially diverse roles in neurodegenerative disease mechanisms and neuronal cell death. In human ALS, abnormalities have been found in mitochondrial structure, mitochondrial respiratory chain enzymes, and mitochondrial cell death proteins indicative of some non-classical form of programmed cell death. Mouse models of ALS are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria. This minireview summarizes work on the how malfunctioning mitochondria might contribute to neuronal death in ALS through the biophysical entity called the mitochondrial permeability pore (mPTP). The major protein components of the mPTP are enriched in mouse motor neurons. Early in the course of disease in ALS mice expressing human mutant superoxide dismutase-1, mitochondria in motor neurons undergo trafficking abnormalities and dramatic remodeling resulting in the formation of mega-mitochondria and coinciding with increased protein carbonyl formation and nitration of mPTP components. The genetic deletion of a major mPTP component, cyclophilin D, has robust effects in ALS mice by delaying disease onset and extending survival. Thus, attention should be directed to the mPTP as a rational target for the development of drugs designed to treat ALS.  相似文献   

13.
Mutations in the gene encoding human SOD1 (hSOD1) can cause amyotrophic lateral sclerosis (ALS) yet the mechanism by which mutant SOD1 can induce ALS is not fully understood. There is currently no cure for ALS or treatment that significantly reduces symptoms or progression. To develop tools to understand the protein conformations present in mutant SOD1-induced ALS and as possible immunotherapy, we isolated and characterized eleven unique human monoclonal antibodies specific for hSOD1. Among these, five recognized distinct linear epitopes on hSOD1 that were not available in the properly-folded protein but were available on forms of protein with some degree of misfolding. The other six antibodies recognized conformation-dependent epitopes that were present in the properly-folded protein with two different recognition profiles: three could bind hSOD1 dimer or monomer and the other three were specific for hSOD1 dimer only. Antibodies with the capacity to bind hSOD1 monomer were able to prevent increased hydrophobicity when mutant hSOD1 was exposed to increased temperature and EDTA, suggesting that the antibodies stabilized the native structure of hSOD1. Two antibodies were tested in a G93A mutant hSOD1 transgenic mouse model of ALS but did not yield a statistically significant increase in overall survival. It may be that the two antibodies selected for testing in the mouse model were not effective for therapy or that the model and/or route of administration were not optimal to produce a therapeutic effect. Therefore, additional testing will be required to determine therapeutic potential for SOD1 mutant ALS and potentially some subset of sporadic ALS.  相似文献   

14.
A mutant form of the copper/zinc superoxide dismutase (SOD1) protein is found in some patients with amyotrophic lateral sclerosis (ALS). Alteration of the activity of this antioxidant enzyme leads to an oxidative stress imbalance, which damages the structure of lipids and proteins in the CNS. Using fluorescence spectroscopy, we monitored membrane fluidity in the spinal cord and the brain in a widely used animal model of ALS, the SODG93A mouse, which develops symptoms similar to ALS with an accelerated course. Our results show that the membrane fluidity of the spinal cord in this animal model significantly decreased in symptomatic animals compared with age-matched littermate controls. To the best of our knowledge, this is the first report showing that membrane fluidity is affected in the spinal cord of a SODG93A animal model of ALS. Changes in membrane fluidity likely contribute substantially to alterations in cell membrane functions in the nervous tissue from SODG93A mice.  相似文献   

15.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease defined by motor neuron loss. Transgenic mouse model (Tg SOD1G93A) shows pathological features that closely mimic those seen in ALS patients. An hypothetic link between AD and ALS was suggested by finding an higher amount of amyloid precursor protein (APP) in the spinal cord anterior horn neurons, and of Aβ peptides in ALS patients skin. In this work, we have investigated the expression of some genes involved in Alzheimer’s disease, as APP, β- and γ-secretase, in an animal model of ALS, to understand some possible common molecular mechanisms between these two pathologies. For gene expression analysis, we carried out a quantitative RT-PCR in ALS mice and in transgenic mice over-expressing human wild-type SOD1 (Tg hSOD1). We found that APP and BACE1 mRNA levels were increased 1.5-fold in cortical cells of Tg SOD1G93A mice respect to Tg hSOD1, whereas the expression of γ-secretase genes, as PSEN1, PSEN2, Nicastrin, and APH1a, showed no statistical differences between wild-type and ALS mice. Biochemical analysis carried out by immunostaining and western blotting, did not show any significant modulation of the protein expression compared to the genes, suggesting the existence of post-translational mechanisms that modify protein levels.  相似文献   

16.
Two closely related but functionally distinct P-glycoprotein isoforms are encoded by the murine multidrug-resistance genes mdr1a and mdr1b. In a series of independently selected multidrug-resistant (MDR) J774.2 cell lines, mdr gene amplification and/or overexpression and overproduction of either the mdr1a or mdr1b products, or both gene products, correlates with the MDR phenotype. To investigate the possibility that mutations in the promoter regions of the mdr1a or mdr1b genes could influence their differential expression, mdr promoter-specific probes were used to detect and map potential structural alterations. An unusual structural rearrangement was found in the 5'-region of the amplified mdr1a allele in J7.T1, a cell line selected with taxol. To characterize this rearrangement, the regulatory regions of the mdr1a and mdr1b genes were analyzed. Whereas no gross structural alterations were detected by Southern blot hybridization using the mdr1b promoter probe, a novel amplified EcoRI fragment was detected by the mdr1a promoter probe. To determine the precise nature of this mutation, an mdr1a 5'-genomic clone was isolated from J7.T1 cells. Sequence analysis revealed an unusual DNA rearrangement consisting of the mdr1b gene, from its fourth intron toward its 3'-end, upstream of an intact mdr1a promoter on the amplified allele. We propose that this event occurred by an unequal sister chromatid exchange that was mediated by LINE-1 repetitive elements.  相似文献   

17.

Background

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that affects spinal cord and cortical motor neurons. An increasing amount of evidence suggests that mitochondrial dysfunction contributes to motor neuron death in ALS. Peroxisome proliferator-activated receptor gamma co-activator-1α (PGC-1α) is a principal regulator of mitochondrial biogenesis and oxidative metabolism.

Results

In this study, we examined whether PGC-1α plays a protective role in ALS by using a double transgenic mouse model where PGC-1α is over-expressed in an SOD1 transgenic mouse (TgSOD1-G93A/PGC-1α). Our results indicate that PGC-1α significantly improves motor function and survival of SOD1-G93A mice. The behavioral improvements were accompanied by reduced blood glucose level and by protection of motor neuron loss, restoration of mitochondrial electron transport chain activities and inhibition of stress signaling in the spinal cord.

Conclusion

Our results demonstrate that PGC-1α plays a beneficial role in a mouse model of ALS, suggesting that PGC-1α may be a potential therapeutic target for ALS therapy.  相似文献   

18.
Lougheed R  Turnbull J 《PloS one》2011,6(10):e23141

Background

Methylene blue (MB) is a drug with a long history and good safety profile, and with recently-described features desirable in a treatment for ALS.

Methodology/Principal Findings

We tested oral MB in inbred high-copy number SOD1 G93A mice, at 25 mg/kg/day beginning at 45 days of age. We measured disease onset, progression, and survival. There was no difference in disease onset between MB-treated mice and controls, although subgroup analysis showed a modest but statistically significant delay in disease onset in MB-treated female mice only (control 122±10.2 versus MB 129±10.0 days). MB-treated mice of both sexes spent more time in less severe stages of disease, and less time in later, more severe stages of disease. There was a non-significant trend to longer survival in MB-treated animals (control males reached endpoint at 161±14.1 days, versus 166±10.0 days for MB-treated animals, and control females reached endpoint at 171±6.2 days versus 173±13.4 days for MB-treated animals).

Conclusions/Significance

In spite of a strong theoretical rationale, MB had no significant effects on onset or survival in the inbred SOD1 G93A mouse model of ALS.  相似文献   

19.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective loss of motor neurons. Recent studies have implicated that chronic hypoxia and insufficient vascular endothelial growth factor (VEGF)-dependent neuroprotection may lead to the degeneration of motor neurons in ALS. Expression of apelin, an endogenous ligand for the G protein-coupled receptor APJ, is regulated by hypoxia. In addition, recent reports suggest that apelin protects neurons against glutamate-induced excitotoxicity. Here, we examined whether apelin is an endogenous neuroprotective factor using SOD1(G93A) mouse model of ALS. In mouse CNS tissues, the highest expressions of both apelin and APJ mRNAs were detected in spinal cord. APJ immunoreactivity was observed in neuronal cell bodies located in gray matter of spinal cord. Although apelin mRNA expression in the spinal cord of wild-type mice was not changed from 4 to 18 weeks age, that of SOD1(G93A) mice was reduced along with the paralytic phenotype. In addition, double mutant apelin-deficient and SOD1(G93A) displayed the disease phenotypes earlier than SOD1(G93A) littermates. Immunohistochemical observation revealed that the number of motor neurons was decreased and microglia were activated in the spinal cord of the double mutant mice, indicating that apelin deficiency pathologically accelerated the progression of ALS. Furthermore, we showed that apelin enhanced the protective effect of VEGF on H(2)O(2)-induced neuronal death in primary neurons. These results suggest that apelin/APJ system in the spinal cord has a neuroprotective effect against the pathogenesis of ALS.  相似文献   

20.

Background

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder characterised by progressive degeneration of motor neurons leading to death, typically within 3–5 years of symptom onset. The diagnosis of ALS is largely reliant on clinical assessment and electrophysiological findings. Neither specific investigative tools nor reliable biomarkers are currently available to enable an early diagnosis or monitoring of disease progression, hindering the design of treatment trials.

Methodology/Principal Findings

In this study, using the well-established SOD1G93A mouse model of ALS and a new in-house ELISA method, we have validated that plasma neurofilament heavy chain protein (NfH) levels correlate with both functional markers of late stage disease progression and treatment response. We detected a significant increase in plasma levels of phosphorylated NfH during disease progression in SOD1G93A mice from 105 days onwards. Moreover, increased plasma NfH levels correlated with the decline in muscle force, motor unit survival and, more significantly, with the loss of spinal motor neurons in SOD1 mice during this critical period of decline. Importantly, mice treated with the disease modifying compound arimoclomol had lower plasma NfH levels, suggesting plasma NfH levels could be validated as an outcome measure for treatment trials.

Conclusions/Significance

These results show that plasma NfH levels closely reflect later stages of disease progression and therapeutic response in the SOD1G93A mouse model of ALS and may potentially be a valuable biomarker of later disease progression in ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号