首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract An extensive allozyme survey was conducted within a natural "meta" population of the native North American annual legume, Chamaecrista fasciculata (Leguminosae) to quantify genetic structure at different spatial scales. Gene flow was then estimated by a recently developed indirect method based on a continuous population model, using pairwise kinship coefficients between individuals. The indirect estimates of gene flow, quantified in terms of neighborhood size, with an average value on the order of 150 individuals, were concordant among different spatial scales (subpopulation, population, metapopulation). This gene-flow value lies within the range of direct estimates previously documented from observations of pollen and seed dispersal for the same metapopulation. Monte Carlo simulations using the direct measures of gene flow as parameters further demonstrated that the observed spatial pattern of allozyme variation was congruent with a model of isolation by distance. Combining previously published estimates of pollen dispersal distances with kinship coefficients from this study, we quantified biparental inbreeding relative to either a single subpopulation or the whole metapopulation. At the level of a neighborhood, little biparental inbreeding was observed and most departure from Hardy-Weinberg genotypic proportions was explained by self-fertilization, whereas both selfing and biparental inbreeding contributed to nonrandom mating at the metapopulation level. Gene flow was also estimated from indirect methods based on a discontinuous population structure model. We discuss these results with respect to the effect of a patchy population structure on estimation of gene flow.  相似文献   

2.
3.
Despite fundamental importance to population dynamics, mating system evolution, and conservation management, the fitness consequences of breeding patterns in natural settings are rarely directly and rigorously evaluated. We experimentally crossed Echinacea angustifolia, a widespread, perennial prairie plant undergoing radical changes in distribution and abundance due to habitat fragmentation. We quantified the effects of both biparental inbreeding and crossing between remnant populations on progeny survival and reproduction in the field over the first eight years. Lifetime fitness is notoriously difficult to assess particularly for iteroparous species because of the long sequence and episodic nature of selection events. Even with fitness data in hand, analysis is typically plagued by nonnormal distributions of overall fitness that violate the assumptions of the usual parametric statistical approaches. We applied aster modeling, which integrates the measurements of separate, sequential, nonnormally distributed annual fitness components, and estimated current biparental inbreeding depression at 68% in progeny of sibling‐mating. The effect of between‐remnant crossing on fitness was negligible. Given that relatedness among individuals in remnant populations is already high and dispersal very limited, inbreeding depression may profoundly affect future dynamics and persistence of these populations, as well as their genetic composition.  相似文献   

4.
5.
Experimental analysis of biparental inbreeding in a self-fertilizing plant   总被引:2,自引:0,他引:2  
Abstract.— Localized dispersal and mating may genetically structure plant populations, resulting in matings among related individuals. This biparental inbreeding has significant consequences for the evolution of mating systems, yet is difficult to estimate in natural populations. We estimated biparental inbreeding in two populations of the largely self-fertilizing plant Aquilegia canadensis using standard inference as well as a novel experiment comparing apparent selfing between plants that were randomly relocated within populations to experimental control plants. Using two allozyme markers, biparental inbreeding ( b ) inferred from the difference between single-locus and multilocus estimates of selfing ( b = ss – sm ) was low. Less than 3% of matings involved close relatives (mean b = 0.029). In contrast, randomly relocating plants greatly reduced apparent selfing (mean ss = 0.674) compared to control plants that had been dug up and replanted in their original locations ( ss = 0.953, P = 0.002). Based on this difference in ss , we estimated that approximately 30% of all matings involved close relatives (mean b = 0.279, 95% CL = 0.072–0.428). Inference from ss – sm underestimated b in these populations by more than an order of magnitude. Biparental inbreeding is thought to influence the evolution of self-fertilization primarily through reducing the genetic cost of outcrossing. This is unlikely to be of much significance in A. canadensis because inbreeding depression (a major cost of selfing) is much stronger than the cost of outcrossing. However, biparental inbreeding combined with strong inbreeding depression may influence selection on dispersal.  相似文献   

6.
Degen B  Bandou E  Caron H 《Heredity》2004,93(6):585-591
In this paper, we report a study of the mating system and gene flow of Symphonia globulifera, a hermaphroditic, mainly bird-pollinated tree species with a large geographic distribution in the tropical Americas and Africa. Using three microsatellites, we analysed 534 seeds of 28 open pollinated families and 164 adults at the experimental site 'Paracou' in French Guiana. We observed, compared to other tropical tree species, relatively high values for the effective number of alleles. Significant spatial genetic structure was detected, with trees at distances up to 150 m more genetically similar than expected at random. We estimated parameters of the mating system and gene flow by using the mixed mating model and the TwoGener approach. The estimated multilocus outcrossing rate, tm, was 0.920. A significant level of biparental inbreeding and a high proportion of full-sibs were estimated for the 28 seed arrays. We estimated mean pollen dispersal distances between 27 and 53 m according to the dispersal models used. Although the adult population density of S. globulifera in Paracou was relatively high, the joint estimation of pollen dispersal and density of reproductive trees gave effective density estimates of 1.6 and 1.3 trees/ha. The parameters of the mating system and gene flow are discussed in the context of spatial genetic and demographic structures, flowering phenology and pollinator composition and behaviour.  相似文献   

7.
Inbreeding depression is a major evolutionary and ecological force influencing population dynamics and the evolution of inbreeding-avoidance traits such as mating systems and dispersal. Mating systems and dispersal are fundamental determinants of population genetic structure. Resolving the relationships among genetic structure, seasonal breeding-related mating systems and dispersal will facilitate our understanding of the evolution of inbreeding avoidance. The goals of this study were as follows: (i) to determine whether females actively avoided mating with relatives in a group-living rodent species, Brandt’s voles (Lasiopodomys brandtii), by combined analysis of their mating system, dispersal and genetic structure; and (ii) to analyze the relationships among the variation in fine-genetic structure, inbreeding avoidance, season-dependent mating strategies and individual dispersal. Using both individual- and population-level analyses, we found that the majority of Brandt’s vole groups consisted of close relatives. However, both group-specific FISs, an inbreeding coefficient that expresses the expected percentage rate of homozygosity arising from a given breeding system, and relatedness of mates showed no sign of inbreeding. Using group pedigrees and paternity analysis, we show that the mating system of Brandt’s voles consists of a type of polygyny for males and extra-group polyandry for females, which may decrease inbreeding by increasing the frequency of mating among distantly-related individuals. The consistent variation in within-group relatedness, among-group relatedness and fine-scale genetic structures was mostly due to dispersal, which primarily occurred during the breeding season. Biologically relevant variation in the fine-scale genetic structure suggests that dispersal during the mating season may be a strategy to avoid inbreeding and drive the polygynous and extra-group polyandrous mating system of this species.  相似文献   

8.
Studies of organisms on 'terrestrial islands' can improve our understanding of two unresolved issues in evolutionary genetics: the likely long-term effects of habitat fragmentation and the genetic underpinnings of continental species radiations in island-like terrestrial habitats. We have addressed both issues for four closely related plant species of the adaptive radiation Bromeliaceae, Alcantarea imperialis, A. geniculata, A. regina and A. glaziouana. All four are adapted to ancient, isolated inselberg rock outcrops in the Brazilian Atlantic rainforest and are thus long-term fragmented by nature. We used eight nuclear microsatellites to study within-population spatial genetic structure (SGS) and historical gene dispersal in nine populations of these species. Within-population SGS reflected known between-species differences in mating systems. The strongest SGS observed in A. glaziouana (Sp=0.947) was stronger than literature estimates available for plants. Analysis of short- and long-distance components of SGS identified biparental inbreeding, selfing and restricted seed dispersal as main determinants of SGS, with restricted pollen dispersal by bats contributing in some localities. The ability of Alcantarea spp. to colonize isolated inselbergs probably stems from their flexible mating systems and an ability to tolerate inbreeding. Short-ranging gene dispersal (average sigma=7-27 m) is consistent with a loss of dispersal power in terrestrial island habitats. Population subdivision associated with sympatric colour morphs in A. imperialis is accompanied by between-morph differences in pollen and seed dispersal. Our results indicate a high potential for divergence with gene flow in inselberg bromeliads and they provide base-line data about the long-term effects of fragmentation in plants.  相似文献   

9.
Under the isolation-by-distance model, the strength of spatial genetic structure (SGS) depends on seed and pollen dispersal and genetic drift, which in turn depends on local demographic structure. SGS can also be influenced by historical events such as admixture of differentiated gene pools. We analysed the fine-scale SGS in six populations of a pioneer tree species endemic to Central Africa, Aucoumea klaineana. To infer the impacts of limited gene dispersal, population history and habitat fragmentation on isolation by distance, we followed a stepwise approach consisting of a Bayesian clustering method to detect differentiated gene pools followed by the analysis of kinship-distance curves. Interestingly, despite considerable variation in density, the five populations situated under continuous forest cover displayed very similar extent of SGS. This is likely due to an increase in dispersal distance with decreased tree density. Admixture between two gene pools was detected in one of these five populations creating a distinctive pattern of SGS. In the last population sampled in open habitat, the genetic diversity was in the same range as in the other populations despite a recent habitat fragmentation. This result may due to the increase of gene dispersal compensating the effect of the disturbance as suggested by the reduced extent of SGS estimated in this population. Thus, in A. klaineana, the balance between drift and dispersal may facilitate the maintenance of genetic diversity. Finally, from the strength of the SGS and population density, an indirect estimate of gene dispersal distances was obtained for one site: the quadratic mean parent-offspring distance, sigma(g), ranged between 210 m and 570 m.  相似文献   

10.
Kin associations increase the potential for inbreeding. The potential for inbreeding does not, however, make inbreeding inevitable. Numerous factors influence whether inbreeding preference, avoidance, or tolerance evolves, and, in hermaphrodites where both self‐fertilization and biparental inbreeding are possible, it remains particularly difficult to predict how selection acts on the overall inbreeding strategy, and to distinguish the type of inbreeding when making inferences from genetic markers. Therefore, we undertook an empirical analysis on an understudied type of mating system (spermcast mating in the marine bryozoan, Bugula neritina) that provides numerous opportunities for inbreeding preference, avoidance, and tolerance. We created experimental crosses, containing three generations from two populations to estimate how parental reproductive success varies across parental relatedness, ranging from self, siblings, and nonsiblings from within the same population. We found that the production of viable selfed offspring was extremely rare (only one colony produced three selfed offspring) and biparental inbreeding more common. Paternity analysis using 16 microsatellite markers confirmed outcrossing. The production of juveniles was lower for sib mating compared with nonsib mating. We found little evidence for consistent inbreeding, in terms of nonrandom mating, in adult samples collected from three populations, using multiple population genetic inferences. Our results suggest several testable hypotheses that potentially explain the overall mating and dispersal strategy in this species, including early inbreeding depression, inbreeding avoidance through cryptic mate choice, and differential dispersal distances of sperm and larvae.  相似文献   

11.

Background and Aims

A reduction in offspring fitness resulting from mating between neighbours is interpreted as biparental inbreeding depression. However, little is known about the relationship between the parents'' genetic relatedness and biparental inbreeding depression in their progeny in natural populations. This study assesses the effect of kinship between parents on the fitness of their progeny and the extent of spatial genetic structure in a natural population of Rhododendron brachycarpum.

Methods

Kinship coefficients between 11 858 pairs of plants among a natural population of 154 R. brachycarpum plants were estimated a priori using six microsatellite markers. Plants were genotyped, and pairs were selected from among 60 plants to vary the kinship from full-sib to unrelated. After a hand-pollination experiment among the 60 plants, offspring fitness was measured at the stages of seed maturation (i.e. ripening) under natural conditions, and seed germination and seedling survival under greenhouse conditions. In addition, spatial autocorrelation was used to assess the population''s genetic structure.

Key Results

Offspring fitness decreased significantly with increasing kinship between parents. However, the magnitude and timing of this effect differed among the life-cycle stages. Measures of inbreeding depression were 0·891 at seed maturation, 0·122 (but not significant) at seed germination and 0·506 at seedling survival. The local population spatial structure was significant, and the physical distance between parents mediated the level of inbreeding between them.

Conclusions

The level of inbreeding between individuals determines offspring fitness in R. brachycarpum, especially during seed maturation. Genetic relatedness between parents caused inbreeding depression in their progeny. Therefore, biparental inbreeding contributes little to reproduction and instead acts as a selection force that promotes outcrossing, as offspring of more distant (less related) parents survive better.  相似文献   

12.
Levels of inbreeding are highly variable in natural populations. Inbreeding can be due to random factors (like population size), limited dispersal, or active mate choice for relatives. Because of inbreeding depression, mating with kin is often avoided, although sometimes intermediately related individuals are preferred (optimal outbreeding). However, theory predicts that the advantages of mating with close kin can override the effects of inbreeding depression, but in the animal kingdom, empirical evidence for this is scarce. Here we show that both sexes of Pelvicachromis taeniatus, an African cichlid with biparental brood care, prefer mating with unfamiliar close kin over nonkin, suggesting inclusive fitness advantages for inbreeding individuals. Biparental care requires synchronous behavior among parents. Since parental care is costly, there is a conflict between parents over care, which can reduce offspring fitness. Relatedness is expected to enhance cooperation among individuals. The comparison of the parental behavior of in- and outbreeding pairs showed that related parents were more cooperative and invested more than unrelated parents. Since we found no evidence for inbreeding depression, our results suggest that in P. taeniatus, inbreeding is an advantageous strategy.  相似文献   

13.
Populations of Sinojackia rehderiana are highly threatened and have small and scattered distribution due to habitat fragmentation and human activities. Understanding changes in genetic diversity, the fine-scale spatial genetic structure (SGS) at different life stages and gene flow of S. rehderiana is critical for developing successful conservation strategies for fragmented populations of this endangered species. In this study, 208 adults, 114 juveniles and 136 seedlings in a 50 × 100-m transect within an old-growth forest were mapped and genotyped using eight microsatellite makers to investigate the genetic diversity and SGS of this species. No significant differences in genetic diversity among different life-history stages were found. However, a significant heterozygote deficiency in adults and seedlings may result from substantial biparental inbreeding. Significant fine-scale spatial structure was found in different life-history stages within 19 m, suggesting that seed dispersal mainly occurred near a mother tree. Both historical and contemporary estimates of gene flow (13.06 and 16.77 m) indicated short-distance gene dispersal in isolated populations of S. rehderiana. The consistent spatial structure revealed in different life stages is most likely the result of limited gene flow. Our results have important implications for conservation of extant populations of S. rehderiana. Measures for promoting pollen flow should be taken for in situ conservation. The presence of a SGS in fragmented populations implies that seeds for ex situ conservation should be collected from trees at least 19-m apart to reduce genetic similarity between neighbouring individuals.  相似文献   

14.
Gynodioecy, the co-occurrence of female and hermaphroditic individuals within a population, is an important intermediate in the evolution of separate sexes. The first step, female maintenance, requires females to have higher seed fitness compared with hermaphrodites. A common mechanism thought to increase relative female fitness is inbreeding depression avoidance, the magnitude of which depends on hermaphroditic selfing rates and the strength of inbreeding depression. Less well studied is the effect of biparental inbreeding on female fitness. Biparental inbreeding can affect relative female fitness only if its consequence or frequency differs between sexes, which could occur if sex structure and genetic structure both occur within populations. To determine whether inbreeding avoidance and/or biparental inbreeding can account for female persistence in Geranium maculatum, we measured selfing and biparental inbreeding rates in four populations and the spatial genetic structure in six populations. Selfing rates of hermaphrodites were low and did not differ significantly from zero in any population, leading to females gaining at most a 1–14% increase in seed fitness from inbreeding avoidance. Additionally, although significant spatial genetic structure was found in all populations, biparental inbreeding rates were low and only differed between sexes in one population, thereby having little influence on female fitness. A review of the literature revealed few sexual differences in biparental inbreeding among other gynodioecious species. Our results show that mating system differences may not fully account for female maintenance in this species, suggesting other mechanisms may be involved.  相似文献   

15.
Pentadesma butyracea Sabine, a rain forest food tree species, plays a vital role in the socio-economic livelihood of some West African rural communities due to its various products. However, its scattered populations are threatened in Benin. Defining appropriate conservation strategies requires a good knowledge of mating patterns and their consequences for population genetics. The outcrossing rate, levels of correlated paternity and fine-scale spatial genetic structure of adults and maternal sibships were estimated for one small population and three large populations in Benin using microsatellite markers. Similar outcrossing rates (88–95%) were found in all populations, showing that P. butyracea is mainly an outbreeding species. We found no evidence of inbreeding depression from a decay of inbreeding with age. The spatial genetic structure within the large populations (Sp statistic?=?0.003–0.038) was consistent with isolation-by-distance expectations, showing that gene dispersal is spatially limited. Limited pollen dispersal is highlighted by the decay of the degree of correlated paternity between sibships with spatial distance. The mean pollen dispersal distance was estimated between 50 m and 450 m, but up to 21% pollen may migrate from external sources. The smallest population displayed slightly higher correlated paternity than the large populations (r p ?=?0.37 vs. r p ?=?0.17–0.30). In conclusion, our results suggest that small populations may show a reduction in sire numbers in seed, while the fragmented populations, large and small, are connected through gene flow. There is little inbreeding and no evidence of inbreeding depression.  相似文献   

16.
1.?Breeding with kin can reduce individual fitness through the deleterious effects of inbreeding depression. Inbreeding avoidance mechanisms are expected to have developed in most species, and especially in cooperatively breeding species where individuals may delay dispersal until long after sexual maturity. Such potential mechanisms include sex-biased dispersal and avoidance of kin known through associative learning. 2.?The investigation of inbreeding avoidance through dispersal dynamics can be enhanced by combining fine-scale population genetic structure data with detailed behavioural observations of wild populations. 3.?We investigate possible inbreeding avoidance in a wild population of cooperatively breeding southern pied babblers (Turdoides bicolor). A combination of genetic, geographic and observational data is used to examine fine-scale genetic structure, dispersal (including sex-biased dispersal) and inheritance of dominance in cooperatively breeding groups. 4.?Unusually, sex-bias in dispersal distance does not occur. Rather, individuals appear to avoid inbreeding through two routes. First, through dispersal itself: although both males and females disperse locally, they move outside the range within which genetically similar individuals are usually found, going twice as far from natal groups as from non-natal groups. Second, through avoidance of familiar group members as mates: individuals inherit a dominant position in the natal group only when an unrelated breeding partner is present. 5.?This study uses spatial genetic analyses to investigate inbreeding avoidance mechanisms in a cooperative breeder and shows that individuals of both sexes can avoid inbreeding through a dispersal distance mechanism. While it appears that dispersal allows most individuals to move beyond the range of closely related kin, matings may still occur between distant kin. Nevertheless, any costs of breeding with a distant relative may be outweighed by the benefits of local dispersal and the immense fitness gains available from attaining a breeding position.  相似文献   

17.
Inbreeding depression is a reduction of fitness in the progeny of closely related individuals and its effects are assigned to selfing or biparental inbreeding. Vriesea gigantea is a self‐compatible bromeliad species distributed in the Brazilian Atlantic rainforest and habitat destruction and fragmentation and collection have decreased the natural populations. We aim to describe the occurrence of inbreeding depression (δ) in three natural populations of V. gigantea and to correlate this phenomenon with previous studies of fertility, genetic diversity, population genetic structure, gene flow, mating system and seed dispersal in this species. Fifty‐four adult plants were sampled and 108 flowers were used for pollination treatments (selfing, outcrossing and control). For adult plants, we analysed plant and inflorescence height, flower numbers and seed set. In the progenies, evaluated parameters included seed germination and seedling survival rate. The results indicated low to moderate levels of inbreeding depression in V. gigantea (δ = 0.02 to 0.39), in agreement with molecular data from a previous study. Vriesea gigantea populations tolerate some degree of inbreeding, which is consistent with previous results on fertility, mating system, genetic diversity and gene flow. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 169 , 312–319.  相似文献   

18.
Plant mating systems represent an evolutionary and ecological trade‐off between reproductive assurance through selfing and maximizing progeny fitness through outbreeding. However, many plants with sporophytic self‐incompatibility systems exhibit dominance interactions at the S‐locus that allow biparental inbreeding, thereby facilitating mating between individuals that share alleles at the S‐locus. We investigated this trade‐off by estimating mate availability and biparental inbreeding depression in wild radish from five different populations across Australia. We found dominance interactions among S‐alleles increased mate availability relative to estimates based on individuals that did not share S‐alleles. Twelve of the sixteen fitness variables were significantly reduced by inbreeding. For all the three life‐history phases evaluated, self‐fertilized offspring suffered a greater than 50% reduction in fitness, while full‐sib and half‐sib offspring suffered a less than 50% reduction in fitness. Theory indicates that fitness costs greater than 50% can result in an evolutionary trajectory toward a stable state of self‐incompatibility (SI). This study suggests that dominance interactions at the S‐locus provide a possible third stable state between SI and SC where biparental inbreeding increases mate availability with relatively minor fitness costs. This strategy allows weeds to establish in new environments while maintaining a functional SI system.  相似文献   

19.
Selective logging may impact patterns of genetic diversity within populations of harvested forest tree species by increasing distances separating conspecific trees, and modifying physical and biotic features of the forest habitat. We measured levels of gene diversity, inbreeding, pollen dispersal and spatial genetic structure (SGS) of an Amazonian insect-pollinated Carapa guianensis population before and after commercial selective logging. Similar levels of gene diversity and allelic richness were found before and after logging in both the adult and the seed generations. Pre- and post-harvest outcrossing rates were high, and not significantly different from one another. We found no significant levels of biparental inbreeding either before or after logging. Low levels of pollen pool differentiation were found, and the pre- vs. post-harvest difference was not significant. Pollen dispersal distance estimates averaged between 75 m and 265 m before logging, and between 76 m and 268 m after logging, depending on the value of tree density and the dispersal model used. There were weak and similar levels of differentiation of allele frequencies in the adults and in the pollen pool, before and after logging occurred, as well as weak and similar pre- and post-harvest levels of SGS among adult trees. The large neighbourhood sizes estimated suggest high historical levels of gene flow. Overall our results indicate that there is no clear short-term genetic impact of selective logging on this population of C. guianensis.  相似文献   

20.
Prosopis species forests in Argentina are increasingly fragmented in the last years mainly by the deforestation activity without any reforestation strategy, the establishment of different crop plantations, and natural fires. The consequence of habitat fragmentation on the genetic potential of Prosopis alba requires a fine-scale analysis of population structure, in particular mating system and pollen dispersal. By means of short sequences repeats, we analyzed a fragmented population of this species in Santiago del Estero (Argentina). Most genetic variation was observed among families within zones (65.5%), whereas the lowest proportion corresponded to the differentiation among zones (2.8%). The fine analysis of structure at family level suggests that this population is complete outcrosser and there is a low but significant biparental inbreeding. Outcrossing rates differ among mother plants and the proportion of full sibs within mother plants ranged from 64% for seeds proceeding from the same pod to 10% for seeds from different pods. The average pollen dispersal distance was estimated to be among 5.36 and 30.92 m by using the KinDist or TwoGener approach. About seven pollen donors are siring each progeny array and the number of seed trees necessary for seed collection aiming to retain an effective population size of 100 was estimated in 16–39 individuals depending on the relatedness estimator used. Pollen and seed dispersal would be limited, what determines the need of conserving short distant patches to avoid the effects of inbreeding and drift within populations as a consequence of intensive use resource for agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号