首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The consistent correlation between desiccation tolerance in orthodox seed tissue and an accumulation of certain "late embryogenesis abundant" (LEA) proteins suggests that these proteins reduce desiccation-induced cellular damage. The aim of the present work was to test this hypothesis. Exogenous abscisic acid (ABA) was used to elevate the level of heal-soluble LEA-like proteins in axes from immature (30 days after flowering: mid-development) seeds of soybean ( Glycine max [L.] Merrill cv. Chippewa 64). As the LEA-like proteins accumulated in response to ABA, the leakage of all elements after desiccation and subsequent rehydration markedly declined. Both LEA-like protein accumulation and the decline in desiccation-induced electrolyte leakage were apparently dependent on the presence of ABA. Both effects of ABA were inhibited by cycloheximide. Light microscopy revealed a marked effect of the ABA on cellular integrity following desiccation. Osmotic stress also caused a decrease in desiccation-induced electrolyte leakage and stimulated the accumulation of LEA-like proteins. Our data are consistent with the hypothesis that the LEA-like proteins contribute to the increase in desiccation tolerance in response to ABA, and are consistent with a general protective role for these proteins in desiccation tolerance.  相似文献   

2.
The ability of seeds to withstand desiccation develops during embryogenesis and differs considerably among species. Paddy rice (Oryza sativa L.) grains readily survive dehydration to as low as 2% water content, whereas North American wild rice (Zizania palustris var interior [Fasset] Dore) grains are not tolerant of water contents below 6% and are sensitive to drying and imbibition conditions. During embryogenesis, dehydrin proteins, abscisic acid (ABA), and saccharides are synthesized, and all have been implicated in the development of desiccation tolerance. We examined the accumulation patterns of dehydrin protein, ABA, and soluble saccharides (sucrose and oligosaccharides) of rice embryos and wild rice axes in relation to the development of desiccation tolerance during embryogenesis. Dehydrin protein was detected immunologically with an antibody raised against a conserved dehydrin amino acid sequence. Both rice and wild rice embryos accumulated a 21-kD dehydrin protein during development, and an immunologically related 38-kD protein accumulated similarly in rice. Dehydrin protein synthesis was detected before desiccation tolerance had developed in both rice embryos and wild rice axes. However, the major accumulation of dehydrin occurred after most seeds of both species had become desiccation tolerant. ABA accumulated in wild rice axes to about twice the amount present in rice embryos. There were no obvious relationships between ABA and the temporal expression patterns of dehydrin protein in either rice or wild rice. Wild rice axes accumulated about twice as much sucrose as rice embryos. Oligosaccharides were present at only about one-tenth of the maximum sucrose concentrations in both rice and wild rice. We conclude that the desiccation sensitivity displayed by wild rice grains is not due to an inability to synthesize dehydrin proteins, ABA, or soluble carbohydrates.  相似文献   

3.
4.
A proteomic analysis was performed on the heat stable protein fraction of imbibed radicles of Medicago truncatula seeds to investigate whether proteins can be identified that are specifically linked to desiccation tolerance (DT). Radicles were compared before and after emergence (2.8 mm long) in association with the loss of DT, and after reinduction of DT by an osmotic treatment. To separate proteins induced by the osmotic treatment from those linked with DT, the comparison was extended to 5 mm long emerged radicles for which DT could no longer be reinduced, albeit that drought tolerance was increased. The abundance of 15 polypeptides was linked with DT, out of which 11 were identified as late embryogenesis abundant proteins from different groups: MtEm6 (group 1), one isoform of DHN3 (dehydrins), MtPM25 (group 5), and three members of group 3 (MP2, an isoform of PM18, and all the isoforms of SBP65). In silico analysis revealed that their expression is likely seed specific, except for DHN3. Other isoforms of DNH3 and PM18 as well as three isoforms of the dehydrin Budcar5 were associated with drought tolerance. Changes in the abundance of MtEm6 and MtPM25 in imbibed cotyledons during the loss of DT and in developing embryos during the acquisition of DT confirmed the link of these two proteins with DT. Fourier transform infrared spectroscopy revealed that the recombinant MtPM25 and MtEm6 exhibited a certain degree of order in the hydrated state, but that they became more structured by adopting alpha helices and beta sheets during drying. A model is presented in which DT-linked late embryogenesis abundant proteins might exert different protective functions at high and low hydration levels.  相似文献   

5.
The fraction of heat-stable dehydrins cytosolic proteins from mature recalcitrant seeds of horse chestnut (Aesculus hippocastanum L.) was studied in the period of their dormancy and germination in order to identify and characterize stress-induced dehydrin-like polypeptides. In our experiments, in tissues of dormant seeds, dehydrin was identifies by immunoblotting as a single bright band with a mol wt of about 50 kD. Low-molecular-weight heat-stable proteins with mol wts of 25 kD and below 16 kD, which were abundant in this fraction, did not cross-react with the antibody. Dehydrin was detected in all parts of the embryo: in the cells of axial organs, cotyledon storage parenchyma, and petioles of cotyledonary leaves. This indicates the absence of tissue-specificity in distribution of these proteins in the horse chestnut seeds. Dehydrins were detected among heat-stable proteins during the entire period of stratification and also radicle emersion. During radicle emergence, not only the fraction of heat-stable proteins was reduced but also the proportion of dehydrins in it decreased. In vitro germination of axes excised at different terms of stratification also resulted in dehydrin disappearance. When growth of excised axes was retarded by treatments with ABA, cycloheximide, or α-amanitin, dehydrins did not disappeared from the fraction of heat-stable proteins. When excised axes were germinated in vitro in the presence of compounds, which did not affect their growth or stimulated it (dehydrozeatin, glucose), this resulted in dehydrin disappearance. This means that dehydrin metabolism is closely related to the process of germination. Dehydrin in the horse chestnut seeds could cross-react with the antibody against ubiquitin, which can indicate the involvement of ubiquitination in the process of dehydrin degradation during germination via the proteasome system. The analysis of total proteins of the homogenate from horse chestnut seeds revealed, along with a 50-kD heat-stable dehydrin, one more component with a mol wt of 80 kD, which was located in the fraction of heat-sensitive proteins and was named as a dehydrin-like protein. It was demonstrated that dehydrins in horse chestnut seeds represented only a very small fraction of heat-stable cytosolic proteins. The role and function of major heat-stable proteins in horse chestnut seeds are yet to be studied.  相似文献   

6.
Dehydrins are a group of plant proteins that usually accumulate in response to environmental stresses. They are proposed to play specific protective roles in plant cells. Present study showed that the accumulation of dehydrins in water-stressed barley (Hordeum vulgare L.) seedlings was influenced by their treatment with salicylic acid (SA). The level of dehydrin proteins was increased by 0.20 mM SA, but decreased by 0.50 mM SA treatment. Both mRNA expression and protein accumulation of a typical barley dehydrin, DHN5, were enhanced by SA treatment when SA concentrations were lower than 0.25 mM. However, the higher SA concentrations significantly decreased the protein level of DHN5 despite of a stable mRNA level. Our results also showed that low SA concentrations (less than 0.25 mM) decreased the electrolyte leakage and malondialdehyde (MDA) and H2O2 contents in water-stressed barley seedlings. But high SA concentrations (more than 0.25 mM) enhanced H2O2 accumulation, tended to cause more electrolyte leakage, and increase MDA content. These data indicated that SA could up-regulate the dehydrin gene expression and protein accumulation. Since the protective role of dehydrins in plant cells, such effect could be an important reason for the SA-mediated alleviation on water stress injury. But excessive SA could suppress the accumulation of dehydrin proteins and aggravate the oxidative damage. Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 3, pp. 388–394. This text was submitted by the authors in English.  相似文献   

7.
The moss Physcomitrella patens has been used as a model organism to study the induction of desiccation tolerance (DT), but links between dehydration rate, the accumulation of endogenous abscisic acid (ABA) and DT remain unclear. In this study, we show that prolonged acclimation of P. patens at 89% relative humidity (RH) [?16 MPa] can induce tolerance of desiccation at 33% RH (?153 MPa) in both protonema and gametophore stages. During acclimation, significant endogenous ABA accumulation occurred after 1 day in gametophores and after 2 days in protonemata. Physcomitrella patens expressing the ABA‐inducible EARLY METHIONINE promoter fused to a cyan fluorescent protein (CFP) reporter gene revealed a mostly uniform distribution of the CFP increasing throughout the tissues during acclimation. DT was measured by day 6 of acclimation in gametophores, but not until 9 days of acclimation for protonemata. These results suggest that endogenous ABA accumulating when moss cells experience moderate water loss requires sufficient time to induce the changes that permit cells to survive more severe desiccation. These results provide insight for ongoing studies of how acclimation induces metabolic changes to enable DT in P. patens.  相似文献   

8.
Dehydration tolerance of in vitro orchid protocorms was investigated under controlled drying conditions and after abscisic acid (ABA) pretreatment. Protocorms were obtained by germinating seeds on Murashige and Skoog (MS) medium containing 10% (v/v) coconut water, 2% (w/v) sucrose and 0.8% (w/v) agar, and were dehydrated in relative humidities (RH) ranging from 7% to 93% at 25 degrees C. The critical water content of dehydration tolerance was determined, using the electrolyte leakage method. Drying rate affected the critical water content. Slow drying under high RH conditions achieved the greatest tolerance to dehydration. ABA pretreatment decreased the drying rate of protocorms, and increased dehydration tolerance. Improved tolerance to dehydration after ABA treatment was correlated with the effect of ABA on drying rate of protocorms. When critical water content of protocorms dried under different RH was plotted as a function of actual drying rate, no significant difference in tolerance to dehydration was observed between ABA-treated and control protocorms. ABA pretreatment and dehydration of orchid protocorms induced the synthesis of dehydrin, especially under the slow drying conditions. ABA pretreatment also promoted dry matter accumulation such as carbohydrates and soluble proteins and increased the concentration of K(+) and Na(+) ions in protocorms. The ABA-induced decrease in drying rate was correlated with lower osmotic potential, the enhanced maturity of protocorms and the accumulation of dehydrin in protocorms during pretreatment.  相似文献   

9.

Vateria indica L. is a critically endangered tree species in South-Western Ghats of India, commercially exploited for its valuable resins. Seed recalcitrance is a major problem hindering the natural regeneration of this species and it poses a great challenge in seed storage and conservation. There was a continuous import of water from the maternal tissues to seed tissues till maturity and the seeds were released in a fully hydrated state. Differential accumulation of water has been noticed in the cotyledons and embryonal axis. There was a positive correlation between seed moisture content and rate of germination which is a character of recalcitrant seeds. The critical moisture content was found to be 40% in the axis and 23.5% in the cotyledons, below which the embryo will not germinate. Loss of germination ability as a result of desiccation was attributed to the cell membrane damage, expressed as the electrolyte leakage exceeding 0.79 μS/cm. ABA peaked in the mid embryogenesis, then dropped drastically and maintained a lower level till seed maturity. On desiccation, ABA started to increase but gradually dropped down. Both cotyledons and embryonal axis had differential ABA content but exhibited a general pattern of ABA level during embryogeny. Due to the thin seed coat/embryo ratio and low investment in the seed coat, this recalcitrant seed could not hold water as efficient as orthodox seeds. Thus, it germinated as soon as it was shed from the mother plant. On desiccation, ABA shot up and moisture content decreased along with electrolyte leakage and cell membrane damage. All these hindered germination of the seed. Thus, we can see a clear interplay between moisture content and ABA levels during embryogeny and desiccation. Since the seed biology of this species has not been well documented, the present work is mainly intended to study the dynamics of water and ABA during embryogeny and embryo drying. This study can surely contribute to the long-term storage and conservation of recalcitrant seeds which is a less explored area.

  相似文献   

10.
玉米种子萌发能力和耐脱水能力的形成   总被引:7,自引:0,他引:7  
以玉米品种“粤单9117”为材料,研究了种子发育过程中萌发能力和耐脱水能力的获得。玉米种子的生理成熟期约为43DAP(授粉后天数)。胚萌发能力的获得是在14-21DAP、耐脱水能力的获得出现在25-28DAP。胚的耐脱水能力在28DAP后仍不断得到加强。耐脱水能力的获得与细胞膜的发育及受保护的程度密切相关。脱水有利于不同发育时期的胚和种子的萌发。  相似文献   

11.
Protocorm-like bodies (PLBs) of Dendrobium candidum were successfully cryopreserved by the air-drying method. The optimal water content before freezing seemed to be at the range of 0.1 g H2O/g DW (11 % on fresh weight basis) to 0.5 g H2O/g DW (33 % on fresh weight basis). Changes in soluble sugars, heat-stable proteins and dehydrins during desiccation of PLBs were analyzed. Extensive accumulation of soluble sugars was observed at water content of about 7.2 g H2O/g DW (after 24 h desiccation), and the sugars content did not increase further during the following desiccation. The amount of heat-stable protein increased significantly when water content decreased to 1.0 g H2O/g DW (after approximately 66 h desiccation). Results from immunological detection showed that two bands of the heat-stable proteins with respective molecular masses of 28.7 and 34.3 kDa were dehydrins which appeared when water content dropped to 1.0 g H2O/g DW. Therefore, it seemed that accumulation of dehydrins happened later than that of soluble sugars. Interestingly, exogenous ABA treatment of PLBs before desiccation could also induce the accumulation of soluble sugars, heat-stable proteins and dehydrins. The possible roles of these substances in the acquisition of dehydration and freezing tolerance were discussed.  相似文献   

12.
The stress inducibility of dehydrin protein production in seedlingsof castor bean was analysed by subjecting them to ABA and variouswater-deficit-related treatments including desiccation, waterstress, high salt, high osmolarity, and low temperature. A furthergoal was to determine whether the immature seed (at stages priorto major dehydrin synthesis) would respond in a similar mannerto these stresses. A number of dehydrin-like proteins increasedin seedlings subjected to the various stress treatments. Inthe endosperm, these appear to be different from the dehydrin-relatedpolypeptides that are induced during late seed development andwhich persist following germination/growth of mature seeds.In the endosperm of seedlings, ABA, water stress and desiccationinduced the same dehydrin polypeptides, while high osmolarity,high salt and low temperature induced a different set. Stress-specificdifferences in dehydrin synthesis were also found in the cotyledonsand radicle of castor bean seedlings; however, dehydrins indu-cibleby exogenous ABA were consistently produced. Immature seedstreated with ABA or subjected to stress responded by producingdehydrin-like proteins associated with late development; however,the same proteins were induced following detachment of immatureseeds from the parent plant and maintenance on water. When seedlingswere exposed simultaneously to GA and either ABA, high salt,or low temperature, dehydrin production was suppressed. It isconcluded that dehydrin production in castor bean is tissue-specificand is dependent upon the physiological stage of the seed. Inthe endosperm, the response to different stresses may rely uponmore than one signal trans-duction pathway. Key words: Dehydrin, castor bean, ABA, desiccation  相似文献   

13.
对热带植物小芸木的种子和胚在整个发育阶段的形态学特征、含水量、萌发率和电导率进行了研究。结果显示:(1)小芸木种子在发育过程中形态学特征、电导率、萌发率和胚的脱水耐性有明显的变化;(2)在55~80 d种子鲜重和干重逐渐增加,随后又稍微降低,整个发育过程未经历明显的成熟脱水阶段;种子萌发率从55~85 d逐渐达到最大,随后又稍微降低;(3)胚的脱水耐性从55~90 d逐渐增加,于85~90 d达到最大,在95~103 d时又有所下降。表明小芸木胚的最大脱水耐性的获得时间与种子干物质积累达到最大的时间一致。  相似文献   

14.
Proteins WCS120 and DHN5 are known as the major cold-inducible dehydrins in wheat and barley plants, respectively. WCS120 and DHN5 relative accumulation increased exponentially along with a growth temperature decline in the range from optimum to cold temperatures. Even at optimum growth temperatures, the most frost-tolerant wheat and barley cultivars can be distinguished from the remaining ones according to dehydrin relative accumulation. The highly tolerant wheat and barley cultivars started accumulating dehydrins at higher growth temperatures and reached higher dehydrin amounts than the less tolerant ones. Statistically significant correlations between lethal temperature for 50 % of the samples (LT50) and dehydrin relative accumulation have been found at all growth temperatures (5, 10, 15 and 20 °C) for WCS120 in wheats and at 5 and 10 °C for DHN5 in barleys. Analogous relationships between dehydrin relative accumulation at different growth temperatures and plant acquired frost tolerance have been proved for wheat WCS120 and barley DHN5.  相似文献   

15.
16.
Changes in soluble carbohydrates and heat-stable proteins havebeen examined in relation to the acquisition of desiccationtolerance and/or potential seed longevity during seed developmentin rapid-cycling brassica [Brassica campestris (rapa)L.]. Ratesof seed development were moderated by different irrigation regimes.At the early stages, glucose, fructose and sucrose predominated.The raffinose series oligosaccharides accumulated during seedmaturation, and occurred earliest in seeds from plants irrigatedonly until 16 days after pollination. Stachyose content correlatedpositively, and monosaccharide content correlated negatively,with the ability of seeds to tolerate rapid desiccation andwith their potential longevity (the constantKiof the seed viabilityequation). Similarly, the ratio of oligosaccharide[ratio]totalsugars provided strong positive correlations with ability totolerate desiccation and with potential longevity. Most of theheat-stable proteins selected for study accumulated comparativelylate, i.e. during maturation drying. The imposition of waterstress induced earlier accumulation of heat-stable proteins.The ability to tolerate desiccation was correlated with thecontent of selected heat-stable proteins, but potential longevityprovided stronger correlations. The content of a 58 kDa heat-stableprotein provided the strongest positive correlation with potentiallongevity. A simple multiple regression model of the relationsbetween potential longevity and both the oligosaccharide[ratio]totalsugar ratio and the 58 kDa heat-stable protein content was developedfor all three plant irrigation regimes to show the combinedeffect of certain sugars and proteins on seed quality. The modelsuggests that these sugars and proteins are equally likely tobe required for seed quality development, and that initiallythe sugars tend to accumulate at a greater rate than the proteins,but that during maturation drying the heat-stable proteins accumulateat the greater rate.Copyright 1998 Annals of Botany Company Brassica campestris (rapa) L., rapid-cycling brassica, potential longevity, seed development, desiccation tolerance, soluble sugars, oligosaccharides, dehydrins, heat-stable proteins.  相似文献   

17.
In constrast to seeds of orthodox species, those of recalcitrantspecies do not acquire desiccation tolerance during their developmentand are shed from the parent plant at high water contents. Dehydrinproduction in seeds of recalcitrant species was examined duringdevelopment and germination, in response to abscisic acid (ABA),and following the imposition of various water-deficit-relatedstresses, including desiccation, water stress, high salt, highosmolarity, and low temperature. Two tropical species exhibiteda differential capacity to produce dehydrin-related proteinsduring seed maturation. Dehydrins were present in axes and cotyledonsof Castanospermum australe seeds during mid-maturation and atmaturity. In Trichilia dregeana, no dehydrin-related polypeptideswere detected in the mature seed. During the development ofC. australe seeds, the nature of the dehydrin related polypeptidesaccumulated in the cotyledons and axis changed and new polypeptideswere detected in the mature seeds that were not present duringmid-maturation. The dehydrins present in cotyledons of matureseeds (31, 37 and 40 kDa) were still detectable after germination(i.e. in untreated seedlings). These dehydrins became less abundantin the cotyledons of C. australe seedlings following ABA andall stress treatments except cold, although most of the dehydrinswere still detectable. An exception was the desiccation-treatedseedlings, in which no dehydrins were detected. In the rootsof C. australe seedlings, no dehydrins were found after germinationnor were they induced in the root by ABA or any of the stresstreatments imposed on seedlings. Seedlings of Trichilia dregeanadid not produce dehydrins in the roots or cotyledons when exposedto ABA or water-deficit-related stresses. Key words: Dehydrin, ABA, desiccation, recalcitrant, seed  相似文献   

18.
Changes in the abscisic acid (ABA) levels in embryo axes of seeds, belonging to the orthodox (Norway maple — Acer platanoides L.) and recalcitrant (sycamore — Acer pseudoplatanus L.) categories, were investigated throughout maturation using an ELISA (enzyme-linked immunosorbent assay) test. Concentration of ABA in embryo axes substantially differed depending on species and sampling date. ABA was always higher in Norway maple except at the end of seed maturation when ABA content was similar in both species. During maturation ABA decreased in both species but the decline was more marked in Norway maple than in sycamore (11 vs. 3 fold). These species also differed in the pattern of ABA changes, which in sycamore embryo axes was very regular, while in Norway maple a sharp decrease was recorded after acquisition by the seeds of tolerance to desiccation. Dehydration of embryo axes of Norway maple caused a further significant decrease of ABA level. In contrast, in dehydrated sycamore embryo axes ABA content did not decrease, but slightly increased. The role of ABA in desiccation tolerance and dormancy of Norway maple and sycamore seeds is discussed.  相似文献   

19.
Proteins inducible by dehydration and abscisic acid (ABA), termed dehydrins or RAB (Responsive to ABA) proteins, have been identified in a number of species and have been suggested to play a role in desiccation tolerance, particularly during seed development. Seeds (caryopses) of North American wild rice (Zizania palustris var interior [Fassett] Dore) are tolerant of dehydration to <10% moisture content (fresh weight basis) only under restricted dehydration and rehydration conditions. In comparison, seeds of paddy rice (Oryza sativa L.) readily tolerate desiccation to <5% water content. Expression of “dehydrin-like” proteins in Zizania and Oryza seedlings and embryos was examined to investigate the relationship between the presence of such proteins and desiccation tolerance. [35S]Methionine labeling of newly synthesized proteins showed that seedlings (first leaf stage) of both Zizania and Oryza synthesized a novel “heat-stable” protein of apparent molecular weight = 20,000 when dehydrated to <75% of their initial fresh weight. ABA (100 micromolar) induced synthesis of a protein with similar electrophoretic mobility in both species. Western blots using antiserum raised against maize (Zea mays L.) dehydrin detected a protein band from dehydrated Zizania shoots and mature embryonic axes that comigrated with the labeled 20-kilodalton polypeptide. Northern blots using a cDNA for an ABA-responsive protein from Oryza (rab 16a) showed that both seedlings and excised embryonic axes of Zizania accumulated RNA similar in sequence to rab 16a in response to water loss. Zizania seedlings and embryonic axes were also capable of ABA accumulation during dehydration. The intolerance of Zizania seeds to dehydration at low temperature is apparently not due to an absence of dehydrin-like proteins or an inability to accumulate ABA.  相似文献   

20.
黄皮种子发育过程中脱水敏感性与细胞膜透性的关系   总被引:3,自引:0,他引:3  
黄皮(Clausena lansium (Lour.) Skeels)胚轴与完整种子的发育模式以及发育中电解质渗漏率变化有些不同. 种子生理成熟前、后的胚轴对脱水的反应也不同,前者经轻微脱水可提高萌发率和活力指数,后者不耐任何程度的脱水.活力指数的急剧下降伴随着电解质渗漏率的迅速上升.实验表明,黄皮种子在发育过程中没有形成耐脱水性. 细胞膜透性变化可反映脱水对种子的伤害程度  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号