首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Effects of prostaglandin E1(PGE1) and prostaglandin I2(PGI2) on the mechanical activity and tissue cyclic AMP content of the longitudinal muscle of rabbit intestine were examined, comparing that of the tissue cyclic AMP content. Isoproterenol caused a relaxation and increased tissue cyclic AMP content.  相似文献   

2.
In confluent cultures of “young” (< 30 generations) human fibroblasts, maximally effective concentrations of prostaglandin E1 (5.6 μM) and isoproterenol (2 μM) increased cyclic AMP content several hundred-fold and approximately 30-fold, respectively. On the first day after initiation of cultures at either low (approx. 3 · 105 cells) or high (approx. s · 106 cells) cell density the magnitude of the isoproterenol effect was similar to that in confluent cultures. It increased during the next few days, reaching a maximum around day 2–3, and then declined. On any day during the period of subculture, the magnitude of the isoproterenol effect was inversely related to cell density. Alterations in response to prostaglandin E1 as a function of time in subculture or cell density were less dramatic. The effects of prostaglandin E1 were, however, smaller at some point during the first few days of subculture than after day 7, and when effects of prostaglandin E1 were minimal, those of isoproterenol were maximal and approached those of prostaglandin E1. On any day of subculture, cells in cultures of higher density tended to accumulate more cyclic AMP in response to prostaglandin E1 than did those in low density cultures. The effects of prostaglandin E1 and isoproterenol on cyclic AMP content were qualitatively similar in “young” and in “old” (> 60 generations in culture) human fibroblasts although the changes associated with duration of subculture and cell density tended to be less marked with “old” cells. In the “young” fibroblasts responsiveness to isoproterenol and prostaglandin E1 appears to correlate with cell morphology and with the fractional rate of growth in subcultures. It is suggested that the capacities of the fibroblasts to respond to these two agents may be altered independently during growth of human fibroblasts.  相似文献   

3.
Three behavioral tests, spontaneous locomotor activity (SLMA), exploratory behavior (EB) and rotarod performance (RP), a measure of neuromuscular coordination, were used to study the interaction of PGE1 (1 mg/kg i.p., 10 min. pretreatment) with DBcAMP (25 mg/kg i.p., 25 min. pretreatment) in mice. A dose-response relationship of PGE1 (0.01–5.0 mg/kg) to SLMA was determined, with a significant decrease in SLMA produced by a dose of 0.1 mg/kg. Decreases in SLMA were produced by PGE1 (79%), DBcAMP (41%) and DBcAMP-PGE1 combination (71%). Similar decreases in EB were observed. Although no significant difference between controls and DBcAMP was observed in RP, 52% of mice tested were RP failures following PGE1 and a 100% failure rate was induced by the combination. Mice were treated with a second injection of DBcAMP or PGE1 or the combination 24 hr following the first injection. Behavioral activity of these mice was observed 25 min (DBcAMP) or 10 min (PGE1) after the second dose was administered. A second injection of DBcAMP failed to decrease SLMA and EB from controls; moreover, SLMA began to return towards control levels as early as 2 hr between injections. The second injection of PGE1 or DBcAMP+PGE1 produced the same behavior as that produced by the first injection. On the basis of these results, the relationship of cyclic nucleotides and PGs to behavioral activity is discussed.  相似文献   

4.
Prostaglandin E1 (PGE1) failed to stimulate rat liver cyclic AMP (cAMP), induce hyperglycemia, glycogenolysis or lipolysis or prevent epinephrine-induced hyperglycemia in isolated perfused rat liver, even though other known glycogenolytic agents (glucagon and epinephrine) activated cAMP in this same system. The data do not support a physiologic role for PGE1 on hepatic glycogenolysis or lipolysis. Although the effects of PGE1 on gluconeogenesis, lipogenesis, ureogenesis or amino acid transport in isolated perfused liver were not investigated, if PGE1 is subsequently found to influence these metabolic parameters, such alterations would probably occur independent of a change in cAMP activity.  相似文献   

5.
Five min following a single iv injection of PGE2 into ovariectomized mature rats pretreated with estrogen and progesterone, plasma LH and plasma and pituitary cyclic AMP levels were raised significantly. A close correlation was observed between increased pituitary cyclic AMP contents and release of plasma LH. The average level of cyclic AMP in the anterior pituitary and plasma cyclic AMP increased significantly, while the circulating plasma LH level was not changed at 1 min after PGE2 injection. Plasma LH level increased at 2 min after PGE2 and reached a maximum level at the above-mentioned time. This is consistent with hypothesis that increased release of hormone is a consequence of increased pituitary cyclic AMP content.  相似文献   

6.
Concentrations of prostaglandin E1 (PGE1; 10−7 M) that do not elicit tension responses in aortic strips potentiate contractions induced by submaximal concentrations (10−8 − 10−7 M) of norepinephrine (NE) or angiotensin III (Ang III) but not those of high K+ depolarization or maximal NE or Ang III concentrations. Higher concentrations of PGE1 (10−6 M and above) initiate contractions which are additive with submaximal responses to NE and Ang III but not to K+. These same concentrations of PGE1 also decrease 45Ca retention at high affinity La+++-resistant sites in a manner similar to but not additive with NE and Ang III. Uptake of 45Ca at low affinity La+++-resistant sites (which is increased by high K+-depolarization) is not altered by 10−6 M PGE1. The effects of PGE1 are not altered by decreased extracellular Ca++ (0.1 mM), decreased temperature, phentolamine or meclofenamate. Thus, PGE1 does not appear to increase uptake of extracellular Ca++ in this smooth muscle tissue. Instead, PGE1 increases mobilization of Ca++ from the same high affinity La+++-resistant sites affected by Ang III and NE and, in this manner, may increase responses to these two stimulatory agents.  相似文献   

7.
Isolated whole ovaries from 23–24 day-old rats were studied in order to compare the effects of prostaglandin E1 (PGE1) and luteinizing hormone (LH) on ovarian cyclic adenosine 3′,5′-monophosphate (cAMP) production. Both substances produced a dose-dependent accumulation of cAMP in the ovarian tissue as well as in the incubation medium. The release of cAMP to the incubation medium was considerable after long periods of incubation (60–120 min). Time-relationships for LH- and PGE1-effects were different. Maximal cAMP content in the tissue after addition of PGE1 was seen already after 5–15 min of incubation whereas LH gave a maximal response after around 60 min. Accumulation of cAMP in the medium was approximately linear with time for both LH and PGE1. Addition of theophylline potentiated the action of PGE1 and LH but did not change the time-courses of the effects. It is concluded that the accumulation of cAMP in the medium should be considered in studies with various in vitro types of ovarian preparations. It is also pointed out that the different time-courses of the LH- and PGE1-effects make the interpretation of additivity experiments difficult.  相似文献   

8.
It has been reported that hyperventilation (HV) increases the release of vasodilative prostaglandins (PGs) from animal lungs. However, it has not yet been clarified whether or not the results obtained from animal experiments are applicable to humans. To confirm this point, we performed this study. Healthy male volunteers, aged 22–28 years, were divided into two groups. Group I (n=11) breathed room air and showed respiratory alkalosis. Group II(n=11) breathed room air containing 5% CO2 and maintained normal arterial blood pH. Each subject hyperventilated voluntarily and vigorously for 10 min. The mean values of respiratory rates, tidal volumes and minute volumes during HV were 42.1±6.2 breaths/min, 1390±280 ml and 58.5±15.2 l/min, respectively. Arterial and venous blood samples were drawn simultaneously before and after HV from brachial artery and medial cubital vein, respectively. Plasma 6-keto PGF1 α, a metabolite of PGI2, and PGE2 were measured by radioimmunoassay (RIA). After HV, concentrations of 6-keto PG F1 α and PGE2 in both arterial and venous blood were increased significantly. There were no significant differences in the levels of 6-keto PGF1 α and PGE2 between two groups, nor between arterial and venous blood either before or after HV. We concluded that voluntary HV stimulates the release of PGI2 and PGE2 from lung in humans and respiratory alkalosis has no significant effect on the release of PGs.  相似文献   

9.
Concentrations of prostaglandin E1 (PGE1; 10?7 M) that do not elicit tension responses in aortic strips potentiate contractions induced by submaximal concentrations (10?8 ? 10?7 M) of norepinephrine (NE) or angiotensin III (Ang III) but not those of high K+ depolarization or maximal NE or Ang III concentrations. Higher concentrations of PGE1 (10?6 M and above) initiate contractions which are additive with submaximal responses to NE and Ang III but not to K+. These same concentrations of PGE1 also decrease 45Ca retention at high affinity La+++-resistant sites in a manner similar to but not additive with NE and Ang III. Uptake of 45Ca at low affinity La+++-resistant sites (which is increased by high K+-depolarization) is not altered by 10?6 M PGE1. The effects of PGE1 are not altered by decreased extracellular Ca++ (0.1 mM), decreased temperature, phentolamine or meclofenamate. Thus, PGE1 does not appear to increase uptake of extracellular Ca++ in this smooth muscle tissue. Instead, PGE1 increases mobilization of Ca++ from the same high affinity La+++-resistant sites affected by Ang III and NE and, in this manner, may increase responses to these two stimulatory agents.  相似文献   

10.
Prostaglandin(PG) I2 and its stable metabolite, 6-keto-PGF, were tested on the isolated ductus arteriosus from mature fetal lambs. PGI2 relaxed the ductus in high doses (threshold 10−6M) and its activity disappeared on standing at room temperature for 30 minutes. 6-keto-PGF was inactive at all doses. By contrast, PGE2 produced a dose-dependent relaxation over a range between 10−10 and 10−6 M. These findings confirm that PGE2 is the most potent ductal relaxant among the known derivatives of arachidonic acid. PGE2 probably maintains ductus patency in the fetus and, together with PGE1, remains the compound of choice in the management of newborns requiring a viable ductus for survival.  相似文献   

11.
The role of cyclic AMP in the control of vascular smooth muscle tone was studied by monitoring the effects of prostaglandin E1 (PGE1), isoproterenol and forskolin on cyclic AMP levels and tension in rabbit aortic rings. PGE1, isoproterenol and forskolin all increased cyclic AMP levels in rabbit aortic rings. Isoproterenol and forskolin relaxed phenylephrine-contracted aortic rings, but PGE1 contracted the rings in the presence or absence of phenylephrine. Isoproterenol relaxed these PGE1-contracted aortic rings without further change in total cyclic AMP levels, which were already elevated by the PGE1 alone. Pretreatment with forskolin potentiated the effects of PGE1 on cyclic AMP levels. PGE1 caused contractions in muscles partially relaxed by forskolin, even though very large increases in cyclic AMP levels (30 fold) were produced by PGE1 in the presence of forskolin. Isoproterenol was able to relax these forskolin-treated, PGE1-contracted muscles with no further increase in cyclic AMP levels. Thus, there does not appear to be a good correlation between total tissue levels of cyclic AMP and tension in these experiments. Our results suggest that, if cyclic AMP is responsible for relaxation of smooth muscle, some form of functional compartmentalization of cyclic AMP must exist in this tissue.  相似文献   

12.
The ability of prostaglandin I2 (PGI2) to stimulate cyclic AMP production by granulosa cells, isolated from intact immature rats, has been demonstrated in vitro. The minimal effective dose was 15 ng/ml, which was comparable to the minimal effective dose for PGE2. However, a concentration of 15 μg/ml PGI2 was required to stimulate cyclic AMP production maximally, compared to a concentration of 1 μg/ml PGE2, which produced the maximum response. It therefore appears that PGI2 is not more effective than PGE2 in stimulating cyclic AMP production in granulosa cells, and is possibly less effective. Submaximal concentrations of PGI2 appeared to be able to modify the stimulation of cyclic AMP production by follicle- stimulating hormone (FSH), but whether or not PGI2 plays any role in follicular function remains to be established.  相似文献   

13.
PGE2 inhibits intracellular cyclic AMP accumulation induced by PGE1 in rat platelets. PGE2 also counteracts PGE1-inhibition of both platelet aggregation and shape change. However, in the presence of theophylline, PGE2 acts like PGE1 in inhibiting aggregation. The mechanism of interaction of the two closely related prostaglandins is discussed.  相似文献   

14.
The inactivation of prostaglandin E2 (PGE2) was studied in isolated perfused lungs of fetal and neonatal rabbits. 200 nmol of 14C-PGE2 was infused into the pulmonary circulation and the metabolites of PGE2 were analysed from the nonrecirculating perfusion effluent. The amount of the main metabolite, 13,14-dihydro-15-keto-PGE2, increased significantly between the 28th and 30th day of fetal life, remained relatively constant at the time of birth and increased again between 1st and 7th postnatal day. In contrast the amount of 15-keto-PGE2 remained relatively stable during the studied period. The activity of NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-OH-PGDH) was determined from the 100.000 g supernatant fraction of fetal, neonatal and maternal rabbit lungs using 14C-PGE2 (20 μM) as the substrate. In the lungs of late fetal rabbits the activity of 15-OH-PGDH was significantly higher compared to the early postnatal period. Maternal rabbit lungs possessed, however, very high activities compared to the studied perinatal lungs. The results show, that the activity of the pulmonary 15-OH-PGDH is high already during the late fetal period. The inactivation of PGE2 in isolated perfused lungs seems, however, to increase during the last prenatal days. Thus it seems possible that the uptake mechanism could be the rate limiting step in the metabolism of PGE2 in rabbit lungs during the perinatal period.  相似文献   

15.
The blood pressure lowering effects of PGI2 in the normal and spontaneously hypertensive rat are described. Comparison of dose response curves for PGI2 and PGE2 indicate that PGI2 is twice as potent as PGE2 in the normal rat and 3–4 times more active in the spontaneously hypertensive rat. Furthermore PGI2 is equiactive through intracarotid and intrajugular administration indicative of the complete lack of pulmonary inactivation. These findings supported by evidence of enhanced PGI2 synthesis in aorta during hypertension support the notion that PGI2 could participate in blood pressure control mechanisms.  相似文献   

16.
17.
Two diastereoisomers, 5R,6R-5-hydroxy-6(9α)-oxido-11α,15S-dihydroxyprost-13-enoic acid (7) and 5S,6S-5-hydroxy-6(9α)-oxido-11α,15S-dihydroxyprost-13-enoic acid (10) were synthesized for evaluation as possible biosynthetic intermediates in the enzymatic transformation of PGH2 or PGG2 into PGI2. The synthetic sequence entails the stereospecific reduction of the 9-keto function in PGE2 methyl ester after protecting the C-11 and C-15 hydroxyls as tbutyldimethylsilyl ethers. The resulting PGF derivative was epoxidized exclusively at the C-5 (6) double bond to yield a mixture of epoxides, which underwent facile rearrangement with SiO2 to yield the 5S,6S and 5R,6R-5-hydroxy-6(9α)-oxido cyclic ethers. It was found that dog aortic microsomes were unable to transform radioactive 9β-5S,6S[3H] or 9β-5R,6R[3H]-5-hydroxy-6(9α)-oxido cyclic ethers into PGI2. Also, when either diastereoisomer was included in the incubation mixture, neither isomer diluted the conversion of [1-14C]arachidonic acid into [1-14C]PGI2.  相似文献   

18.
The fetus and prematurely delivered newborn lamb have high concentrations of circulating PGE2 that may play a hormonal role, particularly in maintaining the patency of the ductus arteriosus. We studied the ability of the isolated, perfused lung from immature (100 ± 150 days) lamb fetuses to metabolize PGE2 as a function of PGE2 concentration in the perfusate. After an intra-arterial infusion of 3H-PGE2 and 14C-inulin (to act as a marker of extracellular space), the bulk of the 14C-inulin was rapidly cleared through the isolated lung and the majority of the 3H activity appeared after the 14C activity had fallen to negligible values. The 3H activity that was retained longer in the lung was primarily associated with the 15-keto prostaglandin E2 and 15-keto-13,14 dihydro prostaglandin E2 metabolites. Lungs from immature fetal lambs metabolized 25% less PGE2 than did lungs from animals near term. This is consistent with our prior observation that premature lambs have decreased plasma clearance rates (in vivo) and elevated circulating concentrations of PGE2 when compared with term newborn lambs.  相似文献   

19.
The effects of intraventricularly administered prostaglandins I2 (PGI2), E2 (PGE2), F (PGF2α) and indomethacin on systemic blood pressure were investigated in conscious rats. PGI2 (1.25 – 10 g/kg) decreased blood pressure in a dose-related manner, whereas PGE2 (100 – 1000 ng/kg) dose-dependently increased blood pressure. Both PGF2α (0.31 – 20 μg/kg) and indomethacin (0.625 – 40 μg/kg) had no effects on blood pressure. These results indicate that intraventricular injection of PGI2 or PGE2 can induce significant changes in blood pressure, while endogenous prostaglandins synthesized in the brain seem to play a minor role in direct regulation of systemic blood pressure in the rat.  相似文献   

20.
The effect of prostaglandin E1 (PGE1) on central and peripheral hemodynamics was studied in seven conscious dogs under conditions of normoxia and hypobaric hypoxia to ascertain if hypoxia attenuated the cardiovascular actions of PGE1. Silastic catheters were chronically implanted in the pulmonary artery, left atrium, and aorta. Acute hypoxia was produced in a hypobaric chamber maintained at 446 mmHg pressure (14,000 feet). PGE1 at sea level (normoxia) resulted in significant increases in heart rate, cardiac output, left ventricular stroke work and pulmonary blood volume as well as significant decreases in aortic, pulmonary arterial, and left atrial pressures. During hypobaric hypoxia, PGE1 produced essentially identical effects on all hemodynamic parameters except pulmonary blood volume and pulmonary arterial pressure where marked attenuation of PGE1 action occurred.Significant hypoxemia does not alter the peripheral and myocardial actions of PGE1 in intact animals. Attenuation of the pulmonary hemodynamic actions of PGE1 may be secondary to the effect of hypoxia on certain segments of the pulmonary vascular bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号