首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In most eukaryotes, homologous chromosomes undergo synapsis during the first meiotic prophase. A consequence of mutations that interfere with the fidelity or completeness of synapsis can be failure in the formation or maintenance of bivalents, resulting in univalent formation at diakinesis and production of unbalanced spores or gametes. Such mutations, termed desynaptic mutations, can result in complete or partial sterility. We have examined the effect of the maize desynaptic1-9101 mutation on synapsis, using the nuclear spread technique and electron microscopy to examine microsporocytes ranging from early pachytene until the diplotene stage of prophase I. Throughout the pachytene stage, there was an average of about 10 sites of lateral element divergence (indicating nonhomologous synapsis), and during middle and late pachytene, an average of two and three sites of foldback (intrachromosomal) synapsis, per mutant nucleus, respectively. By the diplotene stage, the number of sites of lateral element divergence had decreased to seven, and there was an average of one foldback synapsis site per nucleus. Lateral element divergence and foldback synapsis were not found in spread pachytene nuclei from normal plants. These results imply that the normal expression of the dsy1 gene is essential for the restriction of chromosome synapsis to homologues. The abundance of nonhomologous synapsis and the persistence of extended stretches of unsynapsed axial elements throughout the pachytene stage of dsy1–9101 meiocytes suggests that this mutation disrupts both the fidelity of homology search and the forward course of the synaptic process. This mutation may identify a maize mismatch repair gene. Dev. Genet. 21:146–159, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Electron microscopic (EM) analysis of synaptonemal complexes (SC) in single and double heterozygotes for the partially overlapping inversions In(1)1Icg, In(1)1Rk and In(1)12Rk in chromosome 1 of the house mouse reveals that synapsis and synaptic adjustment are dependent on the size and location of the inversions and interaction between the latter. In(1)1Icg contains insertions of the inverted repeats Is(HSR;1C5)1Icg and Is(HSR;1D)2Icg and an inverted euchromatic region. Synaptic adjustment of the D-loops by shortening of the asynapsed segments of the lateral elements belonging to the insertions occurs at the late zytogene to early pachytene stage. Synaptic adjustment of the inversion loops takes place at early to late pachytene. A delay in adjustment was found in the double heterozygotes In(1)1Icg/In(1)1Rk and In(1)1Icg/In(1)12Rk. A correspondence between the lifespan of asynapsis in inverted regions and the probability of association of XY and heteromorphic bivalents was revealed.  相似文献   

3.
Two paracentric inversions in the mouse, In(1)1 Rk and In(2)5 Rk, have been studied in surface microspreads of spermatocytes from heterozygotes. At zytogene, synaptic initiation occurs independently in three regions: within the inversion, and without, on either side. Synaptonemal complex (SC) formation is restricted to homologous regions, resulting in inversion loops in all early pachytene spermatocytes. An adjusting phase then occurs during pachytene in which the inversion loop is reduced by desynapsis of homologously synapsed SC, followed immediately by non-homologous synapsis with the alternate pairing partner, progressing from the ends toward the middle. Adjustment occurs during the first half of pachytene, but is not closely synchronized with sub-stage. It is complete by late pachytene, the loop having been eliminated in all cases and replaced by straight SCs in which the inverted region is heterosynapsed. Synapsis in the adjustment phase is evidently permitted only after the homosynaptic phase, and is indifferent to homology. It may lead to heterosynapsis, as in the inversion region, or to synapsis of homologous regions not synapsed at zytogene. The anaphase bridge frequency, a measure of crossing over within the inversion, is about 34% for both inversions studied, indicating that such crossovers do not block adjustment, that crossing over probably occurs before or during the adjustment period, and that there is some crossover suppression. The last could be the consequence of blocking by desynapsis/heterosynapsis. Synaptic adjustment appears to be a general phenomenon that occurs to varying extents in different forms. A hypothetical scheme for two phases of synapsis is proposed: at zytogene, a basic propensity for indifferent SC formation is limited by a restricting condition to synapsis between homologous regions. Subsequently, the restriction is lifted, whereupon synaptic instability is resolved by desynapsis, followed by resynapsis that is indifferent to homology, but that results in a topologically more stable structure.  相似文献   

4.
Different wild allopolyploid species of Triticeae show extensive bivalent formation at zygotene while a considerable number of multivalents is present in cultivated polyploid wheats. To study the chromosome behaviour at early meiotic stages in wild forms of tetraploid wheats Triticum turgidum and T timopheevii (2n = 4x = 28) we have analysed the synaptic pattern in fully traced spread nuclei at mid- and late zygotene and at pachytene of wild accessions of these species. The mean number of synaptonemal complex (SC) bivalents at mid-zygotene ranged from 12.22 to 13.14 among the accessions studied indicating a strong restriction of synapsis initiation to homologous chromosomes. The mean of bivalents increased at pachytene because of the transformation of multivalents into bivalents. Ring bivalents observed at metaphase I support that SC bivalents were formed by homologous chromosomes. The average values of SC bivalents at mid-zygotene in the wild forms are much higher than the average values observed in the cultivated tetraploid wheats but similar to that of a mutant line of T turgidum with a duplication that includes Ph1, the major homoeologous pairing suppressor locus. These results suggest that the efficiency of the mechanism operating in the homologous recognition for synapsis is higher in wild wheat populations than in cultivated varieties. Apparently, a relatively detrimental modification of the pairing regulating genetic system accompanied the domestication of the wild wheat forms.  相似文献   

5.
Synaptic Adjustment of Inversion Loops in Neurospora Crassa   总被引:1,自引:1,他引:0       下载免费PDF全文
M. Bojko 《Genetics》1990,124(3):593-598
Heterozygotes for three long inversions on chromosome 1 were analyzed by serial reconstruction from electron micrographs. Measurements of loop lengths at different meiotic prophase substages revealed that the homologous synapsis of the inverted region was gradually replaced by nonhomologous synapsis as loops were eliminated during pachytene. This synaptic adjustment was apparently not affected by crossovers which occurred within the 150- and 160-cM long loops.  相似文献   

6.
Meiotic prophase in Sordaria humana has been analyzed by three-dimensional reconstructions of 3 leptotene, 2 zygotene, 10 pachytene and 3 diplotene nuclei. Several notable features emerged. The lateral components of the synaptonemal complexes (SC) are hollow tubes which show dilations of variable sizes from late leptotene to early diplotene. These bulges occur before pairing. Their number decreases as soon as the SC are completely formed, but their mean size increases. Bulges can be present in all parts of the lateral components including telomeres and nucleolar organizer region, but their distribution along bivalents is not random. The remarkably uniform width of the SC central region, normally observed in other species is not observed in S. humana. Although as a general rule the bulges rarely affect the homologous components at identical sites, they often either fill or partially cover the central region. The recombination nodules are not clearly connected with the bulges. This work provides also additional insight into the development of both SC and the nodules. At late leptotene, the homologues are aligned before SC formation. One case of interlocking has been observed at early pachytene. Nodules are present from zygotene to diplotene. They are not evenly distributed along the bivalents during pachytene. The mean number of nodules, constant from late pachytene to diplotene, is equal to the mean number of chiasmata.  相似文献   

7.
Inversion heterozygotes are expected to suffer from reduced fertility and a high incidence of chromosomally unbalanced gametes due to recombination within the inverted region. Non-homologous synapsis of the inverted regions can prevent recombination there and diminish the deleterious effects of inversion heterozygosity. The choice between non-homologous and homologous synapsis depends on the size of inversion, its genetic content, its location in relation to the centromere and telomere, and genetic background. In addition, there is a class of inversions in which homologous synapsis is gradually replaced by non-homologous synapsis during meiotic progression. This process is called synaptic adjustment. The degree of synaptic adjustment depends critically on the presence and location of the COs (crossovers) within the inversion loop. Only bivalents without COs within the loop and those with COs in the middle of the inversion can be completely adjusted and became linear.  相似文献   

8.
Xie Y  Li F  Zhang C  Yu K  Xiang J 《Tissue & cell》2008,40(5):343-350
A modified surface spreading technique for synaptonemal complex (SC) analysis was tested to assess the process of chromosome synapsis in spermatocytes of diploid and induced triploid Fenneropenaeus chinensis. Spermatocytes of diploid shrimp showed typical morphological characteristics of eukaryote SC, with complete synapsis of bivalents. No recognizable bivalent associated with sex chromosomes was observed in spermatocytes of diploid shrimp. However, differences in morphology of SC, including unsynapsed univalents, bivalents, totally paired trivalents with non-homologous synapsis, partner switches and triple synapsis were identified at early pachytene stage of triploid spermatocytes. Triple synapsis was especially common at late pachytene stage in spermatocytes of triploid shrimp. The observed abnormal synapsis behavior of chromosomes in spermatocytes indicated that triploid male shrimp may find it difficult to develop normal haploid sperm.  相似文献   

9.
Electron microscopic analysis of synaptonemal complexes (SC) in single and double heterozygotes for the partially overlapping inversions In(1)1Icg, In(1)1Rk and In(1)12Rk in the Chromosome 1 of the house mouse reveals a dependence of synapsis and synaptic adjustment on the size and location of the inversions and their interaction. In(1)1Icg contains the insertions of inverted repeats Is(HSR: 1C5)1Icg and Is(HSR: 1I)2Icg as well as inverted euchromatic region. The synaptic adjustment of the D loops by shortening of asynapsed parts of the lateral elements of SC belonging to the insertions occurs at late zygotene-early pachytene stage. After that the synaptic adjustment of the inversion loops takes place. A delay in adjustment was found in diheterozygotes In(1)1Icg/In(1)1Rk and In(1)1Icg/In(1)12Rk. Morphological alterations of the asynapted terminal segments of lateral elements preventing synaptic adjustment were found in single and double heterozygotes for In(1)1Rk and In(1)12Rk. Correspondence between the size of asynapted regions and the probability of association of XY and heteromorphic bivalents was revealed.  相似文献   

10.
Martí DA  Bidau CJ 《Hereditas》2001,134(3):245-254
Dichroplus pratensis has a complex system of Robertsonian rearrangements with central-marginal distribution; marginal populations are standard telocentric. Standard bivalents show a proximal-distal chiasma pattern in both sexes. In Robertsonian individuals a redistribution of chiasmata occurs: proximal chiasmata are suppressed in fusion trivalents and bivalents which usually display a single distal chiasma per chromosome arm. In this paper we studied the synaptic patterns of homologous chromosomes at prophase I of different Robertsonian status in order to find a mechanistic explanation for the observed phenomenon of redistribution of chiasmata. Synaptonemal complexes of males with different karyotypes were analysed by transmission electron microscopy in surface-spread preparations. The study of zygotene and early pachytene nuclei revealed that in the former, pericentromeric regions are the last to synapse in Robertsonian trivalents and bivalents and normally remain asynaptic at pachytene in the case of trivalents, but complete pairing in bivalents. Telocentric (standard) bivalents usually show complete synapsis at pachytene, but different degrees of interstitial asynapsis during zygotene, suggesting that synapsis starts in opposite (centromeric and distal) ends. The sequential nature of synapsis in the three types of configuration is directly related to their patterns of chiasma localisation at diplotene-metaphase I, and strongly supports our previous idea that Rb fusions instantly produce a redistribution of chiasmata towards chromosome ends by reducing the early pairing regions (which pair first, remain paired longer and thus would have a higher probability of forming chiasmata) from four to two (independently of the heterozygous or homozygous status of the fusion). Pericentromeric regions would pair the last, thus chiasma formation is strongly reduced in these areas contrary to what occurs in telocentric bivalents.  相似文献   

11.
The meiotic behavior of heterozygotes from three different maize pericentric inversion stocks was quantitatively observed at a variety of stages throughout meiosis I and II. With heterozygosity for either of two of these inversions, the usual mode of pairing observed at pachytene involved synapsis of the centromere containing inverted region, and synaptic failure of the centromere region was rarely found. Abnormal chromosome behavior at subsequent meiotic stages was rare in these cases. With heterozygosity for the third inversion, however, homologous synapsis was generally found in the distal regions of the chromosome involved, the inverted region was often non-homologously synapsed, and a substantial frequency of cells apparently showed synaptic failure in the centromere containing inverted region. A substantial frequency of cells at anaphase II in this case contained two lagging monads in the plate region of the spindle. Where cells could be identified as sisters, sister cells showed identical behavior at anaphase II. Findings seem to be most simply explained by the supposition that pachytene synapsis of the centromere region is important to provision for sister centromere association until anaphase II.  相似文献   

12.
13.
Analysis of surface-spread synaptonemal complexes of zygotene and pachytene spermatocytes was carried out on a human male carrier of a pericentric inversion of chromosome 21 ascertained after four miscarriages. The synaptic behavior of the bivalent, which could be unambiguously identified by its nonaligned kinetochores, was analyzed. All zygotene and pachytene spermatocytes had 22 linearly paired autosomal bivalents, with apparently normal synaptonemal complexes, and no evidence of a loop configuration in the 50 cells analyzed. According to the XY type (classification of Solari), the cells were distributed across zygotene and pachytene stages, not exclusively in the late pachytene to which adjustment is conventionally thought to be confined. It is suggested that inverted segments heterosynapse at early pachytene, without previous homosynapsis. It is expected that this meiotic process leads to failure of crossing-over, reduces the production of unbalanced gametes, and the risk of recombinant offspring, but can increase the incidence of aneuploidy as a result of nondisjunction during meiosis I (a frequent cause of pregnancy wastage).  相似文献   

14.
M. P. Maguire  R. W. Riess 《Genetics》1994,137(1):281-288
Frequency of homologous synapsis at pachytene for a relatively short heterozygous inversion was compared to the frequency of crossover occurrence within the inversion and to the frequency of the presence of a recombination nodule within the homologously synapsed inverted region. Crossover frequencies were estimated from bridge-fragment frequencies at anaphase I and anaphase II. Recombination nodules (RNs) were observed in electron micrographs. Results show very similar frequencies of homologous synapsis and the occurrence of reciprocal recombination within the inverted region, consistent with the interpretation that establishment of homologous synapsis in this case is related to at least commitment to the form of resolution of crossover intermediates which gives rise to reciprocal recombination, not conversion only, events. An RN was generally found at pachytene in homologously synapsed inverted regions.  相似文献   

15.
K A Khazanehdari  G H Jones 《Génome》1996,39(6):1199-1204
Ultrastructural analysis of B chromosome synapsis in surface-spread (2B) pollen mother cells of the leek, Allium porrum, has clarified their structural organization and shed new light on their origin. In pachytene cells containing two B chromosomes, these chromosomes either formed a pair of univalents showing foldback hairpin loops or synapsed together to form bivalents of several different types. The synaptic configurations of univalents and bivalents indicate that these B chromosomes have a basically isochromosome organization, but this is modified by a slight centric shift giving an arm ratio of 1.1:1. This analysis adds to the growing number of B chromosomes that have been shown to be isochromosomes or isochromosome derivatives. Key words : Allium porrum, B chromosomes, synapsis, synaptonemal complex, isochromosome.  相似文献   

16.
Chromosomal pairing and chiasma formation were studied two individuals of Peromyscus beatae heterozygous for the presence of a large block of interstitial heterochromatin. Although the modified chromosome was of medium size, analysis of C-banded diakinetic configurations revealed that it was the homolog of one of the smallest autosomes. Analysis of silver stained synaptonemal complexes indicated that synapsis was either unidirectional from initiation at one set of telomeres or was bidirectional from initiation at both sets of telomeres. Each pattern resulted in characteristic heteromorphic pairing configurations (interstitial asynapsis or terminally positioned unpaired segments) in early pachynema. These configurations underwent synaptic adjustment and, by mid-pachynema, the lateral elements of the polymorphic bivalent either appeared typical of homomorphic bivalents or exhibited regional heteropycnosis in one or both axes. Synaptonemal complex data for Peromyscus and many other mammalian species reflect an apparent need for fully paired, linear bivalents prior to the end of pachynema.  相似文献   

17.
The mechanisms of homologous chromosome pairing were studied in synaptonemal complex (SC) spreads of F1 Brahman (Bos indicus) x Hereford (Bos taurus) cattle. The most common SC abnormalities were bivalents with partial pairing failure and interlocks. While C-band polymorphisms could underlie most of the SC abnormalities observed in the full-blood cattle, other causes seem also to be contributing in the hybrids. The pattern of the abnormalities indicates that genic differences between the species were probably involved. Pachytene substaging data suggest that in some spreads, early pachytene bivalents with partial pairing failure may achieve complete synapsis or may be converted to interlocks by late pachytene.  相似文献   

18.
The synaptonemal complexes of T(X;4)1R1 (abbreviated R1) translocation heterozygotes have been examined by electron microscopy and compared with those of two X-7 translocations: R5 and R6. The X chromosome breakpoint of R1 is estimated to lie between 78 and 82% from the proximal end of the X, in the same general region as the R5 and R6 breakpoints. The position of the autosomal breakpoint of R1, like that of R6, is about 30% from the proximal end of the respective autosome. R1 is also similar to R6 in that there is extensive nonhomologous synapsis both in quadrivalents and heteromorphic bivalents. We have recently found that the location of breakpoints with respect to the position of the G-bands appears to be related to the synaptic behavior seen in translocation heterozygotes. If both breaks of a reciprocal translocation lie in G-light bands, as was the case with R5, synapsis is confined to homology. However, if one break lies in or immediately adjacent to a G-dark band, there is nonhomologous synapsis, as occurs with R1 and R6. Comparison of the synaptic behavior of R1 with R5 and R6 leads to the conclusion that this G-band-related nonhomologous synapsis is of a different type than the "synaptic adjustment" phenomenon that has been described by Moses (1977a). This G-band-related nonhomologous synapsis is not substage-specific, but competes with homologous synapsis during zygotene-early pachytene.  相似文献   

19.
The phenotype of the desynaptic (dy) mutant of maize in microsporocytes at meiotic prophase was compared with normal microsporocytes of a closely related strain and with microsporocytes of a maize inbred line (KYS) assumed to be normal. Strikingly more univalents and open arms of bivalents were found in the mutant cells than in normal cells at diakinesis, and where there was heterozygosity for a distal knob (heterochromatic region), separation was usually equational, indicating the occurrence of normal crossing-over followed by failure of chiasma maintenance in the mutant. Differences found in the mutant by electron microscopy were a statistically significant wider dimension of the synaptonemal complex central region and also less twisting of synapsed configurations at pachytene. It is suggested that these are side-effect symptoms of a defect in the synaptonemal complex (or associated substance), which is expressed later as sporadic loss of chiasma maintenance.  相似文献   

20.
The influence of trisomy on meiotic chromosome association and synapsis was studied in oocytes of two trisomy 21 fetuses. The patterns of association of the three chromosomes 21 were determined by analysis of late zygotene to early diplotene fetal oocytes after immunofluorescent staining of synaptonemal complexes. The identity of chromosome 21 was confirmed using FISH with either a whole chromosome 21 paint or an alpha-satellite DNA repeat probe. In both fetuses, a wide variety of configurations was present at pachytene. The most common configurations were a trivalent (35.5% and 51.6% of analyzable cells) and a bivalent plus univalent (62.9% and 45.2%). These different frequencies between the fetuses were not significant. Trivalents showed either triple synapsis or double synapsis with pairing-partner switches. The extent of triple synapsis varied from a short segment, either terminal or interstitial, to the whole chromosome length. Through use of immunofluorescent staining of the centromeres, we identified novel types of abnormal chromosome behavior in trisomy 21 fetal oocytes. Thus, we found that 6/41 trivalents had one of the chromosomes associated "out of register," i.e., in a nonhomologous fashion, with its two homologs. Likewise, we found three cells with bivalent plus univalent configurations, in which the univalent showed self-synapsis. The presence of three copies of chromosome 21 therefore results not only in the formation of complex and highly variable synaptic associations but also causes a significant increase in the occurrence of nonhomologous synapsis in human fetal oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号