首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phototropic response in etiolated pea (Pisum sativum L. cv Alaska) seedlings is poor. However, the curvature induced by unilateral blue light can be hastened and increased in magnitude by a previously administered red light pulse followed by several hours of darkness. Phytochrome is involved in the red light effect. Phototropic response was almost completely inhibited by removal of the apical bud and hook, but it was restored if exogenous indole-3-acetic acid was applied apically to the cut stump. Therefore, the stem contains both the phototropic photoreceptor and response mechanism. Perception of gravity and gravitropic response were also localized in the stem, but gravitropism was scarcely inhibited by decapitation. It was also observed that the kinetics and curvature pattern of gravitropism differed greatly from those of phototropism. Like phototropism, stem nutation required auxin and was promoted by red light. Unlike phototropism, photoenhanced nutational curvature required the apical hook and was propagated as a wave down the stem. Naphthylphthalamic acid inhibited, in order of decreasing effect, nutation, phototropism/gravitropism, and growth. Phototropism, gravitropism, and nutation appear to represent distinct forms of stem movement with fundamental differences in the mechanisms of curvature development.  相似文献   

2.
Although the effects of gravity on root growth are well known and interactions between light and gravity have been reported, details of root phototropic responses are less documented. We used high-resolution image analysis to study phototropism in primary roots of Zea mays L. Similar to the location of perception in gravitropism, the perception of light was localized in the root cap. Phototropic curvature away from the light, on the other hand, developed in the central elongation zone, more basal than the site of initiation of gravitropic curvature. The phototropic curvature saturated at approximately 10 micromoles m-2 s-1 blue light with a peak curvature of 29 +/- 4 degrees, in part due to induction of positive gravitropism following displacement of the root tip from vertical during negative phototropism. However, at higher fluence rates, development of phototropic curvature is arrested even if gravitropism is avoided by maintaining the root cap vertically using a rotating feedback system. Thus continuous illumination can cause adaptation in the signalling pathway of the phototropic response in roots.  相似文献   

3.
Phytochromes are a family of photoreceptor molecules, absorbing primarily in red and far-red, that are important in many aspects of plant development. These studies investigated the role of phytochromes in phototropism and gravitropism of seedlings of Arabidopsis thaliana. We used two transgenic lines, one which lacked phytochromes specifically in the roots (M0062/UASBVR) and the other lacked phytochromes in the shoots (CAB3::pBVR). These transgenic plants are deficient in the phytochrome chromophore in specific tissues due the expression of biliverdin IXa reductase (BVR), which binds to precursors of the chromophore. Experiments were performed in both light and dark conditions to determine whether roots directly perceive light signals or if the signal is perceived in the shoot and then transmitted to the root during tropistic curvature. Kinetics of tropisms and growth were assayed by standard methods or with a computer-based feedback system. We found that the perception of red light occurs directly in the root during phototropism in this organ and that signaling also may occur from root to shoot in gravitropism.  相似文献   

4.
J Z Kiss 《Plant physiology》1994,105(3):937-940
In contrast to higher plants, Chara rhizoids have single membrane-bound compartments that appear to function as statoliths. Rhizoids were generated by germinating zygotes of Chara in either soil water (SW) medium or artificial pond water (APW) medium. Differential-interference-contrast microscopy demonstrated that rhizoids form SW-grown plants typically contain 50 to 60 statoliths per cell, whereas rhizoids from APW-grown plants contain 5 to 10 statoliths per cell. Rhizoids from SW are more responsive to gravity than rhizoids from APW because (a) SW rhizoids were oriented to gravity during vertical growth, whereas APW rhizoids were relatively disoriented, and (b) curvature of SW rhizoids was 3 to 4 times greater throughout the time course of curvature. The growth rate of APW rhizoids was significantly greater than that of SW-grown rhizoids. This latter result suggests that APW rhizoids are not limited in their ability for gravitropic curvature by growth and that these rhizoids are impaired in the early stages of gravitropism (i.e. gravity perception). Plants grown in APW appeared to be healthy because of their growth rate and the vigorous cytoplasmic streaming observed in the rhizoids. This study is comparable to earlier studies of gravitropism in starch-deficient mutants of higher plants and provides support for the role of statoliths in gravity perception.  相似文献   

5.
Yamamoto K  Kiss JZ 《Plant physiology》2002,128(2):669-681
The actin cytoskeleton is hypothesized to play a major role in gravity perception and transduction mechanisms in roots of plants. To determine whether actin microfilaments (MFs) are involved in these processes in stem-like organs, we studied gravitropism in Arabidopsis inflorescence stems and hypocotyls. Localization studies using Alexa Fluor-phalloidin in conjugation with confocal microscopy demonstrated a longitudinally and transversely oriented actin MF network in endodermal cells of stems and hypocotyls. Latrunculin B (Lat-B) treatment of hypocotyls caused depolymerization of actin MFs in endodermal cells and a significant reduction of hypocotyl growth rates. Actin MFs in Lat-B-treated inflorescence stems also were disrupted, but growth rates were not affected. Despite disruption of the actin cytoskeleton in these two organs, Lat-B-treated stems and hypocotyls exhibited a promotion of gravitropic curvature in response to reorientation. In contrast, Lat-B reduced gravitropic curvature in roots but also reduced the growth rate. Thus, in contrast to prevailing hypotheses, our results suggest that actin MFs are not a necessary component of gravitropism in inflorescence stems and hypocotyls. Furthermore, this is the first study to demonstrate a prominent actin MF network in endodermal cells in the putative gravity-perceiving cells in stems.  相似文献   

6.
Gravitropism in roots of intermediate-starch mutants of Arabidopsis   总被引:6,自引:0,他引:6  
Gravitropism was studied in roots of wild type (WT) Arabidopsis thaliana (L.) Heynh. (strain Wassilewskija) and three starch-deficient mutants that were generated, by T-DNA insertional mutagenesis. One of these mutants was starchless while the other two were intermediate mutants, which had 51% and 60%, respectively, of the WT amount of starch as. determined by light and electron microscopy. The four parameters used to assay gravitropism were: orientation during vertical growth, time course of curvature, induction, and intermittent stimulation experiments. WT roots were much more responsive to gravity than were roots of the slarchless mutant, and the intermediate starch mutants exhibited an intermediate graviresponse. Our data suggest that lowered starch content in the mutants primarily affects gravitropism rather than differential growth because both phototropic curvature and growth rates were approximately equal among all four genotypes. Since responses of intermediate-starch mutants were closer to the WT response than to that of the starchless mutant, it appears that 51–60% of the WT level of starch is near the threshold amount needed for full gravitropic sensitivity. While other interpretations are possible, the data are consistent with the starch statolith hypothesis for gravity perception in that the degree of graviresponsiveness is proportional to the total mass of plastids per cell.  相似文献   

7.
Kiss JZ  Millar KD  Edelmann RE 《Planta》2012,236(2):635-645
While there is a great deal of knowledge regarding plant growth and development in microgravity aboard orbiting spacecraft, there is little information available about these parameters in reduced or fractional gravity conditions (less than the nominal 1g on Earth). Thus, in these experiments using the European Modular Cultivation System on the International Space Station, we studied the interaction between phototropism and gravitropism in the WT and mutants of phytochrome A and B of Arabidopis thaliana. Fractional gravity and the 1 g control were provided by centrifuges in the spaceflight hardware, and unidirectional red and blue illumination followed a white light growth period in the time line of the space experiments. The existence of red-light-based positive phototropism in hypocotyls of seedlings that is mediated by phytochrome was confirmed in these microgravity experiments. Fractional gravity studies showed an attenuation of red-light-based phototropism in both roots and hypocotyls of seedlings occurring due to gravitational accelerations ranging from 0.l to 0.3 g. In contrast, blue-light negative phototropism in roots, which was enhanced in microgravity compared with the 1g control, showed a significant attenuation at 0.3 g. In addition, our studies suggest that the well-known red-light enhancement of blue-light-induced phototropism in hypocotyls is likely due to an indirect effect by the attenuation of gravitropism. However, red-light enhancement of root blue-light-based phototropism may occur via a more direct effect on the phototropism system itself, most likely through the phytochrome photoreceptors. To our knowledge, these experiments represent the first to examine the behavior of flowering plants in fractional or reduced gravity conditions.  相似文献   

8.
植物重力反应的分子调控机制   总被引:1,自引:0,他引:1  
武迪  黄林周  高谨  王永红 《遗传》2016,38(7):589-602
重力是调节植物生长发育和形态建成的重要环境因子。植物感受到重力刺激后可以通过重力反应来协调自身各个器官的生长方向与重力方向之间的最适角度。植物重力反应过程分为重力信号的感受、重力信号的转导、生长素不对称分布的形成和重力反应器官的弯曲生长4个阶段。近年来,随着大量重力反应缺陷突变体的鉴定及其控制基因的功能解析,重力信号的感受和生长素不对称分布的分子机制等方面的研究取得了重要进展。作为植物适应环境变化的重要手段之一,重力反应还可以通过调节水稻(Oryza sativa L.)的分蘖角度实现对水稻株型和产量的调控。因此,研究植物的重力反应,不仅有助于解析植物生长发育的调控机制,对于作物株型的改良也具有重要的指导意义。然而,重力反应的分子机制及其调控网络仍不清楚。本文综述了近年来植物重力反应的调控机理及其调控水稻分蘖角度的作用机制,并对该领域未来的研究方向和热点进行了展望。  相似文献   

9.
The sites of gravity perception are columella cells in roots and endodermal cells in hypocotyls and inflorescence stems. Since plastids are likely to play a role in graviperception, we investigated gravitropism in plastid mutants of Arabidopsis . Previous studies have shown that the arc 6 and arc 12 ( a ccumulation and r eplication of c hloroplasts) mutants have an average of two large plastids per leaf mesophyll cell. In this study, we found that these arc mutants have altered plastid morphology throughout the entire plant body, including the cells involved in gravity perception. There were no major differences in total starch content per cell in endodermal and columella cells of the wild-type (WT) compared to arc 6 and arc 12 as assayed by iodine staining. Thus, the total mass of plastids per cell in arc 6 and arc 12 is similar to their respective WT strains. Results from time course of curvature studies demonstrated that the plastid mutation affected gravitropism only of inflorescence stems and hypocotyls, but not roots. Thus, roots appear to have different mechanisms of gravitropism compared to stems and hypocotyls. Time course of curvature studies with light-grown seedlings were performed in the presence of latrunculin B (Lat-B), an actin-depolymerizing drug. Lat-B promoted gravitropic curvature in hypocotyls of both the WT and arc 6 but had little or no effect on gravitropism in roots of both strains. These results suggest that F-actin is not required for hypocotyl gravitropism.  相似文献   

10.
Light-Regulated Gravitropism in Seedling Roots of Maize   总被引:7,自引:5,他引:7       下载免费PDF全文
Red light-induced changes in the gravitropism of roots of Zea mays variety Merit is a very low fluence response with a threshold of 10−9 moles per square meter and is not reversible by far red light. Blue light also affects root gravitropism but the sensitivity of roots to blue is 50 to 100 times less than to an equal fluence of red. In Z. mays Merit we conclude that phytochrome is the sole pigment associated with light-induced changes in root gravitropism.  相似文献   

11.
The protonema of mosses Ceratodon purpureus and Pottia intermedia is negatively gravitropic in darkness and grows on the substrate surface under illumination. However, the putative mechanisms of these growth responses are not well understood so far. For gravitropism, sedimentation of amyloplasts has been widely assumed to be the first step of the signal transduction chain. This model was supported by numerous observations where amyloplasts' number or size in a protonema apical cell correlated with its gravisensitivity. Unlike multicellular graviperceptive organs, a protonema apical cell is the same site for both of gravity and light perception and realization of growth movements. In addition, red light is known to change the cell responses to gravity. Therefore, we analysed the influence of red light on the events associated with graviperception and growth movements of protonema apical cells, namely: plastid behavior, size, and number, starch content, chlorophyll fluorescence intensity and alpha-amylase activity, under gravistimulation of dark-grown protonema.  相似文献   

12.
Gravitropism and nutation in the stems of dark-grown, seedling peas (Pisum sativum L. cv. Alaska) were recorded on time-lapse photographs made with photomorphogenetically inactive light. Although gravitropism and nutation have been connected by several different theories in the past, our experiments indicate that the two processes are in fact dissociable. The evidence is as follows: (a) Nutational patterns are asymmetric. There is much greater amplitude of oscillation in the plane parallel () to the plane of the apical hook than in the plane perpendicular (), yet the average gravitropic response is equal in these two planes. (b) Brief red light irradiation given 16 to 24 hours before observation greatly increases the amplitude of nutation in the -plane, but has no influence on the kinetics of gravitropic response. (c) An inhibitor of auxin transport, α-naphthylphthalamic acid, strongly inhibits nutation at 5 micromolar but affects gravitropism only at higher concentrations. (d) Nutation is also strongly inhibited by removal of the apical bud, but gravitropism is unaffected. (e) The period of nutation does not exhibit a constant relationship to the response time of gravitropism. The above evidence is inconsistent with theories that gravitropism is an asymmetrically modified nutation or, alternatively, that nutational oscillations result in a simple fashion from gravitropic overshoots. The evidence is consistent with, although not proof of, autonomous factors such as an endogenous rhythm of growth as the cause of nutation in pea stems. However, gravity and nutation do interact. Nutation in a population of seedlings can be synchronized and brought into phase by a single gravitropic induction. Furthermore, the response time and initial rate of gravitropic curvature depend to some extent on the phase of nutational curvature at which gravitropic induction is begun.  相似文献   

13.
It has been found that coleoptiles of dark-grown rice (Oryza sativa L.) seedlings undergo regular circumnutation in circular orbits with periods of about 180 min. Both clockwise and counter-clockwise movements were observed, but individual coleoptiles continued to rotate only in one direction. Light-grown seedlings did not show circumnutation. In fact, dark-grown seedlings were found to cease circumnutating in response to a pulse of red light (R). This light-induced inhibition of circumnutation was demonstrated to involve both a FR-inducible very-low-fluence response, solely mediated by phytochrome A, and a FR-reversible low-fluence response, mediated by phytochrome B and/or C. The R-induced inhibition of circumnutation showed temporal agreement with the R-induced inhibition of coleoptile growth, suggesting that the former results from the latter. However, about 25% of growth activity remained after R treatment, indicating that circumnutation is more specifically regulated by phytochrome. The R-treated coleoptile showed gravitropism. Investigation of the growth differential for gravitropic curvature revealed that gravitropic responsiveness was rather enhanced by R. The results suggested that gravitropism is not a cause of circumnutation. It remained probable, however, that gravity perception is a part of the mechanism of circumnutation. It is speculated that the circumnutation investigated aids the seedling shoot in growing through the soil.  相似文献   

14.
The relationship between gravitropism and surface electrical potentials was studied using etiolated epicotyls of adzuki bean (Phaseolus angularis). Early downward curvature (or transient positive gravitropic response) was observed about 1 min after gravistimulation. The downward curvature was closely related to the speed of the subsequent upward curvature. Surface electrical potentials decreased cooperatively in a limited region on the upper side within only 0.5 to 2 min. This is the earliest event found so far to follow gravistimulation of intact epicotyls. The rapid change in the potential had a high correlation with the early downward curvature and also the subsequent negative gravitropism. It is suggested that the rapid potential change plays an important role in gravity perception.  相似文献   

15.
Lamparter T  Hughes J  Hartmann E 《Planta》1998,206(1):95-102
In darkness, protonemal filaments of Ceratodon purpureus (Brid.) grow negatively gravitropically (upwards). Red light induces a positive phototropic response mediated by the photoreceptor phytochrome. A red light treatment also has an inhibitory effect on the gravitropic response, an effect also mediated by phytochrome. In this study the effects of blue light on phototropism and on gravitropism were analysed. Unilateral blue light resulted in only a weak phototropic response, but markedly randomised growth direction. Blue light given together with a gravitropic stimulus reversed the gravitropism, changing it from negative to positive (filaments grow downward). The effect of blue light was also analysed with the mutant ptr116, which is defective in the biosynthesis of the phytochrome chromophore, and in a newly isolated mutant wwr2, which is positively gravitropic in darkness. Blue light induced the same reversal of gravitropism in ptr116 as in the wild type, indicating that phytochrome is not involved in this process. In wwr2 the direction of gravitropism was unaltered by the blue light treatment. Light also affects chlorophyll content and the size of plastids, potential statoliths for gravitropism. Red light induced an increase in plastid size and chlorophyll content in the wild type but not in ptr116. Blue light induced a similar change in wild type plastids. It seems as though light-induced alterations of gravitropism are not simply mediated by alterations in plastid properties, and that red light and blue light evoke fundamentally different responses. Received: 11 July 1997 / Accepted: 30 January 1998  相似文献   

16.
Growth and early gravitropic responses of corn roots in solution have been studied using time-lapse photography. Aeration was required for both root growth and gravitropism. The optimum pH for gravitropism was in the range 5 to 6. The bending response seemed to be greater for roots in non-buffered solution than in buffered solution. Fastest growth and maximum curvature occurred with about 0.2 mol m−3 Ca2+. Under some conditions, the gravitropic response started with apparently negligible time delay after the start of the gravitropic stimulus. This may denote graviperception in or near the elongation zone itself. This mechanism for early but relatively weak gravitropism may help to explain a variety of gravitropic responses such as the ‘early wrong way’ curvature, and the behaviour of roots whose columella cells lack amyloplasts. More rapid bending appears to start at about 20 min, which is consistent with observations on roots in humid air and with the accepted statolith model of perception in the root cap.  相似文献   

17.
Mechanical resistance to the gravitational force is a principal gravity response in plants distinct from gravitropism. In the final step of gravity resistance, plants increase the rigidity of their cell walls. Here we discuss the role of cortical microtubules, which sustain the function of the cell wall, in gravity resistance. Hypocotyls of Arabidopsis tubulin mutants were shorter and thicker than the wild-type, and showed either left-handed or right-handed helical growth at 1 g. The degree of twisting phenotype was intensified under hypergravity conditions. Hypergravity also induces reorientation of cortical microtubules from transverse to longitudinal directions in epidermal cells. In tubulin mutants, the percentage of cells with longitudinal microtubules was high even at 1 g, and it was further increased by hypergravity. The left-handed helical growth mutants had right-handed microtubule arrays, whereas the right-handed mutant had left-handed arrays. Moreover, blockers of mechanoreceptors suppressed both the twisting phenotype and reorientation of microtubules in tubulin mutants. These results support the hypothesis that cortical microtubules play an essential role in maintenance of normal growth phenotype against the gravitational force, and suggest that mechanoreceptors are involved in signal perception in gravity resistance. Space experiments will confirm whether this view is applicable to plant resistance to 1 g gravity, as to the resistance to hypergravity.Key words: cortical microtubules, gravity, gravity resistance, hypergravity, mechanoreceptor, microgravity, tubulin mutants  相似文献   

18.
An infrared-imaging system has been used to study the influence of gravity on the kinetics of first positive phototropism. The development of phototropic curvature of etiolated seedlings of Arabidopsis thaliana was measured in the absence of visible radiation. Following a pulse of blue light, stationary seedlings curved to a maximum of approximately 16° about 80 minutes after stimulation. The seedlings then curved upward again or straightened by about 6° during the subsequent 100 minutes. Seedlings rotated on a clinostat reached a similar maximum curvature following photostimulation. These seedlings maintained that curvature for 30 to 40 minutes before subsequently straightening to the same extent as the stationary seedlings. It is concluded that straightening is not a consequence of gravitropism, although gravity has some effect on the phototropism kinetics.  相似文献   

19.
Although circumnutation occurs widely in higher plants, its mechanism is little understood. The idea that circumnutation is based on gravitropism has long been investigated, but the reported results have been controversial. We used dark-grown coleoptiles of rice (Oryza sativa L.) to re-investigate this issue. The following results supported the existence of a close relationship between gravitropism and circumnutation: (1) circumnutation disappears on a horizontal clinostat; (2) circumnutation is interrupted by a gravitropic response and re-initiated at a definable phase after gravitropic curvature; (3) circumnutation can be re-established by submergence and a brief gravitropic stimulation in the coleoptiles that have stopped nutating in response to red light; and (4) lazy mutants show no circumnutation. In spite of these results, however, there were cases in which gravitropism and circumnutation could be separated. Firstly, the non-circumnutating lazy coleoptile showed nearly a wild-type level of gravitropic responsiveness in its upper half, although this part was an active site of both gravitropism and circumnutation in wild-type coleoptiles. Secondly, coleoptiles could nutate without overshooting the vertical when developing phototropic curvature. It is concluded that gravitropism influences, but it is not directly involved in the process of circumnutation. It is further suggested that a gravity signal, shared with gravitropism, contributes to the maintenance of circumnutation.  相似文献   

20.
Plants regulate their growth and morphogenesis in response to gravity field, known as gravitropism. In the early process of gravitropism, changes in the gravity vector (gravistimulation) are transduced into certain intracellular signals, termed gravity perception. The plant hormone auxin is not only a crucial factor to represent gravitropism but also a potential signaling molecule for gravity perception. Another strong candidate for the signaling molecule is calcium ion of which cytoplasmic concentration ([Ca2+]c) is known to increase in response to gravistimulation. However, relationship between these two factors, say which is in the first place, has been controversial. This issue is addressed here mainly based on recent progress including our latest studies. Gravistimulation by turning plants 180° induced a two-peaked [Ca2+]c-increase lasting for several minutes in Arabidopsis seedlings expressing apoaequorin; only the second peak was sensitive to the gravistimulation. Peak amplitudes of the [Ca2+]c-increase were attenuated by the 10 µM auxin transport inhibitor (TIBA) and vesicle trafficking inhibitor (BFA), whereas the onset time and rate of rise of the second peak were not significantly altered. This result indicates that polar auxin transport is not involved in the initial phase of the second [Ca2+]c-increase. It is likely that the gravi-induced [Ca2+]c-increase constitutes an upstream event of the auxin transport, but may positively be modulated by auxin since its peak amplitude is attenuated by the inhibition of auxin transport.Key words: auxin, calcium, gravity perception, gravitropism, pin-formed (PIN) protein, Arabidopsis thaliana  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号