首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inactivation of YME1 in yeast causes several distinct phenotypes: an increased rate of DNA escape from mitochondria, temperature-sensitive growth on nonfermentable carbon sources, extremely slow growth when mitochondrial DNA is completely absent from the cell, and altered morphology of the mitochondrial compartment. The protein encoded by YME1, Yme1p, contains two highly conserved sequence elements, one implicated in the binding and hydrolysis of ATP, and the second characteristic of active site residues found in neutral, zinc-dependent proteases. Both the putative ATPase and zinc-dependent protease elements are necessary for the function of Yme1p as genes having mutations in critical residues of either of these motifs are unable to suppress any of the phenotypes exhibited by yme1 deletion strains. Yme1p co-fractionates with proteins associated with the mitochondrial inner membrane, is tightly associated with this membrane, and is oriented with the bulk of the protein facing the matrix. Unassembled subunit II of cytochrome oxidase is stabilized in yme1 yeast strains. The data support a model in which Yme1p is an ATP and zinc-dependent protease associated with the matrix side of the inner mitochondrial membrane. Subunit II of cytochrome oxidase, when not assembled into a higher order complex, is a likely substrate of Yme1p.  相似文献   

2.
Mathematical models were developed to predict the probability of yeast spoilage of cold-filled ready-to-drink beverages as a function of beverage formulation. A Box-Behnken experimental design included five variables, each at three levels: pH (2.8, 3.3, and 3.8), titratable acidity (0.20, 0.40, and 0.60%), sugar content (8.0, 12.0, and 16.0 degrees Brix), sodium benzoate concentration (100, 225, and 350 ppm), and potassium sorbate concentration (100, 225, and 350 ppm). Duplicate samples were inoculated with a yeast cocktail (100 microl/50 ml) consisting of equal proportions of Saccharomyces cerevisiae, Zygosaccharomyces bailii, and Candida lipolytica (approximately 5.0 x 10(4) CFU/ml each). The inoculated samples were plated on malt extract agar after 0, 1, 2, 4, 6, and 8 weeks. Logistic regression was used to create the predictive models. The pH and sodium benzoate and potassium sorbate concentrations were found to be significant factors controlling the probability of yeast growth. Interaction terms for pH and each preservative were also significant in the predictive model. Neither the titratable acidity nor the sugar content of the model beverages was a significant predictor of yeast growth in the ranges tested.  相似文献   

3.
Zygosaccharomyces lentus is a yeast species recently identified from its physiology and 18S ribosomal sequencing (Steels et al. 1999).The physiological characteristics of five strains of this new yeast so far isolated were investigated, particularly those of technical significance for a spoilage yeast, namely temperature range, pH range, osmotolerance, sugar fermentation, resistance to food preservatives such as sorbic acid, benzoic acid and dimethyldicarbonate (DMDC; Velcorin). Adaptation to benzoic acid, and growth in shaking and static culture were also investigated. Zygosaccharomyces lentus strains grew over a wide range of temperature (4-25 degrees C) and pH 2.2-7.0. Growth at 4 degrees C was significant. Zygosaccharomyces lentus strains grew at 25-26 degrees C in static culture but were unable to grow in aerobic culture close to their temperature maximum. All Z. lentus strains grew in 60% w/v sugar and consequently, are osmotolerant. Zygosaccharomyces lentus strains could utilize sucrose, glucose or fructose as a source of fermentable sugar, but not galactose. Zygosaccharomyces lentus strains were resistant to food preservatives, growing in sorbic acid up to 400 mg l-1 and benzoic acid to 900 mg l-1 at pH 4.0. Adaptation to higher preservative concentrations was demonstrated with benzoic acid. Resistance to DMDC was shown to be greater than that of Z. bailii and Saccharomyces cerevisiae. This study confirms that Z. lentus is an important food spoilage organism potentially capable of growth in a wide range of food products, particularly low pH, high sugar foods and drinks. It is likely to be more significant than Z. bailii in the spoilage of chilled products.  相似文献   

4.
Yme1p, an ATP-dependent protease localized in the mitochondrial inner membrane, is required for the growth of yeast lacking an intact mitochondrial genome. Specific dominant mutations in the genes encoding the alpha- and gamma-subunits of the mitochondrial F(1)F(0)-ATPase suppress the slow-growth phenotype of yeast that simultaneously lack Yme1p and mitochondrial DNA. F(1)F(0)-ATPase activity is reduced in yeast lacking Yme1p and is restored in yme1 strains bearing suppressing mutations in F(1)-ATPase structural genes. Mitochondria isolated from yme1 yeast generated a membrane potential upon the addition of succinate, but unlike mitochondria isolated either from wild-type yeast or from yeast bearing yme1 and a suppressing mutation, were unable to generate a membrane potential upon the addition of ATP. Nuclear-encoded F(0) subunits accumulate in yme1 yeast lacking mitochondrial DNA; however, deletion of genes encoding those subunits did not suppress the requirement of yme1 yeast for intact mitochondrial DNA. In contrast, deletion of INH1, which encodes an inhibitor of the F(1)F(0)-ATPase, partially suppressed the growth defect of yme1 yeast lacking mitochondrial DNA. We conclude that Yme1p is in part responsible for assuring sufficient F(1)F(0)-ATPase activity to generate a membrane potential in mitochondria lacking mitochondrial DNA and propose that Yme1p accomplishes this by catalyzing the turnover of protein inhibitors of the F(1)F(0)-ATPase.  相似文献   

5.
The ability of yeasts to grow in the presence of weak organic acid preservatives is an important cause of food spoilage. Many of the determinants of acetate resistance in Saccharomyces cerevisiae differ from the determinants of resistance to the more lipophilic sorbate and benzoate. Interestingly, we show in this study that hypersensitivity to both acetate and sorbate results when the cells have auxotrophic requirements for aromatic amino acids. In tryptophan biosynthetic pathway mutants, this weak acid hypersensitivity is suppressed by supplementing the medium with high levels of tryptophan or, in the case of sorbate sensitivity, by overexpressing the Tat2p high affinity tryptophan permease. Weak acid stress therefore inhibits uptake of aromatic amino acids from the medium. This allows auxotrophic requirements for these amino acids to strongly influence the resistance phenotypes of mutant strains. This property must be taken into consideration when using these phenotypes to attribute functional assignments to genes. We show that the acetate sensitivity phenotype previously ascribed to yeast mutants lacking the Pdr12p and Azr1p plasma membrane transporters is an artefact arising from the use of trp1 mutant strains. These transporters do not confer resistance to high acetate levels and, in prototrophs, their presence is actually detrimental for this resistance.  相似文献   

6.
The yeast nuclear gene YME1 was one of six genes recently identified in a screen for mutations that elevate the rate at which DNA escapes from mitochondria and migrates to the nucleus. yme1 mutations, including a deletion, cause four known recessive phenotypes: an elevation in the rate at which copies of TRP1 and ARS1, integrated into the mitochondrial genome, escape to the nucleus; a heat-sensitive respiratory-growth defect; a cold-sensitive growth defect on rich glucose medium; and synthetic lethality in rho- (cytoplasmic petite) cells. The cloned YME1 gene complements all of these phenotypes. The gene product, Yme1p, is immunologically detectable as an 82-kDa protein present in mitochondria. Yme1p is a member of a family of homologous putative ATPases, including Sec18p, Pas1p, Cdc48p, TBP-1, and the FtsH protein. Yme1p is most similar to the Escherichia coli FtsH protein, an essential protein involved in septum formation during cell division. This observation suggests the hypothesis that Yme1p may play a role in mitochondrial fusion and/or division.  相似文献   

7.
Kominsky DJ  Thorsness PE 《Genetics》2000,154(1):147-154
Organisms that can grow without mitochondrial DNA are referred to as "petite-positive" and those that are inviable in the absence of mitochondrial DNA are termed "petite-negative." The petite-positive yeast Saccharomyces cerevisiae can be converted to a petite-negative yeast by inactivation of Yme1p, an ATP- and metal-dependent protease associated with the inner mitochondrial membrane. Suppression of this yme1 phenotype can occur by virtue of dominant mutations in the alpha- and gamma-subunits of mitochondrial ATP synthase. These mutations are similar or identical to those occurring in the same subunits of the same enzyme that converts the petite-negative yeast Kluyveromyces lactis to petite-positive. Expression of YME1 in the petite-negative yeast Schizosaccharomyces pombe converts this yeast to petite-positive. No sequence closely related to YME1 was found by DNA-blot hybridization to S. pombe or K. lactis genomic DNA, and no antigenically related proteins were found in mitochondrial extracts of S. pombe probed with antisera directed against Yme1p. Mutations that block the formation of the F(1) component of mitochondrial ATP synthase are also petite-negative. Thus, the F(1) complex has an essential activity in cells lacking mitochondrial DNA and Yme1p can mediate that activity, even in heterologous systems.  相似文献   

8.
Microbial spoilage of food causes losses of up to 40% of all food grown for human consumption worldwide. Yeast growth is a major factor in the spoilage of foods and beverages that are characterized by a high sugar content, low pH, and low water activity, and it is a significant economic problem. While growth of spoilage yeasts such as Zygosaccharomyces bailii and Saccharomyces cerevisiae can usually be retarded by weak organic acid preservatives, the inhibition often requires levels of preservative that are near or greater than the legal limits. We identified a novel synergistic effect of the chemical preservative benzoic acid and nitrogen starvation: while exposure of S. cerevisiae to either benzoic acid or nitrogen starvation is cytostatic under our conditions, the combination of the two treatments is cytocidal and can therefore be used beneficially in food preservation. In yeast, as in all eukaryotic organisms, survival under nitrogen starvation conditions requires a cellular response called macroautophagy. During macroautophagy, cytosolic material is sequestered by intracellular membranes. This material is then targeted for lysosomal degradation and recycled into molecular building blocks, such as amino acids and nucleotides. Macroautophagy is thought to allow cellular physiology to continue in the absence of external resources. Our analyses of the effects of benzoic acid on intracellular membrane trafficking revealed that there was specific inhibition of macroautophagy. The data suggest that the synergism between nitrogen starvation and benzoic acid is the result of inhibition of macroautophagy by benzoic acid and that a mechanistic understanding of this inhibition should be beneficial in the development of novel food preservation technologies.  相似文献   

9.
Most yeast species can ferment sugars to ethanol, but only a few can grow in the complete absence of oxygen. Oxygen availability might, therefore, be a key parameter in spoilage of food caused by fermentative yeasts. In this study, the oxygen requirement and regulation of alcoholic fermentation were studied in batch cultures of the spoilage yeast Zygosaccharomyces bailii at a constant pH, pH 3.0. In aerobic, glucose-grown cultures, Z. bailii exhibited aerobic alcoholic fermentation similar to that of Saccharomyces cerevisiae and other Crabtree-positive yeasts. In anaerobic fermentor cultures grown on a synthetic medium supplemented with glucose, Tween 80, and ergosterol, S. cerevisiae exhibited rapid exponential growth. Growth of Z. bailii under these conditions was extremely slow and linear. These linear growth kinetics indicate that cell proliferation of Z. bailii in the anaerobic fermentors was limited by a constant, low rate of oxygen leakage into the system. Similar results were obtained with the facultatively fermentative yeast Candida utilis. When the same experimental setup was used for anaerobic cultivation, in complex YPD medium, Z. bailii exhibited exponential growth and vigorous fermentation, indicating that a nutritional requirement for anaerobic growth was met by complex-medium components. Our results demonstrate that restriction of oxygen entry into foods and beverages, which are rich in nutrients, is not a promising strategy for preventing growth and gas formation by Z. bailii. In contrast to the growth of Z. bailii, anaerobic growth of S. cerevisiae on complex YPD medium was much slower than growth in synthetic medium, which probably reflected the superior tolerance of the former yeast to organic acids at low pH.  相似文献   

10.
Four different kinds of chitosans were prepared by treating crude chitin with various NaOH concentrations. The antimicrobial activities of the chitosans were tested against four species of food spoilage microorganisms (Lactobacillus plantarum, Lactobacillus fructivorans, Serratia liquefaciens, and Zygosaccharomyces bailii). The initial effect of the chitosans was biocidal, and counts of viable cells were significantly reduced. After an extended lag phase, some strains recovered and resumed growth. The activities of chitosan against these microorganisms increased with the concentration. Chitosan-50 was most effective against L. fructivorans, but inhibition of L. plantarum was greatest with chitosan-55. There was no significant difference among the chitosans in their antimicrobial activity against S. liquefaciens and Z. bailii. The addition of chitosan to mayonnaise significantly decreased the viable cell counts of L. fructivorans and Z. bailii during storage at 25°C. These results suggest that chitosan can be used as a food preservative to inhibit the growth of spoilage microorganisms in mayonnaise.  相似文献   

11.
Four different kinds of chitosans were prepared by treating crude chitin with various NaOH concentrations. The antimicrobial activities of the chitosans were tested against four species of food spoilage microorganisms (Lactobacillus plantarum, Lactobacillus fructivorans, Serratia liquefaciens, and Zygosaccharomyces bailii). The initial effect of the chitosans was biocidal, and counts of viable cells were significantly reduced. After an extended lag phase, some strains recovered and resumed growth. The activities of chitosan against these microorganisms increased with the concentration. Chitosan-50 was most effective against L. fructivorans, but inhibition of L. plantarum was greatest with chitosan-55. There was no significant difference among the chitosans in their antimicrobial activity against S. liquefaciens and Z. bailii. The addition of chitosan to mayonnaise significantly decreased the viable cell counts of L. fructivorans and Z. bailii during storage at 25 degrees C. These results suggest that chitosan can be used as a food preservative to inhibit the growth of spoilage microorganisms in mayonnaise.  相似文献   

12.
Five of eight strains of Saccharomyces bailii and one of 13 strains of S. bisporus were found to harbour DNA plasmids. pSB1 and pSB2 plasmids were isolated from S. bailii strains IFO 0488 and IFO 1047, respectively, and pSB3 and pSB4 from S. bisporus strain IFO 1730. All four plasmids resemble 2-micrometers DNA of S. cerevisiae in that their molecular sizes are about 6 kb, each molecule possesses a pair of inverted repeats, they exist as a mixture of two isomers and their copy numbers in the native host are similar. None of them showed homology with 2-micrometers DNA or with each other by Southern hybridization under moderately stringent conditions, but pSB4 hybridized with the pSR1 DNA, which was found previously in a strain of S. rouxii. Each of the pSB plasmids has DNA sequence(s) effective for autonomous replication in S. cerevisiae. In S. cerevisiae, pSB3 and pSB4 showed intramolecular recombination but neither supported isomerization of 2-micrometers DNA.  相似文献   

13.
In yeast, three AAA superfamily metalloproteases (Yme1p, Afg3p and Rca1p) are localized to the mitochondrial inner membrane where they perform roles in the assembly and turnover of the respiratory chain complexes. We have investigated the function of the proposed human orthologue of yeast Yme1p, encoded by the YME1L gene on chromosome 10p. Transfection of both HEK-293EBNA and yeast cells with a green fluorescent protein-tagged YME1L cDNA confirmed mitochondrial targeting. When expressed in a yme1 disruptant yeast strain, YME1L restored growth on glycerol at 37 degrees C. We propose that YME1L plays a phylogenetically conserved role in mitochondrial protein metabolism and could be involved in mitochondrial pathologies.  相似文献   

14.
In Saccharomyces cerevisiae, inactivation of the nuclear gene YME1 causes several phenotypes associated with impairment of mitochondrial function. In addition to deficiencies in mitochondrial compartment integrity and respiratory growth, yme1 mutants grow extremely slowly in the absence of mitochondrial DNA. We have identified two genetic loci that, when mutated, act as dominant suppressors of the slow-growth phenotype of yme1 strains lacking mitochondrial DNA. These mutations only suppressed the slow-growth phenotype of yme1 strains lacking mitochondrial DNA and had no effect on other phenotypes associated with yme1 mutations. One allele of one linkage group had a collateral respiratory deficient phenotype that allowed the isolation of the wild-type gene. This suppressing mutation was in ATP3, a gene that encodes the gamma subunit of the mitochondrial ATP synthase. Recovery of two of the suppressing ATP3 alleles and subsequent sequence analysis placed the suppressing mutations at strictly conserved residues near the C terminus of Atp3p. Deletion of the ATP3 genomic locus resulted in an inability to utilize nonfermentable carbon sources. atp3 deletion strains lacking mitochondrial DNA grew slowly on glucose media but were not as compromised for growth as yme1 yeast lacking mitochondrial DNA.  相似文献   

15.
Glycosylphosphatidylinositol (GPI)-dependent cell wall proteins in yeast are connected to the beta-1,3-glucan network via a beta-1,6-glucan moiety. Addition of gentiobiose or beta-1,6-glucan oligomers to growing cells affected the construction of a normal layer of GPI-dependent cell wall proteins at the outer rim of the Saccharomyces cerevisiae cell wall. Treated S. cerevisiae cells secreted significant amounts of cell wall protein 2, were much more sensitive to the lytic action of zymolyase 20T and displayed a marked increase in sensitivity to the small amphipathic antimicrobial peptide MB-21. Similar results in terms of sensitization of yeast cells to the antimicrobial peptide were obtained with the notorious food spoilage yeast Zygosaccharomyces bailii. Our results indicate that treating cells with a membrane-perturbing compound together with compounds that lead to an impaired construction of a normal GPI-dependent yeast wall protein layer represents an effective strategy to prevent the growth of major food spoilage yeasts.  相似文献   

16.
17.
18.
D. STEAD. 1995. Hydroxycinnamic acids and their derivatives occur widely in plants, fruits and wine. The effect of the common hydroxycinnamic acids (caffeic, coumaric and ferulic acids), at concentrations of 100 and 500 mg 1-1, on growth of 11 strains of spoilage yeasts was measured spectrophotometrically and compared with that of potassium sorbate. Ferulic acid was the most generally inhibitory hydroxycinnamic acid. At 500 mg 1-1 it appreciably inhibited Pichia anomala, Debaryomyces hansenii and Saccharomyces cerevisiae and prevented detectable growth of one strain each of P. anomala and D. hansenii. Caffeic acid was the least inhibitory compound and coumaric acid had an intermediate effect. The more resistant strains of yeast were P. membranaefaciens, Saccharomycodes ludwigii and Zygosaccharomyces bailii. Sensitivity to hydroxycinnamic acid was, in general, associated with sensitivity to potassium sorbate; at a given concentration potassium sorbate was more inhibitory than were any of the hydroxycinnamic acids.  相似文献   

19.
Expression of the pro-apoptotic protein Bax in yeast Saccharomyces cerevisiae induces a release of cytochrome c accompanied by a decrease of the amount of cytochrome c oxidase. Here we show that the decrease of cytochrome c oxidase is due to the activation of mitochondrial protease Yme1p, of which cytochrome c oxidase subunit 2 (Cox2p) is a substrate. The absence of Yme1p slightly delays Bax-induced cell death, suggesting a role of this protease in yeast cell death and thus of its mammalian homologue in apoptosis.  相似文献   

20.
Three metalloproteases belonging to the AAA superfamily (Yme1p, Afg3p and Rca1p) are involved in protein turnover and respiratory chain complex assembly in the yeast inner mitochondrial membrane. Analysis of the completed genome sequences of Caenorhabditis elegans and Drosophila melanogaster indicates that this gene family typically comprises 3-4 members in metazoans. Phylogenetic analysis reveals three main branches represented, respectively, by Saccharomyces cerevisiae YME1, human SPG7 (paraplegin) and S. cerevisiae AFG3 and RCA1. mt-AAA metalloproteases are weak candidates for several previously studied Drosophila mutants. A full elucidation of the cellular and physiological roles of mt-AAA metalloproteases in metazoans will require the creation of targeted mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号